cola Report for Hierarchical Partitioning - 'RomanovBrain'

Date: 2021-07-27 12:23:27 CEST, cola version: 1.9.4

Document is loading...


Summary

First the variable is renamed to res_rh.

res_rh = rh

The partition hierarchy and all available functions which can be applied to res_rh object.

res_rh
#> A 'HierarchicalPartition' object with 'ATC:skmeans' method.
#>   On a matrix with 10389 rows and 2881 columns.
#>   Performed in total 11100 partitions.
#>   There are 48 groups under the following parameters:
#>     - min_samples: 29
#>     - mean_silhouette_cutoff: 0.9
#>     - min_n_signatures: 335 (signatures are selected based on:)
#>       - fdr_cutoff: 0.05
#>       - group_diff (scaled values): 0.5
#> 
#> Hierarchy of the partition:
#>   0, 2881 cols
#>   |-- 01, 1273 cols, 2797 signatures
#>   |   |-- 011, 485 cols, 890 signatures
#>   |   |   |-- 0111, 198 cols, 64 signatures (c)
#>   |   |   |-- 0112, 168 cols, 218 signatures (c)
#>   |   |   `-- 0113, 119 cols, 755 signatures
#>   |   |       |-- 01131, 45 cols (b)
#>   |   |       |-- 01132, 39 cols (b)
#>   |   |       `-- 01133, 35 cols (b)
#>   |   |-- 012, 448 cols, 960 signatures
#>   |   |   |-- 0121, 177 cols, 577 signatures
#>   |   |   |   |-- 01211, 102 cols, 19 signatures (c)
#>   |   |   |   `-- 01212, 75 cols, 172 signatures (c)
#>   |   |   |-- 0122, 131 cols, 1000 signatures
#>   |   |   |   |-- 01221, 64 cols, 8 signatures (c)
#>   |   |   |   |-- 01222, 41 cols (b)
#>   |   |   |   `-- 01223, 26 cols (b)
#>   |   |   `-- 0123, 140 cols, 1387 signatures
#>   |   |       |-- 01231, 36 cols (b)
#>   |   |       |-- 01232, 35 cols (b)
#>   |   |       |-- 01233, 33 cols (b)
#>   |   |       `-- 01234, 36 cols (b)
#>   |   |-- 013, 201 cols, 628 signatures
#>   |   |   |-- 0131, 114 cols, 99 signatures (c)
#>   |   |   `-- 0132, 87 cols, 104 signatures (c)
#>   |   `-- 014, 139 cols, 1908 signatures
#>   |       |-- 0141, 63 cols, 242 signatures (c)
#>   |       |-- 0142, 53 cols (b)
#>   |       `-- 0143, 23 cols (b)
#>   |-- 02, 960 cols, 5466 signatures
#>   |   |-- 021, 386 cols, 2878 signatures
#>   |   |   |-- 0211, 181 cols, 3324 signatures
#>   |   |   |   |-- 02111, 65 cols, 677 signatures
#>   |   |   |   |   |-- 021111, 34 cols (b)
#>   |   |   |   |   `-- 021112, 31 cols (b)
#>   |   |   |   |-- 02112, 71 cols, 438 signatures
#>   |   |   |   |   |-- 021121, 38 cols (b)
#>   |   |   |   |   `-- 021122, 33 cols (b)
#>   |   |   |   `-- 02113, 45 cols (b)
#>   |   |   `-- 0212, 205 cols, 1348 signatures
#>   |   |       |-- 02121, 87 cols, 146 signatures (c)
#>   |   |       |-- 02122, 85 cols, 155 signatures (c)
#>   |   |       `-- 02123, 33 cols (b)
#>   |   |-- 022, 433 cols, 1390 signatures
#>   |   |   |-- 0221, 188 cols, 178 signatures (c)
#>   |   |   |-- 0222, 109 cols, 634 signatures
#>   |   |   |   |-- 02221, 60 cols, 98 signatures (c)
#>   |   |   |   `-- 02222, 49 cols (b)
#>   |   |   `-- 0223, 136 cols, 175 signatures (c)
#>   |   `-- 023, 141 cols, 3262 signatures
#>   |       |-- 0231, 54 cols (b)
#>   |       |-- 0232, 36 cols (b)
#>   |       |-- 0233, 29 cols (b)
#>   |       `-- 0234, 22 cols (b)
#>   `-- 03, 648 cols, 4249 signatures
#>       |-- 031, 402 cols, 3301 signatures
#>       |   |-- 0311, 153 cols, 347 signatures
#>       |   |   |-- 03111, 88 cols (a)
#>       |   |   `-- 03112, 65 cols, 230 signatures (c)
#>       |   |-- 0312, 131 cols, 979 signatures
#>       |   |   |-- 03121, 71 cols, 304 signatures (c)
#>       |   |   `-- 03122, 60 cols, 508 signatures
#>       |   |       |-- 031221, 32 cols (b)
#>       |   |       `-- 031222, 28 cols (b)
#>       |   `-- 0313, 118 cols, 236 signatures (c)
#>       |-- 032, 185 cols, 3273 signatures
#>       |   |-- 0321, 77 cols, 58 signatures (c)
#>       |   |-- 0322, 44 cols (b)
#>       |   |-- 0323, 38 cols (b)
#>       |   `-- 0324, 26 cols (b)
#>       `-- 033, 61 cols, 2292 signatures
#>           |-- 0331, 25 cols (b)
#>           |-- 0332, 21 cols (b)
#>           `-- 0333, 15 cols (b)
#> Stop reason:
#>   a) Mean silhouette score was too small
#>   b) Subgroup had too few columns.
#>   c) There were too few signatures.
#> 
#> Following methods can be applied to this 'HierarchicalPartition' object:
#>  [1] "all_leaves"            "all_nodes"             "cola_report"           "collect_classes"      
#>  [5] "colnames"              "compare_signatures"    "dimension_reduction"   "functional_enrichment"
#>  [9] "get_anno_col"          "get_anno"              "get_children_nodes"    "get_classes"          
#> [13] "get_matrix"            "get_signatures"        "is_leaf_node"          "max_depth"            
#> [17] "merge_node"            "ncol"                  "node_info"             "node_level"           
#> [21] "nrow"                  "rownames"              "show"                  "split_node"           
#> [25] "suggest_best_k"        "test_to_known_factors" "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single node by e.g. object["01"]

The call of hierarchical_partition() was:

#> hierarchical_partition(data = lt$mat, anno = lt$anno, subset = 500, cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_rh)
dim(mat)
#> [1] 10389  2881

All the methods that were tried:

res_rh@param$combination_method
#> [[1]]
#> [1] "ATC"     "skmeans"

Density distribution

The density distribution for each sample is visualized as one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_rh), 
    col = get_anno_col(res_rh)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 1)

plot of chunk density-heatmap

Some values about the hierarchy:

all_nodes(res_rh)
#>  [1] "0"      "01"     "011"    "0111"   "0112"   "0113"   "01131"  "01132"  "01133"  "012"   
#> [11] "0121"   "01211"  "01212"  "0122"   "01221"  "01222"  "01223"  "0123"   "01231"  "01232" 
#> [21] "01233"  "01234"  "013"    "0131"   "0132"   "014"    "0141"   "0142"   "0143"   "02"    
#> [31] "021"    "0211"   "02111"  "021111" "021112" "02112"  "021121" "021122" "02113"  "0212"  
#> [41] "02121"  "02122"  "02123"  "022"    "0221"   "0222"   "02221"  "02222"  "0223"   "023"   
#> [51] "0231"   "0232"   "0233"   "0234"   "03"     "031"    "0311"   "03111"  "03112"  "0312"  
#> [61] "03121"  "03122"  "031221" "031222" "0313"   "032"    "0321"   "0322"   "0323"   "0324"  
#> [71] "033"    "0331"   "0332"   "0333"
all_leaves(res_rh)
#>  [1] "0111"   "0112"   "01131"  "01132"  "01133"  "01211"  "01212"  "01221"  "01222"  "01223" 
#> [11] "01231"  "01232"  "01233"  "01234"  "0131"   "0132"   "0141"   "0142"   "0143"   "021111"
#> [21] "021112" "021121" "021122" "02113"  "02121"  "02122"  "02123"  "0221"   "02221"  "02222" 
#> [31] "0223"   "0231"   "0232"   "0233"   "0234"   "03111"  "03112"  "03121"  "031221" "031222"
#> [41] "0313"   "0321"   "0322"   "0323"   "0324"   "0331"   "0332"   "0333"
node_info(res_rh)
#>        id best_method depth best_k n_columns n_signatures p_signatures is_leaf
#> 1       0 ATC:skmeans     1      3      2881         6708      0.64568   FALSE
#> 2      01 ATC:skmeans     2      4      1273         2797      0.26923   FALSE
#> 3     011 ATC:skmeans     3      3       485          890      0.08567   FALSE
#> 4    0111 ATC:skmeans     4      2       198           64      0.00616    TRUE
#> 5    0112 ATC:skmeans     4      2       168          218      0.02098    TRUE
#> 6    0113 ATC:skmeans     4      3       119          755      0.07267   FALSE
#> 7   01131 not applied     5     NA        45           NA           NA    TRUE
#> 8   01132 not applied     5     NA        39           NA           NA    TRUE
#> 9   01133 not applied     5     NA        35           NA           NA    TRUE
#> 10    012 ATC:skmeans     3      3       448          960      0.09241   FALSE
#> 11   0121 ATC:skmeans     4      2       177          577      0.05554   FALSE
#> 12  01211 ATC:skmeans     5      2       102           19      0.00183    TRUE
#> 13  01212 ATC:skmeans     5      2        75          172      0.01656    TRUE
#> 14   0122 ATC:skmeans     4      3       131         1000      0.09626   FALSE
#> 15  01221 ATC:skmeans     5      2        64            8      0.00077    TRUE
#> 16  01222 not applied     5     NA        41           NA           NA    TRUE
#> 17  01223 not applied     5     NA        26           NA           NA    TRUE
#> 18   0123 ATC:skmeans     4      4       140         1387      0.13351   FALSE
#> 19  01231 not applied     5     NA        36           NA           NA    TRUE
#> 20  01232 not applied     5     NA        35           NA           NA    TRUE
#> 21  01233 not applied     5     NA        33           NA           NA    TRUE
#> 22  01234 not applied     5     NA        36           NA           NA    TRUE
#> 23    013 ATC:skmeans     3      2       201          628      0.06045   FALSE
#> 24   0131 ATC:skmeans     4      2       114           99      0.00953    TRUE
#> 25   0132 ATC:skmeans     4      2        87          104      0.01001    TRUE
#> 26    014 ATC:skmeans     3      3       139         1908      0.18366   FALSE
#> 27   0141 ATC:skmeans     4      2        63          242      0.02329    TRUE
#> 28   0142 not applied     4     NA        53           NA           NA    TRUE
#> 29   0143 not applied     4     NA        23           NA           NA    TRUE
#> 30     02 ATC:skmeans     2      3       960         5466      0.52613   FALSE
#> 31    021 ATC:skmeans     3      2       386         2878      0.27702   FALSE
#> 32   0211 ATC:skmeans     4      3       181         3324      0.31995   FALSE
#> 33  02111 ATC:skmeans     5      2        65          677      0.06517   FALSE
#> 34 021111 not applied     6     NA        34           NA           NA    TRUE
#> 35 021112 not applied     6     NA        31           NA           NA    TRUE
#> 36  02112 ATC:skmeans     5      2        71          438      0.04216   FALSE
#> 37 021121 not applied     6     NA        38           NA           NA    TRUE
#> 38 021122 not applied     6     NA        33           NA           NA    TRUE
#> 39  02113 not applied     5     NA        45           NA           NA    TRUE
#> 40   0212 ATC:skmeans     4      3       205         1348      0.12975   FALSE
#> 41  02121 ATC:skmeans     5      2        87          146      0.01405    TRUE
#> 42  02122 ATC:skmeans     5      2        85          155      0.01492    TRUE
#> 43  02123 not applied     5     NA        33           NA           NA    TRUE
#> 44    022 ATC:skmeans     3      3       433         1390      0.13380   FALSE
#> 45   0221 ATC:skmeans     4      2       188          178      0.01713    TRUE
#> 46   0222 ATC:skmeans     4      2       109          634      0.06103   FALSE
#> 47  02221 ATC:skmeans     5      2        60           98      0.00943    TRUE
#> 48  02222 not applied     5     NA        49           NA           NA    TRUE
#> 49   0223 ATC:skmeans     4      2       136          175      0.01684    TRUE
#> 50    023 ATC:skmeans     3      4       141         3262      0.31399   FALSE
#> 51   0231 not applied     4     NA        54           NA           NA    TRUE
#> 52   0232 not applied     4     NA        36           NA           NA    TRUE
#> 53   0233 not applied     4     NA        29           NA           NA    TRUE
#> 54   0234 not applied     4     NA        22           NA           NA    TRUE
#> 55     03 ATC:skmeans     2      3       648         4249      0.40899   FALSE
#> 56    031 ATC:skmeans     3      3       402         3301      0.31774   FALSE
#> 57   0311 ATC:skmeans     4      2       153          347      0.03340   FALSE
#> 58  03111 ATC:skmeans     5      3        88           NA           NA    TRUE
#> 59  03112 ATC:skmeans     5      2        65          230      0.02214    TRUE
#> 60   0312 ATC:skmeans     4      2       131          979      0.09423   FALSE
#> 61  03121 ATC:skmeans     5      2        71          304      0.02926    TRUE
#> 62  03122 ATC:skmeans     5      2        60          508      0.04890   FALSE
#> 63 031221 not applied     6     NA        32           NA           NA    TRUE
#> 64 031222 not applied     6     NA        28           NA           NA    TRUE
#> 65   0313 ATC:skmeans     4      2       118          236      0.02272    TRUE
#> 66    032 ATC:skmeans     3      4       185         3273      0.31504   FALSE
#> 67   0321 ATC:skmeans     4      2        77           58      0.00558    TRUE
#> 68   0322 not applied     4     NA        44           NA           NA    TRUE
#> 69   0323 not applied     4     NA        38           NA           NA    TRUE
#> 70   0324 not applied     4     NA        26           NA           NA    TRUE
#> 71    033 ATC:skmeans     3      3        61         2292      0.22062   FALSE
#> 72   0331 not applied     4     NA        25           NA           NA    TRUE
#> 73   0332 not applied     4     NA        21           NA           NA    TRUE
#> 74   0333 not applied     4     NA        15           NA           NA    TRUE

In the output from node_info(), there are the following columns:

Labels of nodes are encoded in a special way. The number of digits correspond to the depth of the node in the hierarchy and the value of the digits correspond to the index of the subgroup in the current node, E.g. a label of “012” means the node is the second subgroup of the partition which is the first subgroup of the root node.

Suggest the best k

Following table shows the best k (number of partitions) for each node in the partition hierarchy. Clicking on the node name in the table goes to the corresponding section for the partitioning on that node.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_rh)
Node Best method Is leaf Best k 1-PAC Mean silhouette Concordance #samples
Node0 ATC:skmeans 4 1.00 0.95 0.98 2881 **
Node01 ATC:skmeans 4 1.00 0.97 0.99 1273 **
Node011 ATC:skmeans 3 0.97 0.96 0.98 485 **
Node0111-leaf ATC:skmeans ✓ (c) 2 0.92 0.95 0.98 198 *
Node0112-leaf ATC:skmeans ✓ (c) 2 1.00 0.97 0.99 168 **
Node0113 ATC:skmeans 3 1.00 0.96 0.98 119 **
Node01131-leaf not applied ✓ (b) 45
Node01132-leaf not applied ✓ (b) 39
Node01133-leaf not applied ✓ (b) 35
Node012 ATC:skmeans 3 1.00 0.99 0.99 448 **
Node0121 ATC:skmeans 2 1.00 0.97 0.99 177 **
Node01211-leaf ATC:skmeans ✓ (c) 2 0.82 0.91 0.96 102
Node01212-leaf ATC:skmeans ✓ (c) 2 1.00 0.99 1.00 75 **
Node0122 ATC:skmeans 3 0.98 0.96 0.98 131 **
Node01221-leaf ATC:skmeans ✓ (c) 2 0.93 0.92 0.97 64 *
Node01222-leaf not applied ✓ (b) 41
Node01223-leaf not applied ✓ (b) 26
Node0123 ATC:skmeans 4 0.99 0.97 0.98 140 **
Node01231-leaf not applied ✓ (b) 36
Node01232-leaf not applied ✓ (b) 35
Node01233-leaf not applied ✓ (b) 33
Node01234-leaf not applied ✓ (b) 36
Node013 ATC:skmeans 2 0.95 0.95 0.98 201 *
Node0131-leaf ATC:skmeans ✓ (c) 2 0.90 0.93 0.97 114 *
Node0132-leaf ATC:skmeans ✓ (c) 2 0.78 0.91 0.96 87
Node014 ATC:skmeans 3 1.00 0.96 0.99 139 **
Node0141-leaf ATC:skmeans ✓ (c) 3 0.92 0.94 0.97 63 *
Node0142-leaf not applied ✓ (b) 53
Node0143-leaf not applied ✓ (b) 23
Node02 ATC:skmeans 4 0.97 0.94 0.97 960 **
Node021 ATC:skmeans 3 0.94 0.94 0.98 386 *
Node0211 ATC:skmeans 3 1.00 0.98 0.99 181 **
Node02111 ATC:skmeans 3 0.93 0.91 0.96 65 *
Node021111-leaf not applied ✓ (b) 34
Node021112-leaf not applied ✓ (b) 31
Node02112 ATC:skmeans 3 0.91 0.91 0.96 71 *
Node021121-leaf not applied ✓ (b) 38
Node021122-leaf not applied ✓ (b) 33
Node02113-leaf not applied ✓ (b) 45
Node0212 ATC:skmeans 3 0.99 0.96 0.98 205 **
Node02121-leaf ATC:skmeans ✓ (c) 3 0.94 0.93 0.97 87 *
Node02122-leaf ATC:skmeans ✓ (c) 2 0.97 0.96 0.98 85 **
Node02123-leaf not applied ✓ (b) 33
Node022 ATC:skmeans 4 0.94 0.91 0.97 433 *
Node0221-leaf ATC:skmeans ✓ (c) 3 0.95 0.94 0.97 188 **
Node0222 ATC:skmeans 2 1.00 0.98 0.99 109 **
Node02221-leaf ATC:skmeans ✓ (c) 3 0.91 0.92 0.97 60 *
Node02222-leaf not applied ✓ (b) 49
Node0223-leaf ATC:skmeans ✓ (c) 2 0.89 0.93 0.97 136
Node023 ATC:skmeans 4 1.00 0.97 0.99 141 **
Node0231-leaf not applied ✓ (b) 54
Node0232-leaf not applied ✓ (b) 36
Node0233-leaf not applied ✓ (b) 29
Node0234-leaf not applied ✓ (b) 22
Node03 ATC:skmeans 4 0.97 0.94 0.97 648 **
Node031 ATC:skmeans 4 0.94 0.92 0.97 402 *
Node0311 ATC:skmeans 3 0.96 0.94 0.98 153 **
Node03111-leaf ATC:skmeans ✓ (a) 3 0.83 0.87 0.94 88
Node03112-leaf ATC:skmeans ✓ (c) 2 1.00 0.98 0.99 65 **
Node0312 ATC:skmeans 4 0.92 0.91 0.96 131 *
Node03121-leaf ATC:skmeans ✓ (c) 4 0.94 0.93 0.97 71 *
Node03122 ATC:skmeans 2 1.00 0.98 0.99 60 **
Node031221-leaf not applied ✓ (b) 32
Node031222-leaf not applied ✓ (b) 28
Node0313-leaf ATC:skmeans ✓ (c) 3 0.94 0.94 0.97 118 *
Node032 ATC:skmeans 4 1.00 0.98 0.99 185 **
Node0321-leaf ATC:skmeans ✓ (c) 2 0.97 0.95 0.98 77 **
Node0322-leaf not applied ✓ (b) 44
Node0323-leaf not applied ✓ (b) 38
Node0324-leaf not applied ✓ (b) 26
Node033 ATC:skmeans 4 1.00 0.98 0.99 61 **
Node0331-leaf not applied ✓ (b) 25
Node0332-leaf not applied ✓ (b) 21
Node0333-leaf not applied ✓ (b) 15

Stop reason: a) Mean silhouette score was too small b) Subgroup had too few columns. c) There were too few signatures.

**: 1-PAC > 0.95, *: 1-PAC > 0.9

Partition hierarchy

The nodes of the hierarchy can be merged by setting the merge_node parameters. Here we control the hierarchy with the min_n_signatures parameter. The value of min_n_signatures is from node_info().

collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 347))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 438))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 508))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 577))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 628))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 634))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 677))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 755))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 890))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 960))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 979))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1000))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1348))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1387))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1390))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1908))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 2292))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 2797))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 2878))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 3262))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 3273))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 3301))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 3324))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 4249))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 5466))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 6708))
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent

Following shows the table of the partitions (You need to click the show/hide code output link to see it).

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 347))
#>    [1] "01232"  "01232"  "0231"   "0322"   "01232"  "01232"  "0322"   "01131"  "01232"  "01232" 
#>   [11] "01232"  "01131"  "0322"   "01232"  "01232"  "01232"  "01232"  "01232"  "0313"   "01131" 
#>   [21] "0322"   "01232"  "01131"  "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "03121" 
#>   [31] "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "01232"  "01232"  "03121"  "03112" 
#>   [41] "01131"  "02222"  "01131"  "03112"  "01232"  "01232"  "03112"  "03121"  "0322"   "01131" 
#>   [51] "03121"  "01131"  "01131"  "01232"  "01232"  "02123"  "02123"  "0143"   "01133"  "0313"  
#>   [61] "0322"   "01131"  "01131"  "02221"  "03111"  "01132"  "01232"  "01232"  "0322"   "01232" 
#>   [71] "0322"   "03111"  "0322"   "01131"  "01131"  "0143"   "0111"   "0112"   "02221"  "01131" 
#>   [81] "0143"   "0322"   "01131"  "0143"   "01133"  "02221"  "01131"  "01131"  "01131"  "01231" 
#>   [91] "0322"   "0111"   "02113"  "01131"  "01131"  "01131"  "01131"  "01132"  "0143"   "0313"  
#>  [101] "01131"  "01131"  "0111"   "01133"  "0111"   "0322"   "02221"  "0141"   "0142"   "0111"  
#>  [111] "01131"  "01131"  "01133"  "0143"   "01132"  "02221"  "02221"  "0322"   "01132"  "0321"  
#>  [121] "0313"   "0322"   "02222"  "02221"  "02222"  "0234"   "01231"  "0111"   "01133"  "01133" 
#>  [131] "01231"  "01131"  "01133"  "0324"   "0111"   "02222"  "01131"  "01131"  "0322"   "0111"  
#>  [141] "01131"  "0111"   "01232"  "01231"  "01231"  "02222"  "01131"  "02123"  "01131"  "0324"  
#>  [151] "0313"   "0313"   "01131"  "0313"   "0322"   "01131"  "0313"   "0234"   "0322"   "0322"  
#>  [161] "0322"   "01131"  "0313"   "0313"   "02222"  "01131"  "0322"   "0313"   "01131"  "01131" 
#>  [171] "0322"   "0313"   "0313"   "02222"  "02222"  "0313"   "0313"   "01131"  "0313"   "0313"  
#>  [181] "03121"  "0313"   "0322"   "0313"   "0322"   "0313"   "0313"   "0313"   "03121"  "02222" 
#>  [191] "0322"   "01131"  "0313"   "03121"  "0313"   "0322"   "03121"  "03121"  "03121"  "031221"
#>  [201] "03121"  "0313"   "03121"  "0313"   "03121"  "03121"  "0322"   "0313"   "0322"   "02222" 
#>  [211] "0313"   "0234"   "0313"   "03121"  "0313"   "0313"   "0322"   "02222"  "03121"  "01133" 
#>  [221] "03121"  "0313"   "031221" "0313"   "03121"  "0313"   "03121"  "03121"  "01131"  "02113" 
#>  [231] "0313"   "0313"   "03121"  "0313"   "02113"  "03121"  "03121"  "0313"   "03121"  "0313"  
#>  [241] "0313"   "0313"   "03121"  "01133"  "03121"  "03121"  "03121"  "02222"  "03121"  "0313"  
#>  [251] "01133"  "0313"   "03121"  "03121"  "0313"   "0313"   "01133"  "03121"  "0313"   "0313"  
#>  [261] "01133"  "0313"   "01133"  "01133"  "01133"  "0313"   "01133"  "01133"  "01133"  "0313"  
#>  [271] "01133"  "01133"  "0313"   "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "0322"  
#>  [281] "02123"  "01133"  "0313"   "0313"   "0313"   "02222"  "0313"   "0313"   "03121"  "03121" 
#>  [291] "03121"  "031221" "03121"  "03121"  "03121"  "03121"  "03121"  "031221" "02113"  "03121" 
#>  [301] "02113"  "0313"   "0313"   "0234"   "0313"   "02113"  "02222"  "031221" "02222"  "03121" 
#>  [311] "03121"  "0313"   "02222"  "0313"   "0313"   "03121"  "01133"  "0313"   "0313"   "01133" 
#>  [321] "0313"   "01133"  "03121"  "0313"   "03111"  "01133"  "0313"   "0313"   "0313"   "0313"  
#>  [331] "0313"   "01133"  "01133"  "01133"  "01132"  "02222"  "02222"  "01132"  "0313"   "0112"  
#>  [341] "0313"   "0313"   "02222"  "0313"   "0313"   "0313"   "02222"  "03111"  "03111"  "02222" 
#>  [351] "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "031221" "03121"  "031221" "031221"
#>  [361] "03121"  "0313"   "0313"   "0313"   "0313"   "0313"   "0313"   "03121"  "03121"  "03121" 
#>  [371] "0313"   "031221" "031221" "03121"  "03121"  "03121"  "03121"  "031221" "031221" "0313"  
#>  [381] "0111"   "0112"   "02222"  "03111"  "0112"   "0111"   "0112"   "03111"  "0324"   "03111" 
#>  [391] "0112"   "03111"  "0112"   "03111"  "02222"  "03111"  "0313"   "03111"  "0112"   "0111"  
#>  [401] "03111"  "0112"   "0143"   "03111"  "0112"   "02222"  "0111"   "03111"  "0112"   "0112"  
#>  [411] "03111"  "03111"  "02123"  "0112"   "0112"   "0112"   "0111"   "01133"  "03111"  "0111"  
#>  [421] "0111"   "0111"   "0112"   "0313"   "0234"   "0112"   "0111"   "0112"   "0112"   "0112"  
#>  [431] "0112"   "0234"   "0112"   "0234"   "0111"   "02221"  "0112"   "02123"  "0112"   "0234"  
#>  [441] "0234"   "03111"  "03111"  "03111"  "03111"  "0112"   "0112"   "031221" "031221" "03121" 
#>  [451] "03111"  "0112"   "03112"  "0112"   "0112"   "03121"  "0112"   "0112"   "031222" "031222"
#>  [461] "03111"  "031221" "03111"  "03111"  "031221" "031221" "031222" "03111"  "031221" "031221"
#>  [471] "031222" "03111"  "031222" "031221" "031221" "03111"  "03111"  "03121"  "03111"  "03111" 
#>  [481] "03111"  "03111"  "03111"  "0112"   "02123"  "031222" "03112"  "03111"  "02222"  "02222" 
#>  [491] "02123"  "03121"  "031222" "02222"  "031222" "0112"   "02123"  "02113"  "0112"   "031222"
#>  [501] "02113"  "0112"   "03111"  "031221" "03111"  "02113"  "0112"   "03111"  "03111"  "03111" 
#>  [511] "03111"  "02222"  "03111"  "03111"  "0112"   "0112"   "02222"  "03111"  "03121"  "03111" 
#>  [521] "0112"   "0112"   "0112"   "031221" "03121"  "0313"   "03121"  "0112"   "0112"   "02221" 
#>  [531] "02123"  "02123"  "0112"   "02222"  "0111"   "0111"   "0111"   "02123"  "0111"   "03111" 
#>  [541] "0112"   "02222"  "0111"   "0112"   "02222"  "0111"   "0111"   "0112"   "03111"  "0111"  
#>  [551] "0111"   "0112"   "0112"   "0112"   "0111"   "0143"   "0112"   "03111"  "03111"  "0143"  
#>  [561] "03112"  "01132"  "0324"   "0324"   "01132"  "0112"   "0111"   "02221"  "03111"  "0112"  
#>  [571] "0112"   "02221"  "0324"   "03111"  "0112"   "03121"  "0111"   "0112"   "0112"   "02221" 
#>  [581] "0112"   "0112"   "0111"   "0112"   "03111"  "0112"   "03112"  "0112"   "0111"   "01132" 
#>  [591] "0111"   "0313"   "0112"   "031222" "0313"   "0324"   "0112"   "0313"   "0313"   "0111"  
#>  [601] "0111"   "01132"  "0111"   "0313"   "0111"   "0112"   "02222"  "0111"   "0111"   "0111"  
#>  [611] "0111"   "0111"   "0112"   "0111"   "0111"   "0234"   "03111"  "03111"  "0112"   "03111" 
#>  [621] "03111"  "0313"   "0112"   "03111"  "0112"   "03112"  "03112"  "03112"  "03111"  "03111" 
#>  [631] "0112"   "0112"   "0313"   "0112"   "03111"  "02113"  "03111"  "0112"   "0112"   "0112"  
#>  [641] "0112"   "03111"  "03111"  "0112"   "03111"  "03121"  "0112"   "0112"   "02222"  "0112"  
#>  [651] "0112"   "0112"   "0112"   "0112"   "03111"  "0112"   "0112"   "0112"   "03111"  "03112" 
#>  [661] "03111"  "0112"   "0234"   "0112"   "0112"   "031222" "03112"  "03111"  "03111"  "03112" 
#>  [671] "02222"  "0112"   "02222"  "03111"  "0313"   "0234"   "03111"  "03112"  "02222"  "0112"  
#>  [681] "03111"  "03111"  "031222" "031222" "03112"  "031222" "031222" "031222" "03112"  "03112" 
#>  [691] "03112"  "0112"   "031222" "03112"  "02222"  "03112"  "031221" "0112"   "031222" "0143"  
#>  [701] "031221" "0112"   "0111"   "03112"  "03112"  "02222"  "02222"  "0112"   "0324"   "0112"  
#>  [711] "0324"   "02123"  "0111"   "0112"   "0111"   "0112"   "0111"   "0111"   "02221"  "03112" 
#>  [721] "03112"  "02221"  "0234"   "0112"   "02221"  "03112"  "03112"  "03112"  "0112"   "0112"  
#>  [731] "03112"  "0112"   "0111"   "03112"  "0112"   "0112"   "0111"   "0111"   "0111"   "03112" 
#>  [741] "0112"   "0112"   "0112"   "03112"  "03112"  "0112"   "03112"  "031222" "031222" "031221"
#>  [751] "03112"  "0112"   "03112"  "0112"   "0112"   "0112"   "03112"  "0112"   "0324"   "03112" 
#>  [761] "02123"  "02222"  "0112"   "0112"   "03112"  "0112"   "0112"   "0112"   "0111"   "0111"  
#>  [771] "031222" "0112"   "0112"   "03112"  "0112"   "02222"  "0111"   "0112"   "02113"  "0112"  
#>  [781] "03112"  "0112"   "0112"   "0111"   "0112"   "0112"   "031222" "0111"   "03111"  "03112" 
#>  [791] "0112"   "0112"   "031221" "02222"  "0112"   "031222" "0111"   "0111"   "0234"   "03112" 
#>  [801] "031222" "02222"  "03112"  "03112"  "03112"  "0234"   "03112"  "0112"   "03112"  "0112"  
#>  [811] "0112"   "0112"   "0324"   "0324"   "01231"  "0143"   "0111"   "0112"   "0111"   "02123" 
#>  [821] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"  
#>  [831] "0111"   "0111"   "0111"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [841] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0324"   "01231" 
#>  [851] "01132"  "0234"   "0324"   "02222"  "0111"   "0143"   "0143"   "0143"   "0324"   "0111"  
#>  [861] "0111"   "0324"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "03111" 
#>  [871] "0112"   "0111"   "0112"   "0111"   "0111"   "0111"   "0143"   "0111"   "0111"   "0111"  
#>  [881] "0111"   "0111"   "0111"   "0111"   "01231"  "02123"  "0111"   "0324"   "0111"   "0324"  
#>  [891] "0111"   "03112"  "0111"   "0111"   "0111"   "02221"  "02221"  "0111"   "0111"   "0111"  
#>  [901] "0111"   "0111"   "03112"  "0111"   "0111"   "0112"   "0112"   "0112"   "0112"   "0111"  
#>  [911] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [921] "0111"   "0111"   "0111"   "0112"   "0111"   "0111"   "0111"   "0111"   "02221"  "0111"  
#>  [931] "0143"   "0111"   "0111"   "0111"   "02221"  "0324"   "0111"   "02221"  "0111"   "0111"  
#>  [941] "0111"   "0143"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [951] "0111"   "0111"   "0111"   "03111"  "01132"  "02123"  "0143"   "0143"   "0111"   "02123" 
#>  [961] "02221"  "0112"   "0111"   "02123"  "03112"  "0112"   "0111"   "0111"   "0111"   "03111" 
#>  [971] "0111"   "0111"   "02221"  "0112"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [981] "0324"   "0324"   "02222"  "02221"  "03112"  "0112"   "0111"   "0112"   "0112"   "03112" 
#>  [991] "03112"  "0112"   "0112"   "0111"   "03112"  "0111"   "0111"   "0324"   "0324"   "0111"  
#> [1001] "02221"  "0132"   "01211"  "01212"  "01212"  "01212"  "01212"  "01212"  "01212"  "01212" 
#> [1011] "01212"  "01212"  "01212"  "02221"  "01212"  "02221"  "01212"  "01212"  "01212"  "01212" 
#> [1021] "01212"  "01212"  "01212"  "01212"  "01212"  "0323"   "0142"   "01212"  "01212"  "01212" 
#> [1031] "01212"  "01212"  "01212"  "01212"  "01212"  "03111"  "01212"  "03121"  "01212"  "02113" 
#> [1041] "01212"  "01132"  "0322"   "01212"  "01212"  "01212"  "03121"  "01211"  "01211"  "01212" 
#> [1051] "01132"  "01212"  "01212"  "01211"  "01211"  "01211"  "01212"  "01212"  "01132"  "01211" 
#> [1061] "01211"  "01212"  "01212"  "01211"  "01211"  "01212"  "01212"  "01212"  "01212"  "01211" 
#> [1071] "01211"  "01212"  "0132"   "01212"  "0322"   "01211"  "01211"  "01211"  "0132"   "01211" 
#> [1081] "01212"  "01211"  "03121"  "01211"  "01211"  "01211"  "01211"  "03112"  "01211"  "01212" 
#> [1091] "01211"  "01212"  "01132"  "0132"   "01211"  "01211"  "01211"  "01212"  "01211"  "01212" 
#> [1101] "0142"   "01212"  "01212"  "01212"  "01212"  "01212"  "01211"  "01211"  "01212"  "03112" 
#> [1111] "01212"  "01212"  "01212"  "01212"  "01212"  "0132"   "01212"  "0313"   "01212"  "0141"  
#> [1121] "01212"  "0313"   "01212"  "01212"  "01211"  "01212"  "01211"  "031221" "01212"  "01211" 
#> [1131] "01211"  "01132"  "01132"  "01211"  "0322"   "01211"  "01212"  "01211"  "01211"  "01211" 
#> [1141] "0221"   "01211"  "01211"  "01132"  "0322"   "01232"  "01211"  "0111"   "01211"  "0142"  
#> [1151] "01211"  "01211"  "01231"  "01232"  "01211"  "01211"  "01211"  "01211"  "01211"  "01211" 
#> [1161] "01132"  "01232"  "01132"  "01211"  "01211"  "01211"  "01211"  "0111"   "01132"  "0111"  
#> [1171] "01231"  "03112"  "01132"  "01211"  "01132"  "01132"  "01211"  "01211"  "01211"  "01211" 
#> [1181] "0223"   "01211"  "0141"   "01211"  "0221"   "0111"   "01211"  "01211"  "01132"  "01211" 
#> [1191] "01211"  "01211"  "01211"  "01211"  "01211"  "0141"   "01211"  "01231"  "0131"   "01211" 
#> [1201] "01211"  "0141"   "01211"  "01211"  "01211"  "01211"  "01211"  "0112"   "01211"  "01211" 
#> [1211] "0131"   "01211"  "01232"  "0141"   "02221"  "01211"  "0321"   "0313"   "01211"  "01211" 
#> [1221] "01131"  "01211"  "01211"  "0221"   "01211"  "0223"   "01232"  "01211"  "01211"  "0141"  
#> [1231] "01211"  "01211"  "01211"  "01132"  "01211"  "01131"  "0112"   "0313"   "0141"   "01211" 
#> [1241] "0333"   "0321"   "03112"  "01211"  "01211"  "01211"  "01132"  "01132"  "01211"  "01211" 
#> [1251] "01132"  "01234"  "0112"   "0111"   "0112"   "0221"   "0221"   "0221"   "0223"   "01223" 
#> [1261] "01212"  "01223"  "01211"  "01234"  "03111"  "0141"   "0111"   "01132"  "0132"   "0132"  
#> [1271] "0132"   "0131"   "0331"   "0131"   "0131"   "0132"   "0333"   "02122"  "0332"   "0332"  
#> [1281] "0331"   "0132"   "0332"   "0132"   "0132"   "0132"   "0132"   "0132"   "0332"   "0332"  
#> [1291] "0132"   "0331"   "0132"   "0132"   "0233"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1301] "0132"   "0131"   "0131"   "0132"   "0131"   "0131"   "0131"   "0132"   "0132"   "0132"  
#> [1311] "0132"   "0132"   "0223"   "0331"   "0221"   "0131"   "0333"   "02122"  "0132"   "0131"  
#> [1321] "0131"   "0132"   "0132"   "0132"   "0131"   "0132"   "0333"   "01223"  "0131"   "0131"  
#> [1331] "0132"   "02113"  "0132"   "0331"   "0132"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1341] "0132"   "0132"   "02221"  "0132"   "0131"   "0223"   "0233"   "02113"  "0131"   "0132"  
#> [1351] "0131"   "0131"   "02113"  "0223"   "0132"   "0131"   "0131"   "0132"   "0131"   "0131"  
#> [1361] "02122"  "02122"  "0131"   "0132"   "0331"   "0331"   "0131"   "0331"   "0132"   "0331"  
#> [1371] "0331"   "0331"   "0332"   "0132"   "0331"   "0132"   "0132"   "0131"   "0131"   "0132"  
#> [1381] "0131"   "0132"   "0132"   "0132"   "0132"   "0132"   "0132"   "01234"  "01223"  "01231" 
#> [1391] "01234"  "0321"   "0131"   "0131"   "0231"   "0141"   "02113"  "0233"   "0233"   "01231" 
#> [1401] "0233"   "0132"   "0132"   "0131"   "0131"   "0333"   "0233"   "0131"   "0131"   "03112" 
#> [1411] "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0333"   "0131"  
#> [1421] "0131"   "03111"  "0131"   "0131"   "0131"   "0132"   "0131"   "0131"   "0333"   "03111" 
#> [1431] "0131"   "0112"   "0131"   "03112"  "01231"  "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1441] "0131"   "0131"   "0131"   "0131"   "0131"   "01231"  "0131"   "0131"   "0233"   "0131"  
#> [1451] "0333"   "0221"   "0132"   "0131"   "0221"   "0131"   "0131"   "0131"   "0223"   "0131"  
#> [1461] "0131"   "0131"   "0132"   "0132"   "01231"  "0131"   "0111"   "0111"   "01131"  "0132"  
#> [1471] "0131"   "0333"   "01231"  "0313"   "0333"   "0313"   "0112"   "02121"  "0131"   "0221"  
#> [1481] "01232"  "0131"   "0132"   "0111"   "0131"   "0131"   "0131"   "0321"   "0141"   "0131"  
#> [1491] "0141"   "0131"   "0131"   "0111"   "0231"   "0141"   "0131"   "0111"   "0131"   "0233"  
#> [1501] "01231"  "0141"   "0131"   "0111"   "01231"  "0321"   "0132"   "02222"  "0131"   "0223"  
#> [1511] "01231"  "0131"   "01231"  "0132"   "0131"   "01231"  "0131"   "0221"   "0331"   "0221"  
#> [1521] "0233"   "0233"   "0142"   "0221"   "0142"   "0132"   "0333"   "0132"   "0132"   "0131"  
#> [1531] "0142"   "0131"   "0132"   "02113"  "01223"  "0223"   "0112"   "0111"   "0132"   "0131"  
#> [1541] "01232"  "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1551] "03111"  "0131"   "0111"   "0131"   "0131"   "0131"   "0142"   "02121"  "0233"   "0131"  
#> [1561] "01231"  "01231"  "0143"   "03121"  "0223"   "01133"  "0132"   "0333"   "0131"   "01231" 
#> [1571] "0131"   "0223"   "02121"  "0142"   "02121"  "0332"   "0332"   "02113"  "0233"   "0233"  
#> [1581] "0332"   "02113"  "0332"   "0233"   "0332"   "0332"   "0331"   "0332"   "0331"   "0332"  
#> [1591] "0132"   "0331"   "0332"   "02221"  "0331"   "02113"  "02121"  "0233"   "0132"   "02113" 
#> [1601] "0132"   "0332"   "0132"   "02123"  "02113"  "0132"   "0132"   "0233"   "02113"  "02113" 
#> [1611] "0331"   "0331"   "0332"   "0331"   "0331"   "0331"   "0331"   "02113"  "0132"   "02221" 
#> [1621] "02113"  "0233"   "0132"   "0331"   "01132"  "02122"  "01234"  "0132"   "01234"  "0132"  
#> [1631] "0141"   "01234"  "0323"   "01234"  "02122"  "01234"  "01234"  "01234"  "0221"   "01234" 
#> [1641] "01234"  "0132"   "01234"  "0233"   "0141"   "01234"  "0141"   "01234"  "01234"  "01234" 
#> [1651] "0142"   "01234"  "01234"  "0321"   "01234"  "0111"   "01231"  "0111"   "01133"  "01234" 
#> [1661] "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234" 
#> [1671] "01234"  "01231"  "01233"  "01233"  "01233"  "0231"   "01233"  "0112"   "0112"   "0233"  
#> [1681] "01233"  "01233"  "01221"  "0141"   "01233"  "01212"  "01132"  "01211"  "01232"  "01223" 
#> [1691] "01233"  "01233"  "0322"   "01212"  "01233"  "01233"  "01233"  "0112"   "01233"  "01233" 
#> [1701] "0112"   "01233"  "03112"  "01233"  "01233"  "01221"  "0323"   "01223"  "01233"  "01233" 
#> [1711] "0131"   "03111"  "01233"  "01233"  "01223"  "0132"   "01233"  "01233"  "0323"   "0323"  
#> [1721] "0131"   "01233"  "0141"   "01233"  "01233"  "01233"  "01233"  "0313"   "01233"  "03111" 
#> [1731] "03111"  "01233"  "01211"  "02121"  "01231"  "01133"  "01223"  "01133"  "0112"   "0111"  
#> [1741] "01221"  "01223"  "0132"   "01221"  "0131"   "01221"  "01222"  "01223"  "0323"   "01222" 
#> [1751] "03121"  "01223"  "0221"   "01221"  "0221"   "01221"  "0111"   "01221"  "0142"   "031221"
#> [1761] "0223"   "01221"  "0112"   "01223"  "0111"   "0221"   "03111"  "0111"   "0131"   "0221"  
#> [1771] "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01132"  "01221"  "01221"  "01221" 
#> [1781] "0322"   "01132"  "01221"  "01221"  "0112"   "01221"  "0313"   "0111"   "01221"  "0323"  
#> [1791] "01222"  "0313"   "0313"   "0323"   "0223"   "01132"  "01221"  "0313"   "0223"   "01221" 
#> [1801] "01221"  "01221"  "01222"  "0323"   "01221"  "01221"  "0233"   "02121"  "0223"   "03112" 
#> [1811] "0221"   "01221"  "01221"  "01131"  "01223"  "01221"  "01221"  "01221"  "01221"  "01221" 
#> [1821] "0313"   "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01222"  "0223"  
#> [1831] "01221"  "01221"  "0323"   "01221"  "01222"  "02122"  "0223"   "01221"  "0111"   "01221" 
#> [1841] "01222"  "01222"  "02121"  "01221"  "01221"  "0143"   "01221"  "01221"  "01222"  "01221" 
#> [1851] "01222"  "0323"   "01223"  "01234"  "0111"   "01234"  "01223"  "01132"  "0322"   "01233" 
#> [1861] "031222" "01233"  "01233"  "0332"   "0223"   "031221" "0321"   "0323"   "02122"  "01221" 
#> [1871] "01221"  "0323"   "0323"   "01221"  "01222"  "01223"  "0231"   "01221"  "01223"  "01211" 
#> [1881] "021121" "01223"  "01223"  "01223"  "01223"  "0323"   "01222"  "031222" "01222"  "01222" 
#> [1891] "01132"  "0221"   "01221"  "01221"  "01222"  "03112"  "01221"  "01222"  "01221"  "03121" 
#> [1901] "0132"   "0323"   "01223"  "03111"  "01223"  "01223"  "0332"   "01223"  "01222"  "01222" 
#> [1911] "01222"  "01222"  "01222"  "01221"  "0323"   "01222"  "01221"  "01132"  "01221"  "031221"
#> [1921] "0223"   "01222"  "0323"   "0323"   "01222"  "03112"  "01222"  "01222"  "01222"  "0233"  
#> [1931] "0323"   "01222"  "021121" "01222"  "0323"   "0233"   "0333"   "01222"  "01222"  "0323"  
#> [1941] "0323"   "01222"  "0323"   "01222"  "0332"   "02221"  "031221" "0323"   "01222"  "03121" 
#> [1951] "0323"   "01222"  "01222"  "02123"  "01222"  "01222"  "0233"   "0323"   "02113"  "0323"  
#> [1961] "0221"   "0323"   "0323"   "02221"  "01222"  "0323"   "021121" "0331"   "0323"   "031222"
#> [1971] "01222"  "0233"   "031222" "0323"   "02122"  "03112"  "01222"  "02122"  "0323"   "02121" 
#> [1981] "0323"   "0323"   "0332"   "0232"   "021122" "0232"   "02121"  "02122"  "02122"  "021122"
#> [1991] "0221"   "02122"  "0231"   "0232"   "0223"   "02123"  "0231"   "0231"   "021122" "0231"  
#> [2001] "0223"   "02113"  "021121" "0232"   "021122" "02221"  "0221"   "02121"  "0232"   "0232"  
#> [2011] "02123"  "0231"   "02121"  "0231"   "0142"   "0221"   "0231"   "0321"   "0223"   "021122"
#> [2021] "02122"  "02221"  "0223"   "0221"   "02221"  "0321"   "0223"   "02122"  "02122"  "0223"  
#> [2031] "02221"  "02122"  "0223"   "0232"   "0221"   "02113"  "0221"   "021121" "0223"   "0223"  
#> [2041] "0221"   "0321"   "021121" "0233"   "0232"   "02113"  "02122"  "02121"  "02121"  "0142"  
#> [2051] "0221"   "02113"  "0231"   "02113"  "021122" "02121"  "0223"   "02122"  "0321"   "0223"  
#> [2061] "021121" "0223"   "0223"   "02122"  "0221"   "0223"   "02122"  "02122"  "02122"  "021121"
#> [2071] "021121" "0223"   "0232"   "02221"  "02113"  "0233"   "021122" "02221"  "021121" "021121"
#> [2081] "021121" "02123"  "02122"  "0231"   "02121"  "02122"  "02121"  "0232"   "02121"  "0221"  
#> [2091] "02121"  "0223"   "0223"   "02122"  "0223"   "0223"   "0223"   "02121"  "0223"   "0231"  
#> [2101] "02121"  "02121"  "02121"  "02122"  "021121" "021121" "02121"  "021122" "0231"   "021122"
#> [2111] "0231"   "0223"   "021121" "021122" "021122" "021122" "0223"   "02123"  "0231"   "0232"  
#> [2121] "02121"  "02121"  "0233"   "0232"   "0142"   "0223"   "02121"  "0142"   "021121" "021122"
#> [2131] "02122"  "02121"  "021122" "021122" "021121" "02121"  "02122"  "02121"  "0221"   "02121" 
#> [2141] "02221"  "0223"   "02122"  "0221"   "0221"   "02221"  "0223"   "02121"  "0223"   "02121" 
#> [2151] "021121" "02122"  "0223"   "0223"   "02122"  "021121" "02121"  "0223"   "0223"   "021121"
#> [2161] "0221"   "0223"   "0221"   "02122"  "0223"   "0223"   "0221"   "02121"  "0223"   "0223"  
#> [2171] "0223"   "0221"   "02121"  "0321"   "0221"   "0221"   "0221"   "021112" "02122"  "02122" 
#> [2181] "02122"  "0223"   "0234"   "02222"  "0223"   "0221"   "0221"   "0221"   "0221"   "0143"  
#> [2191] "0221"   "0142"   "0221"   "03121"  "0221"   "0321"   "0221"   "02113"  "021121" "0221"  
#> [2201] "0232"   "0231"   "0223"   "0232"   "0232"   "02221"  "02121"  "02121"  "02121"  "0231"  
#> [2211] "0232"   "0221"   "0232"   "0223"   "02121"  "02123"  "021122" "021121" "02121"  "02121" 
#> [2221] "0223"   "02123"  "02121"  "02121"  "0221"   "021122" "021122" "02121"  "0223"   "02121" 
#> [2231] "0223"   "0223"   "0223"   "0223"   "02121"  "0221"   "0321"   "02221"  "0221"   "0321"  
#> [2241] "0221"   "0321"   "0223"   "0221"   "0223"   "0223"   "0223"   "0231"   "0231"   "0221"  
#> [2251] "02221"  "0321"   "02221"  "0221"   "0231"   "0231"   "0221"   "0221"   "0141"   "0321"  
#> [2261] "021122" "0221"   "0221"   "0221"   "0223"   "0321"   "0231"   "0221"   "0321"   "0223"  
#> [2271] "0223"   "0223"   "0142"   "0223"   "0142"   "02221"  "0223"   "0321"   "0221"   "0231"  
#> [2281] "02221"  "0221"   "0141"   "02221"  "0221"   "0221"   "0142"   "0321"   "0321"   "0221"  
#> [2291] "0221"   "0321"   "0221"   "0221"   "0142"   "0221"   "0221"   "0221"   "0141"   "0321"  
#> [2301] "0142"   "0142"   "0141"   "0223"   "0142"   "02221"  "0142"   "0142"   "0142"   "0223"  
#> [2311] "0142"   "0321"   "0221"   "0142"   "0141"   "0141"   "01231"  "02122"  "0231"   "0221"  
#> [2321] "0142"   "0221"   "0223"   "0321"   "0221"   "0221"   "0221"   "0221"   "0221"   "0221"  
#> [2331] "0223"   "0221"   "0221"   "0223"   "0321"   "0142"   "0141"   "0321"   "0221"   "0141"  
#> [2341] "0321"   "0321"   "0221"   "02122"  "0232"   "0223"   "0223"   "0223"   "0221"   "0221"  
#> [2351] "0321"   "02221"  "0223"   "0223"   "0221"   "0221"   "0321"   "02121"  "021122" "0221"  
#> [2361] "02121"  "0221"   "02121"  "0234"   "02121"  "02122"  "0221"   "021122" "021122" "0221"  
#> [2371] "0223"   "0223"   "02121"  "0223"   "02121"  "0223"   "0221"   "0221"   "02123"  "02121" 
#> [2381] "0232"   "0223"   "021121" "02122"  "0232"   "0221"   "0223"   "0223"   "0223"   "0231"  
#> [2391] "02113"  "0223"   "0221"   "0221"   "021112" "02121"  "02122"  "0223"   "0321"   "0221"  
#> [2401] "0141"   "0141"   "0141"   "02122"  "0221"   "0231"   "021112" "0223"   "02122"  "02221" 
#> [2411] "02122"  "0221"   "02122"  "0142"   "0221"   "0223"   "0221"   "0223"   "0231"   "01231" 
#> [2421] "0223"   "0221"   "0321"   "02121"  "02121"  "0231"   "0223"   "0221"   "0223"   "0223"  
#> [2431] "0221"   "0221"   "0141"   "0321"   "0141"   "0221"   "0321"   "0321"   "0321"   "0141"  
#> [2441] "0141"   "01234"  "0321"   "0321"   "0321"   "0223"   "0223"   "0221"   "02122"  "0223"  
#> [2451] "02122"  "02122"  "02122"  "021121" "02122"  "02122"  "021121" "02122"  "02122"  "0231"  
#> [2461] "02122"  "02122"  "02122"  "02123"  "02122"  "02123"  "02122"  "02122"  "02221"  "0221"  
#> [2471] "0321"   "0221"   "0221"   "0221"   "02122"  "02122"  "0223"   "02122"  "0223"   "0221"  
#> [2481] "0223"   "02122"  "0223"   "0223"   "021121" "0223"   "02122"  "02122"  "02122"  "021121"
#> [2491] "02123"  "02122"  "02122"  "021122" "0223"   "02122"  "0223"   "02122"  "02122"  "0221"  
#> [2501] "02122"  "0223"   "02121"  "0223"   "0223"   "0221"   "0223"   "0321"   "0321"   "0221"  
#> [2511] "0324"   "02122"  "02122"  "021121" "02122"  "02122"  "021121" "02122"  "0221"   "02122" 
#> [2521] "02121"  "021122" "0221"   "02221"  "0221"   "02122"  "021122" "0221"   "02122"  "02113" 
#> [2531] "0223"   "02122"  "021121" "0141"   "02121"  "0321"   "0221"   "0221"   "0221"   "0231"  
#> [2541] "0221"   "0221"   "0221"   "0221"   "0232"   "0221"   "0221"   "0223"   "0142"   "0221"  
#> [2551] "0321"   "0321"   "0142"   "0141"   "02121"  "0321"   "0221"   "0141"   "021122" "02121" 
#> [2561] "0321"   "02122"  "0321"   "0223"   "0221"   "0321"   "0221"   "0221"   "0221"   "0221"  
#> [2571] "0223"   "0142"   "0141"   "0141"   "0321"   "0321"   "0221"   "0221"   "021121" "02122" 
#> [2581] "02122"  "0223"   "0223"   "0221"   "0221"   "02221"  "0221"   "0142"   "021112" "0232"  
#> [2591] "0234"   "0232"   "02113"  "02113"  "021111" "02113"  "02113"  "021111" "0231"   "02113" 
#> [2601] "021111" "021111" "0232"   "02113"  "0232"   "0231"   "0234"   "0232"   "0323"   "0142"  
#> [2611] "0232"   "021121" "0231"   "0221"   "0223"   "0321"   "0221"   "0231"   "0231"   "0234"  
#> [2621] "0233"   "0232"   "0142"   "021122" "02222"  "0231"   "0142"   "0142"   "0141"   "0231"  
#> [2631] "021121" "021122" "02121"  "021122" "021121" "0223"   "02122"  "0223"   "0223"   "0221"  
#> [2641] "0221"   "0321"   "0221"   "0221"   "02121"  "0221"   "0221"   "0223"   "0321"   "0221"  
#> [2651] "01221"  "0221"   "0221"   "0221"   "0221"   "0221"   "0231"   "0221"   "02221"  "0221"  
#> [2661] "0221"   "0221"   "0221"   "0321"   "0321"   "0221"   "0321"   "0221"   "0221"   "0321"  
#> [2671] "0221"   "0141"   "0321"   "0221"   "0321"   "0221"   "0221"   "0324"   "01231"  "0141"  
#> [2681] "01231"  "0221"   "0141"   "01231"  "01212"  "0232"   "0232"   "021122" "021122" "0321"  
#> [2691] "02121"  "02121"  "0234"   "0231"   "0143"   "0221"   "0324"   "02121"  "0221"   "0321"  
#> [2701] "0221"   "02121"  "0141"   "02221"  "02221"  "0321"   "0142"   "02221"  "0141"   "0142"  
#> [2711] "02221"  "0141"   "0141"   "0231"   "02221"  "0231"   "0141"   "0142"   "0231"   "0141"  
#> [2721] "0223"   "02221"  "0141"   "021122" "0321"   "0141"   "0321"   "0141"   "01231"  "0321"  
#> [2731] "02121"  "0221"   "0321"   "0221"   "0321"   "0141"   "0141"   "0321"   "0141"   "0321"  
#> [2741] "0141"   "0141"   "02121"  "0221"   "0221"   "0141"   "0141"   "0141"   "0142"   "0321"  
#> [2751] "0141"   "0141"   "0221"   "0221"   "0321"   "0323"   "0142"   "021111" "021111" "021111"
#> [2761] "021111" "021111" "021111" "021111" "0232"   "0142"   "0142"   "0221"   "021111" "02113" 
#> [2771] "021112" "021112" "021111" "021111" "021111" "021112" "021111" "021111" "021112" "021112"
#> [2781] "021112" "0231"   "021111" "021111" "021111" "0232"   "021111" "0232"   "021111" "0142"  
#> [2791] "0142"   "0223"   "0231"   "0231"   "021112" "021112" "021112" "021112" "021111" "021111"
#> [2801] "021111" "02113"  "0233"   "021112" "02113"  "021111" "021112" "0232"   "021111" "021111"
#> [2811] "021111" "021111" "021112" "021112" "021111" "021112" "0221"   "0142"   "0142"   "0142"  
#> [2821] "0221"   "02121"  "0231"   "021112" "021112" "02121"  "021112" "02121"  "021112" "0223"  
#> [2831] "02121"  "02121"  "021112" "02121"  "0231"   "0223"   "02121"  "02121"  "0232"   "0231"  
#> [2841] "021112" "021112" "021121" "021121" "02121"  "021111" "021121" "021112" "021112" "021121"
#> [2851] "021112" "021111" "0321"   "0231"   "0142"   "0221"   "02123"  "0141"   "0221"   "021122"
#> [2861] "0231"   "0232"   "0223"   "0223"   "02121"  "02121"  "0231"   "0221"   "02121"  "0221"  
#> [2871] "021112" "02121"  "02123"  "021111" "021112" "02121"  "0223"   "02121"  "0142"   "02121" 
#> [2881] "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 438))
#>    [1] "01232"  "01232"  "0231"   "0322"   "01232"  "01232"  "0322"   "01131"  "01232"  "01232" 
#>   [11] "01232"  "01131"  "0322"   "01232"  "01232"  "01232"  "01232"  "01232"  "0313"   "01131" 
#>   [21] "0322"   "01232"  "01131"  "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "03121" 
#>   [31] "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "01232"  "01232"  "03121"  "0311"  
#>   [41] "01131"  "02222"  "01131"  "0311"   "01232"  "01232"  "0311"   "03121"  "0322"   "01131" 
#>   [51] "03121"  "01131"  "01131"  "01232"  "01232"  "02123"  "02123"  "0143"   "01133"  "0313"  
#>   [61] "0322"   "01131"  "01131"  "02221"  "0311"   "01132"  "01232"  "01232"  "0322"   "01232" 
#>   [71] "0322"   "0311"   "0322"   "01131"  "01131"  "0143"   "0111"   "0112"   "02221"  "01131" 
#>   [81] "0143"   "0322"   "01131"  "0143"   "01133"  "02221"  "01131"  "01131"  "01131"  "01231" 
#>   [91] "0322"   "0111"   "02113"  "01131"  "01131"  "01131"  "01131"  "01132"  "0143"   "0313"  
#>  [101] "01131"  "01131"  "0111"   "01133"  "0111"   "0322"   "02221"  "0141"   "0142"   "0111"  
#>  [111] "01131"  "01131"  "01133"  "0143"   "01132"  "02221"  "02221"  "0322"   "01132"  "0321"  
#>  [121] "0313"   "0322"   "02222"  "02221"  "02222"  "0234"   "01231"  "0111"   "01133"  "01133" 
#>  [131] "01231"  "01131"  "01133"  "0324"   "0111"   "02222"  "01131"  "01131"  "0322"   "0111"  
#>  [141] "01131"  "0111"   "01232"  "01231"  "01231"  "02222"  "01131"  "02123"  "01131"  "0324"  
#>  [151] "0313"   "0313"   "01131"  "0313"   "0322"   "01131"  "0313"   "0234"   "0322"   "0322"  
#>  [161] "0322"   "01131"  "0313"   "0313"   "02222"  "01131"  "0322"   "0313"   "01131"  "01131" 
#>  [171] "0322"   "0313"   "0313"   "02222"  "02222"  "0313"   "0313"   "01131"  "0313"   "0313"  
#>  [181] "03121"  "0313"   "0322"   "0313"   "0322"   "0313"   "0313"   "0313"   "03121"  "02222" 
#>  [191] "0322"   "01131"  "0313"   "03121"  "0313"   "0322"   "03121"  "03121"  "03121"  "031221"
#>  [201] "03121"  "0313"   "03121"  "0313"   "03121"  "03121"  "0322"   "0313"   "0322"   "02222" 
#>  [211] "0313"   "0234"   "0313"   "03121"  "0313"   "0313"   "0322"   "02222"  "03121"  "01133" 
#>  [221] "03121"  "0313"   "031221" "0313"   "03121"  "0313"   "03121"  "03121"  "01131"  "02113" 
#>  [231] "0313"   "0313"   "03121"  "0313"   "02113"  "03121"  "03121"  "0313"   "03121"  "0313"  
#>  [241] "0313"   "0313"   "03121"  "01133"  "03121"  "03121"  "03121"  "02222"  "03121"  "0313"  
#>  [251] "01133"  "0313"   "03121"  "03121"  "0313"   "0313"   "01133"  "03121"  "0313"   "0313"  
#>  [261] "01133"  "0313"   "01133"  "01133"  "01133"  "0313"   "01133"  "01133"  "01133"  "0313"  
#>  [271] "01133"  "01133"  "0313"   "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "0322"  
#>  [281] "02123"  "01133"  "0313"   "0313"   "0313"   "02222"  "0313"   "0313"   "03121"  "03121" 
#>  [291] "03121"  "031221" "03121"  "03121"  "03121"  "03121"  "03121"  "031221" "02113"  "03121" 
#>  [301] "02113"  "0313"   "0313"   "0234"   "0313"   "02113"  "02222"  "031221" "02222"  "03121" 
#>  [311] "03121"  "0313"   "02222"  "0313"   "0313"   "03121"  "01133"  "0313"   "0313"   "01133" 
#>  [321] "0313"   "01133"  "03121"  "0313"   "0311"   "01133"  "0313"   "0313"   "0313"   "0313"  
#>  [331] "0313"   "01133"  "01133"  "01133"  "01132"  "02222"  "02222"  "01132"  "0313"   "0112"  
#>  [341] "0313"   "0313"   "02222"  "0313"   "0313"   "0313"   "02222"  "0311"   "0311"   "02222" 
#>  [351] "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "031221" "03121"  "031221" "031221"
#>  [361] "03121"  "0313"   "0313"   "0313"   "0313"   "0313"   "0313"   "03121"  "03121"  "03121" 
#>  [371] "0313"   "031221" "031221" "03121"  "03121"  "03121"  "03121"  "031221" "031221" "0313"  
#>  [381] "0111"   "0112"   "02222"  "0311"   "0112"   "0111"   "0112"   "0311"   "0324"   "0311"  
#>  [391] "0112"   "0311"   "0112"   "0311"   "02222"  "0311"   "0313"   "0311"   "0112"   "0111"  
#>  [401] "0311"   "0112"   "0143"   "0311"   "0112"   "02222"  "0111"   "0311"   "0112"   "0112"  
#>  [411] "0311"   "0311"   "02123"  "0112"   "0112"   "0112"   "0111"   "01133"  "0311"   "0111"  
#>  [421] "0111"   "0111"   "0112"   "0313"   "0234"   "0112"   "0111"   "0112"   "0112"   "0112"  
#>  [431] "0112"   "0234"   "0112"   "0234"   "0111"   "02221"  "0112"   "02123"  "0112"   "0234"  
#>  [441] "0234"   "0311"   "0311"   "0311"   "0311"   "0112"   "0112"   "031221" "031221" "03121" 
#>  [451] "0311"   "0112"   "0311"   "0112"   "0112"   "03121"  "0112"   "0112"   "031222" "031222"
#>  [461] "0311"   "031221" "0311"   "0311"   "031221" "031221" "031222" "0311"   "031221" "031221"
#>  [471] "031222" "0311"   "031222" "031221" "031221" "0311"   "0311"   "03121"  "0311"   "0311"  
#>  [481] "0311"   "0311"   "0311"   "0112"   "02123"  "031222" "0311"   "0311"   "02222"  "02222" 
#>  [491] "02123"  "03121"  "031222" "02222"  "031222" "0112"   "02123"  "02113"  "0112"   "031222"
#>  [501] "02113"  "0112"   "0311"   "031221" "0311"   "02113"  "0112"   "0311"   "0311"   "0311"  
#>  [511] "0311"   "02222"  "0311"   "0311"   "0112"   "0112"   "02222"  "0311"   "03121"  "0311"  
#>  [521] "0112"   "0112"   "0112"   "031221" "03121"  "0313"   "03121"  "0112"   "0112"   "02221" 
#>  [531] "02123"  "02123"  "0112"   "02222"  "0111"   "0111"   "0111"   "02123"  "0111"   "0311"  
#>  [541] "0112"   "02222"  "0111"   "0112"   "02222"  "0111"   "0111"   "0112"   "0311"   "0111"  
#>  [551] "0111"   "0112"   "0112"   "0112"   "0111"   "0143"   "0112"   "0311"   "0311"   "0143"  
#>  [561] "0311"   "01132"  "0324"   "0324"   "01132"  "0112"   "0111"   "02221"  "0311"   "0112"  
#>  [571] "0112"   "02221"  "0324"   "0311"   "0112"   "03121"  "0111"   "0112"   "0112"   "02221" 
#>  [581] "0112"   "0112"   "0111"   "0112"   "0311"   "0112"   "0311"   "0112"   "0111"   "01132" 
#>  [591] "0111"   "0313"   "0112"   "031222" "0313"   "0324"   "0112"   "0313"   "0313"   "0111"  
#>  [601] "0111"   "01132"  "0111"   "0313"   "0111"   "0112"   "02222"  "0111"   "0111"   "0111"  
#>  [611] "0111"   "0111"   "0112"   "0111"   "0111"   "0234"   "0311"   "0311"   "0112"   "0311"  
#>  [621] "0311"   "0313"   "0112"   "0311"   "0112"   "0311"   "0311"   "0311"   "0311"   "0311"  
#>  [631] "0112"   "0112"   "0313"   "0112"   "0311"   "02113"  "0311"   "0112"   "0112"   "0112"  
#>  [641] "0112"   "0311"   "0311"   "0112"   "0311"   "03121"  "0112"   "0112"   "02222"  "0112"  
#>  [651] "0112"   "0112"   "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0311"  
#>  [661] "0311"   "0112"   "0234"   "0112"   "0112"   "031222" "0311"   "0311"   "0311"   "0311"  
#>  [671] "02222"  "0112"   "02222"  "0311"   "0313"   "0234"   "0311"   "0311"   "02222"  "0112"  
#>  [681] "0311"   "0311"   "031222" "031222" "0311"   "031222" "031222" "031222" "0311"   "0311"  
#>  [691] "0311"   "0112"   "031222" "0311"   "02222"  "0311"   "031221" "0112"   "031222" "0143"  
#>  [701] "031221" "0112"   "0111"   "0311"   "0311"   "02222"  "02222"  "0112"   "0324"   "0112"  
#>  [711] "0324"   "02123"  "0111"   "0112"   "0111"   "0112"   "0111"   "0111"   "02221"  "0311"  
#>  [721] "0311"   "02221"  "0234"   "0112"   "02221"  "0311"   "0311"   "0311"   "0112"   "0112"  
#>  [731] "0311"   "0112"   "0111"   "0311"   "0112"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [741] "0112"   "0112"   "0112"   "0311"   "0311"   "0112"   "0311"   "031222" "031222" "031221"
#>  [751] "0311"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0112"   "0324"   "0311"  
#>  [761] "02123"  "02222"  "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0111"   "0111"  
#>  [771] "031222" "0112"   "0112"   "0311"   "0112"   "02222"  "0111"   "0112"   "02113"  "0112"  
#>  [781] "0311"   "0112"   "0112"   "0111"   "0112"   "0112"   "031222" "0111"   "0311"   "0311"  
#>  [791] "0112"   "0112"   "031221" "02222"  "0112"   "031222" "0111"   "0111"   "0234"   "0311"  
#>  [801] "031222" "02222"  "0311"   "0311"   "0311"   "0234"   "0311"   "0112"   "0311"   "0112"  
#>  [811] "0112"   "0112"   "0324"   "0324"   "01231"  "0143"   "0111"   "0112"   "0111"   "02123" 
#>  [821] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"  
#>  [831] "0111"   "0111"   "0111"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [841] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0324"   "01231" 
#>  [851] "01132"  "0234"   "0324"   "02222"  "0111"   "0143"   "0143"   "0143"   "0324"   "0111"  
#>  [861] "0111"   "0324"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0311"  
#>  [871] "0112"   "0111"   "0112"   "0111"   "0111"   "0111"   "0143"   "0111"   "0111"   "0111"  
#>  [881] "0111"   "0111"   "0111"   "0111"   "01231"  "02123"  "0111"   "0324"   "0111"   "0324"  
#>  [891] "0111"   "0311"   "0111"   "0111"   "0111"   "02221"  "02221"  "0111"   "0111"   "0111"  
#>  [901] "0111"   "0111"   "0311"   "0111"   "0111"   "0112"   "0112"   "0112"   "0112"   "0111"  
#>  [911] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [921] "0111"   "0111"   "0111"   "0112"   "0111"   "0111"   "0111"   "0111"   "02221"  "0111"  
#>  [931] "0143"   "0111"   "0111"   "0111"   "02221"  "0324"   "0111"   "02221"  "0111"   "0111"  
#>  [941] "0111"   "0143"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [951] "0111"   "0111"   "0111"   "0311"   "01132"  "02123"  "0143"   "0143"   "0111"   "02123" 
#>  [961] "02221"  "0112"   "0111"   "02123"  "0311"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [971] "0111"   "0111"   "02221"  "0112"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [981] "0324"   "0324"   "02222"  "02221"  "0311"   "0112"   "0111"   "0112"   "0112"   "0311"  
#>  [991] "0311"   "0112"   "0112"   "0111"   "0311"   "0111"   "0111"   "0324"   "0324"   "0111"  
#> [1001] "02221"  "0132"   "01211"  "01212"  "01212"  "01212"  "01212"  "01212"  "01212"  "01212" 
#> [1011] "01212"  "01212"  "01212"  "02221"  "01212"  "02221"  "01212"  "01212"  "01212"  "01212" 
#> [1021] "01212"  "01212"  "01212"  "01212"  "01212"  "0323"   "0142"   "01212"  "01212"  "01212" 
#> [1031] "01212"  "01212"  "01212"  "01212"  "01212"  "0311"   "01212"  "03121"  "01212"  "02113" 
#> [1041] "01212"  "01132"  "0322"   "01212"  "01212"  "01212"  "03121"  "01211"  "01211"  "01212" 
#> [1051] "01132"  "01212"  "01212"  "01211"  "01211"  "01211"  "01212"  "01212"  "01132"  "01211" 
#> [1061] "01211"  "01212"  "01212"  "01211"  "01211"  "01212"  "01212"  "01212"  "01212"  "01211" 
#> [1071] "01211"  "01212"  "0132"   "01212"  "0322"   "01211"  "01211"  "01211"  "0132"   "01211" 
#> [1081] "01212"  "01211"  "03121"  "01211"  "01211"  "01211"  "01211"  "0311"   "01211"  "01212" 
#> [1091] "01211"  "01212"  "01132"  "0132"   "01211"  "01211"  "01211"  "01212"  "01211"  "01212" 
#> [1101] "0142"   "01212"  "01212"  "01212"  "01212"  "01212"  "01211"  "01211"  "01212"  "0311"  
#> [1111] "01212"  "01212"  "01212"  "01212"  "01212"  "0132"   "01212"  "0313"   "01212"  "0141"  
#> [1121] "01212"  "0313"   "01212"  "01212"  "01211"  "01212"  "01211"  "031221" "01212"  "01211" 
#> [1131] "01211"  "01132"  "01132"  "01211"  "0322"   "01211"  "01212"  "01211"  "01211"  "01211" 
#> [1141] "0221"   "01211"  "01211"  "01132"  "0322"   "01232"  "01211"  "0111"   "01211"  "0142"  
#> [1151] "01211"  "01211"  "01231"  "01232"  "01211"  "01211"  "01211"  "01211"  "01211"  "01211" 
#> [1161] "01132"  "01232"  "01132"  "01211"  "01211"  "01211"  "01211"  "0111"   "01132"  "0111"  
#> [1171] "01231"  "0311"   "01132"  "01211"  "01132"  "01132"  "01211"  "01211"  "01211"  "01211" 
#> [1181] "0223"   "01211"  "0141"   "01211"  "0221"   "0111"   "01211"  "01211"  "01132"  "01211" 
#> [1191] "01211"  "01211"  "01211"  "01211"  "01211"  "0141"   "01211"  "01231"  "0131"   "01211" 
#> [1201] "01211"  "0141"   "01211"  "01211"  "01211"  "01211"  "01211"  "0112"   "01211"  "01211" 
#> [1211] "0131"   "01211"  "01232"  "0141"   "02221"  "01211"  "0321"   "0313"   "01211"  "01211" 
#> [1221] "01131"  "01211"  "01211"  "0221"   "01211"  "0223"   "01232"  "01211"  "01211"  "0141"  
#> [1231] "01211"  "01211"  "01211"  "01132"  "01211"  "01131"  "0112"   "0313"   "0141"   "01211" 
#> [1241] "0333"   "0321"   "0311"   "01211"  "01211"  "01211"  "01132"  "01132"  "01211"  "01211" 
#> [1251] "01132"  "01234"  "0112"   "0111"   "0112"   "0221"   "0221"   "0221"   "0223"   "01223" 
#> [1261] "01212"  "01223"  "01211"  "01234"  "0311"   "0141"   "0111"   "01132"  "0132"   "0132"  
#> [1271] "0132"   "0131"   "0331"   "0131"   "0131"   "0132"   "0333"   "02122"  "0332"   "0332"  
#> [1281] "0331"   "0132"   "0332"   "0132"   "0132"   "0132"   "0132"   "0132"   "0332"   "0332"  
#> [1291] "0132"   "0331"   "0132"   "0132"   "0233"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1301] "0132"   "0131"   "0131"   "0132"   "0131"   "0131"   "0131"   "0132"   "0132"   "0132"  
#> [1311] "0132"   "0132"   "0223"   "0331"   "0221"   "0131"   "0333"   "02122"  "0132"   "0131"  
#> [1321] "0131"   "0132"   "0132"   "0132"   "0131"   "0132"   "0333"   "01223"  "0131"   "0131"  
#> [1331] "0132"   "02113"  "0132"   "0331"   "0132"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1341] "0132"   "0132"   "02221"  "0132"   "0131"   "0223"   "0233"   "02113"  "0131"   "0132"  
#> [1351] "0131"   "0131"   "02113"  "0223"   "0132"   "0131"   "0131"   "0132"   "0131"   "0131"  
#> [1361] "02122"  "02122"  "0131"   "0132"   "0331"   "0331"   "0131"   "0331"   "0132"   "0331"  
#> [1371] "0331"   "0331"   "0332"   "0132"   "0331"   "0132"   "0132"   "0131"   "0131"   "0132"  
#> [1381] "0131"   "0132"   "0132"   "0132"   "0132"   "0132"   "0132"   "01234"  "01223"  "01231" 
#> [1391] "01234"  "0321"   "0131"   "0131"   "0231"   "0141"   "02113"  "0233"   "0233"   "01231" 
#> [1401] "0233"   "0132"   "0132"   "0131"   "0131"   "0333"   "0233"   "0131"   "0131"   "0311"  
#> [1411] "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0333"   "0131"  
#> [1421] "0131"   "0311"   "0131"   "0131"   "0131"   "0132"   "0131"   "0131"   "0333"   "0311"  
#> [1431] "0131"   "0112"   "0131"   "0311"   "01231"  "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1441] "0131"   "0131"   "0131"   "0131"   "0131"   "01231"  "0131"   "0131"   "0233"   "0131"  
#> [1451] "0333"   "0221"   "0132"   "0131"   "0221"   "0131"   "0131"   "0131"   "0223"   "0131"  
#> [1461] "0131"   "0131"   "0132"   "0132"   "01231"  "0131"   "0111"   "0111"   "01131"  "0132"  
#> [1471] "0131"   "0333"   "01231"  "0313"   "0333"   "0313"   "0112"   "02121"  "0131"   "0221"  
#> [1481] "01232"  "0131"   "0132"   "0111"   "0131"   "0131"   "0131"   "0321"   "0141"   "0131"  
#> [1491] "0141"   "0131"   "0131"   "0111"   "0231"   "0141"   "0131"   "0111"   "0131"   "0233"  
#> [1501] "01231"  "0141"   "0131"   "0111"   "01231"  "0321"   "0132"   "02222"  "0131"   "0223"  
#> [1511] "01231"  "0131"   "01231"  "0132"   "0131"   "01231"  "0131"   "0221"   "0331"   "0221"  
#> [1521] "0233"   "0233"   "0142"   "0221"   "0142"   "0132"   "0333"   "0132"   "0132"   "0131"  
#> [1531] "0142"   "0131"   "0132"   "02113"  "01223"  "0223"   "0112"   "0111"   "0132"   "0131"  
#> [1541] "01232"  "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1551] "0311"   "0131"   "0111"   "0131"   "0131"   "0131"   "0142"   "02121"  "0233"   "0131"  
#> [1561] "01231"  "01231"  "0143"   "03121"  "0223"   "01133"  "0132"   "0333"   "0131"   "01231" 
#> [1571] "0131"   "0223"   "02121"  "0142"   "02121"  "0332"   "0332"   "02113"  "0233"   "0233"  
#> [1581] "0332"   "02113"  "0332"   "0233"   "0332"   "0332"   "0331"   "0332"   "0331"   "0332"  
#> [1591] "0132"   "0331"   "0332"   "02221"  "0331"   "02113"  "02121"  "0233"   "0132"   "02113" 
#> [1601] "0132"   "0332"   "0132"   "02123"  "02113"  "0132"   "0132"   "0233"   "02113"  "02113" 
#> [1611] "0331"   "0331"   "0332"   "0331"   "0331"   "0331"   "0331"   "02113"  "0132"   "02221" 
#> [1621] "02113"  "0233"   "0132"   "0331"   "01132"  "02122"  "01234"  "0132"   "01234"  "0132"  
#> [1631] "0141"   "01234"  "0323"   "01234"  "02122"  "01234"  "01234"  "01234"  "0221"   "01234" 
#> [1641] "01234"  "0132"   "01234"  "0233"   "0141"   "01234"  "0141"   "01234"  "01234"  "01234" 
#> [1651] "0142"   "01234"  "01234"  "0321"   "01234"  "0111"   "01231"  "0111"   "01133"  "01234" 
#> [1661] "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234" 
#> [1671] "01234"  "01231"  "01233"  "01233"  "01233"  "0231"   "01233"  "0112"   "0112"   "0233"  
#> [1681] "01233"  "01233"  "01221"  "0141"   "01233"  "01212"  "01132"  "01211"  "01232"  "01223" 
#> [1691] "01233"  "01233"  "0322"   "01212"  "01233"  "01233"  "01233"  "0112"   "01233"  "01233" 
#> [1701] "0112"   "01233"  "0311"   "01233"  "01233"  "01221"  "0323"   "01223"  "01233"  "01233" 
#> [1711] "0131"   "0311"   "01233"  "01233"  "01223"  "0132"   "01233"  "01233"  "0323"   "0323"  
#> [1721] "0131"   "01233"  "0141"   "01233"  "01233"  "01233"  "01233"  "0313"   "01233"  "0311"  
#> [1731] "0311"   "01233"  "01211"  "02121"  "01231"  "01133"  "01223"  "01133"  "0112"   "0111"  
#> [1741] "01221"  "01223"  "0132"   "01221"  "0131"   "01221"  "01222"  "01223"  "0323"   "01222" 
#> [1751] "03121"  "01223"  "0221"   "01221"  "0221"   "01221"  "0111"   "01221"  "0142"   "031221"
#> [1761] "0223"   "01221"  "0112"   "01223"  "0111"   "0221"   "0311"   "0111"   "0131"   "0221"  
#> [1771] "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01132"  "01221"  "01221"  "01221" 
#> [1781] "0322"   "01132"  "01221"  "01221"  "0112"   "01221"  "0313"   "0111"   "01221"  "0323"  
#> [1791] "01222"  "0313"   "0313"   "0323"   "0223"   "01132"  "01221"  "0313"   "0223"   "01221" 
#> [1801] "01221"  "01221"  "01222"  "0323"   "01221"  "01221"  "0233"   "02121"  "0223"   "0311"  
#> [1811] "0221"   "01221"  "01221"  "01131"  "01223"  "01221"  "01221"  "01221"  "01221"  "01221" 
#> [1821] "0313"   "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01222"  "0223"  
#> [1831] "01221"  "01221"  "0323"   "01221"  "01222"  "02122"  "0223"   "01221"  "0111"   "01221" 
#> [1841] "01222"  "01222"  "02121"  "01221"  "01221"  "0143"   "01221"  "01221"  "01222"  "01221" 
#> [1851] "01222"  "0323"   "01223"  "01234"  "0111"   "01234"  "01223"  "01132"  "0322"   "01233" 
#> [1861] "031222" "01233"  "01233"  "0332"   "0223"   "031221" "0321"   "0323"   "02122"  "01221" 
#> [1871] "01221"  "0323"   "0323"   "01221"  "01222"  "01223"  "0231"   "01221"  "01223"  "01211" 
#> [1881] "021121" "01223"  "01223"  "01223"  "01223"  "0323"   "01222"  "031222" "01222"  "01222" 
#> [1891] "01132"  "0221"   "01221"  "01221"  "01222"  "0311"   "01221"  "01222"  "01221"  "03121" 
#> [1901] "0132"   "0323"   "01223"  "0311"   "01223"  "01223"  "0332"   "01223"  "01222"  "01222" 
#> [1911] "01222"  "01222"  "01222"  "01221"  "0323"   "01222"  "01221"  "01132"  "01221"  "031221"
#> [1921] "0223"   "01222"  "0323"   "0323"   "01222"  "0311"   "01222"  "01222"  "01222"  "0233"  
#> [1931] "0323"   "01222"  "021121" "01222"  "0323"   "0233"   "0333"   "01222"  "01222"  "0323"  
#> [1941] "0323"   "01222"  "0323"   "01222"  "0332"   "02221"  "031221" "0323"   "01222"  "03121" 
#> [1951] "0323"   "01222"  "01222"  "02123"  "01222"  "01222"  "0233"   "0323"   "02113"  "0323"  
#> [1961] "0221"   "0323"   "0323"   "02221"  "01222"  "0323"   "021121" "0331"   "0323"   "031222"
#> [1971] "01222"  "0233"   "031222" "0323"   "02122"  "0311"   "01222"  "02122"  "0323"   "02121" 
#> [1981] "0323"   "0323"   "0332"   "0232"   "021122" "0232"   "02121"  "02122"  "02122"  "021122"
#> [1991] "0221"   "02122"  "0231"   "0232"   "0223"   "02123"  "0231"   "0231"   "021122" "0231"  
#> [2001] "0223"   "02113"  "021121" "0232"   "021122" "02221"  "0221"   "02121"  "0232"   "0232"  
#> [2011] "02123"  "0231"   "02121"  "0231"   "0142"   "0221"   "0231"   "0321"   "0223"   "021122"
#> [2021] "02122"  "02221"  "0223"   "0221"   "02221"  "0321"   "0223"   "02122"  "02122"  "0223"  
#> [2031] "02221"  "02122"  "0223"   "0232"   "0221"   "02113"  "0221"   "021121" "0223"   "0223"  
#> [2041] "0221"   "0321"   "021121" "0233"   "0232"   "02113"  "02122"  "02121"  "02121"  "0142"  
#> [2051] "0221"   "02113"  "0231"   "02113"  "021122" "02121"  "0223"   "02122"  "0321"   "0223"  
#> [2061] "021121" "0223"   "0223"   "02122"  "0221"   "0223"   "02122"  "02122"  "02122"  "021121"
#> [2071] "021121" "0223"   "0232"   "02221"  "02113"  "0233"   "021122" "02221"  "021121" "021121"
#> [2081] "021121" "02123"  "02122"  "0231"   "02121"  "02122"  "02121"  "0232"   "02121"  "0221"  
#> [2091] "02121"  "0223"   "0223"   "02122"  "0223"   "0223"   "0223"   "02121"  "0223"   "0231"  
#> [2101] "02121"  "02121"  "02121"  "02122"  "021121" "021121" "02121"  "021122" "0231"   "021122"
#> [2111] "0231"   "0223"   "021121" "021122" "021122" "021122" "0223"   "02123"  "0231"   "0232"  
#> [2121] "02121"  "02121"  "0233"   "0232"   "0142"   "0223"   "02121"  "0142"   "021121" "021122"
#> [2131] "02122"  "02121"  "021122" "021122" "021121" "02121"  "02122"  "02121"  "0221"   "02121" 
#> [2141] "02221"  "0223"   "02122"  "0221"   "0221"   "02221"  "0223"   "02121"  "0223"   "02121" 
#> [2151] "021121" "02122"  "0223"   "0223"   "02122"  "021121" "02121"  "0223"   "0223"   "021121"
#> [2161] "0221"   "0223"   "0221"   "02122"  "0223"   "0223"   "0221"   "02121"  "0223"   "0223"  
#> [2171] "0223"   "0221"   "02121"  "0321"   "0221"   "0221"   "0221"   "021112" "02122"  "02122" 
#> [2181] "02122"  "0223"   "0234"   "02222"  "0223"   "0221"   "0221"   "0221"   "0221"   "0143"  
#> [2191] "0221"   "0142"   "0221"   "03121"  "0221"   "0321"   "0221"   "02113"  "021121" "0221"  
#> [2201] "0232"   "0231"   "0223"   "0232"   "0232"   "02221"  "02121"  "02121"  "02121"  "0231"  
#> [2211] "0232"   "0221"   "0232"   "0223"   "02121"  "02123"  "021122" "021121" "02121"  "02121" 
#> [2221] "0223"   "02123"  "02121"  "02121"  "0221"   "021122" "021122" "02121"  "0223"   "02121" 
#> [2231] "0223"   "0223"   "0223"   "0223"   "02121"  "0221"   "0321"   "02221"  "0221"   "0321"  
#> [2241] "0221"   "0321"   "0223"   "0221"   "0223"   "0223"   "0223"   "0231"   "0231"   "0221"  
#> [2251] "02221"  "0321"   "02221"  "0221"   "0231"   "0231"   "0221"   "0221"   "0141"   "0321"  
#> [2261] "021122" "0221"   "0221"   "0221"   "0223"   "0321"   "0231"   "0221"   "0321"   "0223"  
#> [2271] "0223"   "0223"   "0142"   "0223"   "0142"   "02221"  "0223"   "0321"   "0221"   "0231"  
#> [2281] "02221"  "0221"   "0141"   "02221"  "0221"   "0221"   "0142"   "0321"   "0321"   "0221"  
#> [2291] "0221"   "0321"   "0221"   "0221"   "0142"   "0221"   "0221"   "0221"   "0141"   "0321"  
#> [2301] "0142"   "0142"   "0141"   "0223"   "0142"   "02221"  "0142"   "0142"   "0142"   "0223"  
#> [2311] "0142"   "0321"   "0221"   "0142"   "0141"   "0141"   "01231"  "02122"  "0231"   "0221"  
#> [2321] "0142"   "0221"   "0223"   "0321"   "0221"   "0221"   "0221"   "0221"   "0221"   "0221"  
#> [2331] "0223"   "0221"   "0221"   "0223"   "0321"   "0142"   "0141"   "0321"   "0221"   "0141"  
#> [2341] "0321"   "0321"   "0221"   "02122"  "0232"   "0223"   "0223"   "0223"   "0221"   "0221"  
#> [2351] "0321"   "02221"  "0223"   "0223"   "0221"   "0221"   "0321"   "02121"  "021122" "0221"  
#> [2361] "02121"  "0221"   "02121"  "0234"   "02121"  "02122"  "0221"   "021122" "021122" "0221"  
#> [2371] "0223"   "0223"   "02121"  "0223"   "02121"  "0223"   "0221"   "0221"   "02123"  "02121" 
#> [2381] "0232"   "0223"   "021121" "02122"  "0232"   "0221"   "0223"   "0223"   "0223"   "0231"  
#> [2391] "02113"  "0223"   "0221"   "0221"   "021112" "02121"  "02122"  "0223"   "0321"   "0221"  
#> [2401] "0141"   "0141"   "0141"   "02122"  "0221"   "0231"   "021112" "0223"   "02122"  "02221" 
#> [2411] "02122"  "0221"   "02122"  "0142"   "0221"   "0223"   "0221"   "0223"   "0231"   "01231" 
#> [2421] "0223"   "0221"   "0321"   "02121"  "02121"  "0231"   "0223"   "0221"   "0223"   "0223"  
#> [2431] "0221"   "0221"   "0141"   "0321"   "0141"   "0221"   "0321"   "0321"   "0321"   "0141"  
#> [2441] "0141"   "01234"  "0321"   "0321"   "0321"   "0223"   "0223"   "0221"   "02122"  "0223"  
#> [2451] "02122"  "02122"  "02122"  "021121" "02122"  "02122"  "021121" "02122"  "02122"  "0231"  
#> [2461] "02122"  "02122"  "02122"  "02123"  "02122"  "02123"  "02122"  "02122"  "02221"  "0221"  
#> [2471] "0321"   "0221"   "0221"   "0221"   "02122"  "02122"  "0223"   "02122"  "0223"   "0221"  
#> [2481] "0223"   "02122"  "0223"   "0223"   "021121" "0223"   "02122"  "02122"  "02122"  "021121"
#> [2491] "02123"  "02122"  "02122"  "021122" "0223"   "02122"  "0223"   "02122"  "02122"  "0221"  
#> [2501] "02122"  "0223"   "02121"  "0223"   "0223"   "0221"   "0223"   "0321"   "0321"   "0221"  
#> [2511] "0324"   "02122"  "02122"  "021121" "02122"  "02122"  "021121" "02122"  "0221"   "02122" 
#> [2521] "02121"  "021122" "0221"   "02221"  "0221"   "02122"  "021122" "0221"   "02122"  "02113" 
#> [2531] "0223"   "02122"  "021121" "0141"   "02121"  "0321"   "0221"   "0221"   "0221"   "0231"  
#> [2541] "0221"   "0221"   "0221"   "0221"   "0232"   "0221"   "0221"   "0223"   "0142"   "0221"  
#> [2551] "0321"   "0321"   "0142"   "0141"   "02121"  "0321"   "0221"   "0141"   "021122" "02121" 
#> [2561] "0321"   "02122"  "0321"   "0223"   "0221"   "0321"   "0221"   "0221"   "0221"   "0221"  
#> [2571] "0223"   "0142"   "0141"   "0141"   "0321"   "0321"   "0221"   "0221"   "021121" "02122" 
#> [2581] "02122"  "0223"   "0223"   "0221"   "0221"   "02221"  "0221"   "0142"   "021112" "0232"  
#> [2591] "0234"   "0232"   "02113"  "02113"  "021111" "02113"  "02113"  "021111" "0231"   "02113" 
#> [2601] "021111" "021111" "0232"   "02113"  "0232"   "0231"   "0234"   "0232"   "0323"   "0142"  
#> [2611] "0232"   "021121" "0231"   "0221"   "0223"   "0321"   "0221"   "0231"   "0231"   "0234"  
#> [2621] "0233"   "0232"   "0142"   "021122" "02222"  "0231"   "0142"   "0142"   "0141"   "0231"  
#> [2631] "021121" "021122" "02121"  "021122" "021121" "0223"   "02122"  "0223"   "0223"   "0221"  
#> [2641] "0221"   "0321"   "0221"   "0221"   "02121"  "0221"   "0221"   "0223"   "0321"   "0221"  
#> [2651] "01221"  "0221"   "0221"   "0221"   "0221"   "0221"   "0231"   "0221"   "02221"  "0221"  
#> [2661] "0221"   "0221"   "0221"   "0321"   "0321"   "0221"   "0321"   "0221"   "0221"   "0321"  
#> [2671] "0221"   "0141"   "0321"   "0221"   "0321"   "0221"   "0221"   "0324"   "01231"  "0141"  
#> [2681] "01231"  "0221"   "0141"   "01231"  "01212"  "0232"   "0232"   "021122" "021122" "0321"  
#> [2691] "02121"  "02121"  "0234"   "0231"   "0143"   "0221"   "0324"   "02121"  "0221"   "0321"  
#> [2701] "0221"   "02121"  "0141"   "02221"  "02221"  "0321"   "0142"   "02221"  "0141"   "0142"  
#> [2711] "02221"  "0141"   "0141"   "0231"   "02221"  "0231"   "0141"   "0142"   "0231"   "0141"  
#> [2721] "0223"   "02221"  "0141"   "021122" "0321"   "0141"   "0321"   "0141"   "01231"  "0321"  
#> [2731] "02121"  "0221"   "0321"   "0221"   "0321"   "0141"   "0141"   "0321"   "0141"   "0321"  
#> [2741] "0141"   "0141"   "02121"  "0221"   "0221"   "0141"   "0141"   "0141"   "0142"   "0321"  
#> [2751] "0141"   "0141"   "0221"   "0221"   "0321"   "0323"   "0142"   "021111" "021111" "021111"
#> [2761] "021111" "021111" "021111" "021111" "0232"   "0142"   "0142"   "0221"   "021111" "02113" 
#> [2771] "021112" "021112" "021111" "021111" "021111" "021112" "021111" "021111" "021112" "021112"
#> [2781] "021112" "0231"   "021111" "021111" "021111" "0232"   "021111" "0232"   "021111" "0142"  
#> [2791] "0142"   "0223"   "0231"   "0231"   "021112" "021112" "021112" "021112" "021111" "021111"
#> [2801] "021111" "02113"  "0233"   "021112" "02113"  "021111" "021112" "0232"   "021111" "021111"
#> [2811] "021111" "021111" "021112" "021112" "021111" "021112" "0221"   "0142"   "0142"   "0142"  
#> [2821] "0221"   "02121"  "0231"   "021112" "021112" "02121"  "021112" "02121"  "021112" "0223"  
#> [2831] "02121"  "02121"  "021112" "02121"  "0231"   "0223"   "02121"  "02121"  "0232"   "0231"  
#> [2841] "021112" "021112" "021121" "021121" "02121"  "021111" "021121" "021112" "021112" "021121"
#> [2851] "021112" "021111" "0321"   "0231"   "0142"   "0221"   "02123"  "0141"   "0221"   "021122"
#> [2861] "0231"   "0232"   "0223"   "0223"   "02121"  "02121"  "0231"   "0221"   "02121"  "0221"  
#> [2871] "021112" "02121"  "02123"  "021111" "021112" "02121"  "0223"   "02121"  "0142"   "02121" 
#> [2881] "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 508))
#>    [1] "01232"  "01232"  "0231"   "0322"   "01232"  "01232"  "0322"   "01131"  "01232"  "01232" 
#>   [11] "01232"  "01131"  "0322"   "01232"  "01232"  "01232"  "01232"  "01232"  "0313"   "01131" 
#>   [21] "0322"   "01232"  "01131"  "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "03121" 
#>   [31] "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "01232"  "01232"  "03121"  "0311"  
#>   [41] "01131"  "02222"  "01131"  "0311"   "01232"  "01232"  "0311"   "03121"  "0322"   "01131" 
#>   [51] "03121"  "01131"  "01131"  "01232"  "01232"  "02123"  "02123"  "0143"   "01133"  "0313"  
#>   [61] "0322"   "01131"  "01131"  "02221"  "0311"   "01132"  "01232"  "01232"  "0322"   "01232" 
#>   [71] "0322"   "0311"   "0322"   "01131"  "01131"  "0143"   "0111"   "0112"   "02221"  "01131" 
#>   [81] "0143"   "0322"   "01131"  "0143"   "01133"  "02221"  "01131"  "01131"  "01131"  "01231" 
#>   [91] "0322"   "0111"   "02113"  "01131"  "01131"  "01131"  "01131"  "01132"  "0143"   "0313"  
#>  [101] "01131"  "01131"  "0111"   "01133"  "0111"   "0322"   "02221"  "0141"   "0142"   "0111"  
#>  [111] "01131"  "01131"  "01133"  "0143"   "01132"  "02221"  "02221"  "0322"   "01132"  "0321"  
#>  [121] "0313"   "0322"   "02222"  "02221"  "02222"  "0234"   "01231"  "0111"   "01133"  "01133" 
#>  [131] "01231"  "01131"  "01133"  "0324"   "0111"   "02222"  "01131"  "01131"  "0322"   "0111"  
#>  [141] "01131"  "0111"   "01232"  "01231"  "01231"  "02222"  "01131"  "02123"  "01131"  "0324"  
#>  [151] "0313"   "0313"   "01131"  "0313"   "0322"   "01131"  "0313"   "0234"   "0322"   "0322"  
#>  [161] "0322"   "01131"  "0313"   "0313"   "02222"  "01131"  "0322"   "0313"   "01131"  "01131" 
#>  [171] "0322"   "0313"   "0313"   "02222"  "02222"  "0313"   "0313"   "01131"  "0313"   "0313"  
#>  [181] "03121"  "0313"   "0322"   "0313"   "0322"   "0313"   "0313"   "0313"   "03121"  "02222" 
#>  [191] "0322"   "01131"  "0313"   "03121"  "0313"   "0322"   "03121"  "03121"  "03121"  "031221"
#>  [201] "03121"  "0313"   "03121"  "0313"   "03121"  "03121"  "0322"   "0313"   "0322"   "02222" 
#>  [211] "0313"   "0234"   "0313"   "03121"  "0313"   "0313"   "0322"   "02222"  "03121"  "01133" 
#>  [221] "03121"  "0313"   "031221" "0313"   "03121"  "0313"   "03121"  "03121"  "01131"  "02113" 
#>  [231] "0313"   "0313"   "03121"  "0313"   "02113"  "03121"  "03121"  "0313"   "03121"  "0313"  
#>  [241] "0313"   "0313"   "03121"  "01133"  "03121"  "03121"  "03121"  "02222"  "03121"  "0313"  
#>  [251] "01133"  "0313"   "03121"  "03121"  "0313"   "0313"   "01133"  "03121"  "0313"   "0313"  
#>  [261] "01133"  "0313"   "01133"  "01133"  "01133"  "0313"   "01133"  "01133"  "01133"  "0313"  
#>  [271] "01133"  "01133"  "0313"   "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "0322"  
#>  [281] "02123"  "01133"  "0313"   "0313"   "0313"   "02222"  "0313"   "0313"   "03121"  "03121" 
#>  [291] "03121"  "031221" "03121"  "03121"  "03121"  "03121"  "03121"  "031221" "02113"  "03121" 
#>  [301] "02113"  "0313"   "0313"   "0234"   "0313"   "02113"  "02222"  "031221" "02222"  "03121" 
#>  [311] "03121"  "0313"   "02222"  "0313"   "0313"   "03121"  "01133"  "0313"   "0313"   "01133" 
#>  [321] "0313"   "01133"  "03121"  "0313"   "0311"   "01133"  "0313"   "0313"   "0313"   "0313"  
#>  [331] "0313"   "01133"  "01133"  "01133"  "01132"  "02222"  "02222"  "01132"  "0313"   "0112"  
#>  [341] "0313"   "0313"   "02222"  "0313"   "0313"   "0313"   "02222"  "0311"   "0311"   "02222" 
#>  [351] "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "031221" "03121"  "031221" "031221"
#>  [361] "03121"  "0313"   "0313"   "0313"   "0313"   "0313"   "0313"   "03121"  "03121"  "03121" 
#>  [371] "0313"   "031221" "031221" "03121"  "03121"  "03121"  "03121"  "031221" "031221" "0313"  
#>  [381] "0111"   "0112"   "02222"  "0311"   "0112"   "0111"   "0112"   "0311"   "0324"   "0311"  
#>  [391] "0112"   "0311"   "0112"   "0311"   "02222"  "0311"   "0313"   "0311"   "0112"   "0111"  
#>  [401] "0311"   "0112"   "0143"   "0311"   "0112"   "02222"  "0111"   "0311"   "0112"   "0112"  
#>  [411] "0311"   "0311"   "02123"  "0112"   "0112"   "0112"   "0111"   "01133"  "0311"   "0111"  
#>  [421] "0111"   "0111"   "0112"   "0313"   "0234"   "0112"   "0111"   "0112"   "0112"   "0112"  
#>  [431] "0112"   "0234"   "0112"   "0234"   "0111"   "02221"  "0112"   "02123"  "0112"   "0234"  
#>  [441] "0234"   "0311"   "0311"   "0311"   "0311"   "0112"   "0112"   "031221" "031221" "03121" 
#>  [451] "0311"   "0112"   "0311"   "0112"   "0112"   "03121"  "0112"   "0112"   "031222" "031222"
#>  [461] "0311"   "031221" "0311"   "0311"   "031221" "031221" "031222" "0311"   "031221" "031221"
#>  [471] "031222" "0311"   "031222" "031221" "031221" "0311"   "0311"   "03121"  "0311"   "0311"  
#>  [481] "0311"   "0311"   "0311"   "0112"   "02123"  "031222" "0311"   "0311"   "02222"  "02222" 
#>  [491] "02123"  "03121"  "031222" "02222"  "031222" "0112"   "02123"  "02113"  "0112"   "031222"
#>  [501] "02113"  "0112"   "0311"   "031221" "0311"   "02113"  "0112"   "0311"   "0311"   "0311"  
#>  [511] "0311"   "02222"  "0311"   "0311"   "0112"   "0112"   "02222"  "0311"   "03121"  "0311"  
#>  [521] "0112"   "0112"   "0112"   "031221" "03121"  "0313"   "03121"  "0112"   "0112"   "02221" 
#>  [531] "02123"  "02123"  "0112"   "02222"  "0111"   "0111"   "0111"   "02123"  "0111"   "0311"  
#>  [541] "0112"   "02222"  "0111"   "0112"   "02222"  "0111"   "0111"   "0112"   "0311"   "0111"  
#>  [551] "0111"   "0112"   "0112"   "0112"   "0111"   "0143"   "0112"   "0311"   "0311"   "0143"  
#>  [561] "0311"   "01132"  "0324"   "0324"   "01132"  "0112"   "0111"   "02221"  "0311"   "0112"  
#>  [571] "0112"   "02221"  "0324"   "0311"   "0112"   "03121"  "0111"   "0112"   "0112"   "02221" 
#>  [581] "0112"   "0112"   "0111"   "0112"   "0311"   "0112"   "0311"   "0112"   "0111"   "01132" 
#>  [591] "0111"   "0313"   "0112"   "031222" "0313"   "0324"   "0112"   "0313"   "0313"   "0111"  
#>  [601] "0111"   "01132"  "0111"   "0313"   "0111"   "0112"   "02222"  "0111"   "0111"   "0111"  
#>  [611] "0111"   "0111"   "0112"   "0111"   "0111"   "0234"   "0311"   "0311"   "0112"   "0311"  
#>  [621] "0311"   "0313"   "0112"   "0311"   "0112"   "0311"   "0311"   "0311"   "0311"   "0311"  
#>  [631] "0112"   "0112"   "0313"   "0112"   "0311"   "02113"  "0311"   "0112"   "0112"   "0112"  
#>  [641] "0112"   "0311"   "0311"   "0112"   "0311"   "03121"  "0112"   "0112"   "02222"  "0112"  
#>  [651] "0112"   "0112"   "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0311"  
#>  [661] "0311"   "0112"   "0234"   "0112"   "0112"   "031222" "0311"   "0311"   "0311"   "0311"  
#>  [671] "02222"  "0112"   "02222"  "0311"   "0313"   "0234"   "0311"   "0311"   "02222"  "0112"  
#>  [681] "0311"   "0311"   "031222" "031222" "0311"   "031222" "031222" "031222" "0311"   "0311"  
#>  [691] "0311"   "0112"   "031222" "0311"   "02222"  "0311"   "031221" "0112"   "031222" "0143"  
#>  [701] "031221" "0112"   "0111"   "0311"   "0311"   "02222"  "02222"  "0112"   "0324"   "0112"  
#>  [711] "0324"   "02123"  "0111"   "0112"   "0111"   "0112"   "0111"   "0111"   "02221"  "0311"  
#>  [721] "0311"   "02221"  "0234"   "0112"   "02221"  "0311"   "0311"   "0311"   "0112"   "0112"  
#>  [731] "0311"   "0112"   "0111"   "0311"   "0112"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [741] "0112"   "0112"   "0112"   "0311"   "0311"   "0112"   "0311"   "031222" "031222" "031221"
#>  [751] "0311"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0112"   "0324"   "0311"  
#>  [761] "02123"  "02222"  "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0111"   "0111"  
#>  [771] "031222" "0112"   "0112"   "0311"   "0112"   "02222"  "0111"   "0112"   "02113"  "0112"  
#>  [781] "0311"   "0112"   "0112"   "0111"   "0112"   "0112"   "031222" "0111"   "0311"   "0311"  
#>  [791] "0112"   "0112"   "031221" "02222"  "0112"   "031222" "0111"   "0111"   "0234"   "0311"  
#>  [801] "031222" "02222"  "0311"   "0311"   "0311"   "0234"   "0311"   "0112"   "0311"   "0112"  
#>  [811] "0112"   "0112"   "0324"   "0324"   "01231"  "0143"   "0111"   "0112"   "0111"   "02123" 
#>  [821] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"  
#>  [831] "0111"   "0111"   "0111"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [841] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0324"   "01231" 
#>  [851] "01132"  "0234"   "0324"   "02222"  "0111"   "0143"   "0143"   "0143"   "0324"   "0111"  
#>  [861] "0111"   "0324"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0311"  
#>  [871] "0112"   "0111"   "0112"   "0111"   "0111"   "0111"   "0143"   "0111"   "0111"   "0111"  
#>  [881] "0111"   "0111"   "0111"   "0111"   "01231"  "02123"  "0111"   "0324"   "0111"   "0324"  
#>  [891] "0111"   "0311"   "0111"   "0111"   "0111"   "02221"  "02221"  "0111"   "0111"   "0111"  
#>  [901] "0111"   "0111"   "0311"   "0111"   "0111"   "0112"   "0112"   "0112"   "0112"   "0111"  
#>  [911] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [921] "0111"   "0111"   "0111"   "0112"   "0111"   "0111"   "0111"   "0111"   "02221"  "0111"  
#>  [931] "0143"   "0111"   "0111"   "0111"   "02221"  "0324"   "0111"   "02221"  "0111"   "0111"  
#>  [941] "0111"   "0143"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [951] "0111"   "0111"   "0111"   "0311"   "01132"  "02123"  "0143"   "0143"   "0111"   "02123" 
#>  [961] "02221"  "0112"   "0111"   "02123"  "0311"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [971] "0111"   "0111"   "02221"  "0112"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [981] "0324"   "0324"   "02222"  "02221"  "0311"   "0112"   "0111"   "0112"   "0112"   "0311"  
#>  [991] "0311"   "0112"   "0112"   "0111"   "0311"   "0111"   "0111"   "0324"   "0324"   "0111"  
#> [1001] "02221"  "0132"   "01211"  "01212"  "01212"  "01212"  "01212"  "01212"  "01212"  "01212" 
#> [1011] "01212"  "01212"  "01212"  "02221"  "01212"  "02221"  "01212"  "01212"  "01212"  "01212" 
#> [1021] "01212"  "01212"  "01212"  "01212"  "01212"  "0323"   "0142"   "01212"  "01212"  "01212" 
#> [1031] "01212"  "01212"  "01212"  "01212"  "01212"  "0311"   "01212"  "03121"  "01212"  "02113" 
#> [1041] "01212"  "01132"  "0322"   "01212"  "01212"  "01212"  "03121"  "01211"  "01211"  "01212" 
#> [1051] "01132"  "01212"  "01212"  "01211"  "01211"  "01211"  "01212"  "01212"  "01132"  "01211" 
#> [1061] "01211"  "01212"  "01212"  "01211"  "01211"  "01212"  "01212"  "01212"  "01212"  "01211" 
#> [1071] "01211"  "01212"  "0132"   "01212"  "0322"   "01211"  "01211"  "01211"  "0132"   "01211" 
#> [1081] "01212"  "01211"  "03121"  "01211"  "01211"  "01211"  "01211"  "0311"   "01211"  "01212" 
#> [1091] "01211"  "01212"  "01132"  "0132"   "01211"  "01211"  "01211"  "01212"  "01211"  "01212" 
#> [1101] "0142"   "01212"  "01212"  "01212"  "01212"  "01212"  "01211"  "01211"  "01212"  "0311"  
#> [1111] "01212"  "01212"  "01212"  "01212"  "01212"  "0132"   "01212"  "0313"   "01212"  "0141"  
#> [1121] "01212"  "0313"   "01212"  "01212"  "01211"  "01212"  "01211"  "031221" "01212"  "01211" 
#> [1131] "01211"  "01132"  "01132"  "01211"  "0322"   "01211"  "01212"  "01211"  "01211"  "01211" 
#> [1141] "0221"   "01211"  "01211"  "01132"  "0322"   "01232"  "01211"  "0111"   "01211"  "0142"  
#> [1151] "01211"  "01211"  "01231"  "01232"  "01211"  "01211"  "01211"  "01211"  "01211"  "01211" 
#> [1161] "01132"  "01232"  "01132"  "01211"  "01211"  "01211"  "01211"  "0111"   "01132"  "0111"  
#> [1171] "01231"  "0311"   "01132"  "01211"  "01132"  "01132"  "01211"  "01211"  "01211"  "01211" 
#> [1181] "0223"   "01211"  "0141"   "01211"  "0221"   "0111"   "01211"  "01211"  "01132"  "01211" 
#> [1191] "01211"  "01211"  "01211"  "01211"  "01211"  "0141"   "01211"  "01231"  "0131"   "01211" 
#> [1201] "01211"  "0141"   "01211"  "01211"  "01211"  "01211"  "01211"  "0112"   "01211"  "01211" 
#> [1211] "0131"   "01211"  "01232"  "0141"   "02221"  "01211"  "0321"   "0313"   "01211"  "01211" 
#> [1221] "01131"  "01211"  "01211"  "0221"   "01211"  "0223"   "01232"  "01211"  "01211"  "0141"  
#> [1231] "01211"  "01211"  "01211"  "01132"  "01211"  "01131"  "0112"   "0313"   "0141"   "01211" 
#> [1241] "0333"   "0321"   "0311"   "01211"  "01211"  "01211"  "01132"  "01132"  "01211"  "01211" 
#> [1251] "01132"  "01234"  "0112"   "0111"   "0112"   "0221"   "0221"   "0221"   "0223"   "01223" 
#> [1261] "01212"  "01223"  "01211"  "01234"  "0311"   "0141"   "0111"   "01132"  "0132"   "0132"  
#> [1271] "0132"   "0131"   "0331"   "0131"   "0131"   "0132"   "0333"   "02122"  "0332"   "0332"  
#> [1281] "0331"   "0132"   "0332"   "0132"   "0132"   "0132"   "0132"   "0132"   "0332"   "0332"  
#> [1291] "0132"   "0331"   "0132"   "0132"   "0233"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1301] "0132"   "0131"   "0131"   "0132"   "0131"   "0131"   "0131"   "0132"   "0132"   "0132"  
#> [1311] "0132"   "0132"   "0223"   "0331"   "0221"   "0131"   "0333"   "02122"  "0132"   "0131"  
#> [1321] "0131"   "0132"   "0132"   "0132"   "0131"   "0132"   "0333"   "01223"  "0131"   "0131"  
#> [1331] "0132"   "02113"  "0132"   "0331"   "0132"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1341] "0132"   "0132"   "02221"  "0132"   "0131"   "0223"   "0233"   "02113"  "0131"   "0132"  
#> [1351] "0131"   "0131"   "02113"  "0223"   "0132"   "0131"   "0131"   "0132"   "0131"   "0131"  
#> [1361] "02122"  "02122"  "0131"   "0132"   "0331"   "0331"   "0131"   "0331"   "0132"   "0331"  
#> [1371] "0331"   "0331"   "0332"   "0132"   "0331"   "0132"   "0132"   "0131"   "0131"   "0132"  
#> [1381] "0131"   "0132"   "0132"   "0132"   "0132"   "0132"   "0132"   "01234"  "01223"  "01231" 
#> [1391] "01234"  "0321"   "0131"   "0131"   "0231"   "0141"   "02113"  "0233"   "0233"   "01231" 
#> [1401] "0233"   "0132"   "0132"   "0131"   "0131"   "0333"   "0233"   "0131"   "0131"   "0311"  
#> [1411] "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0333"   "0131"  
#> [1421] "0131"   "0311"   "0131"   "0131"   "0131"   "0132"   "0131"   "0131"   "0333"   "0311"  
#> [1431] "0131"   "0112"   "0131"   "0311"   "01231"  "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1441] "0131"   "0131"   "0131"   "0131"   "0131"   "01231"  "0131"   "0131"   "0233"   "0131"  
#> [1451] "0333"   "0221"   "0132"   "0131"   "0221"   "0131"   "0131"   "0131"   "0223"   "0131"  
#> [1461] "0131"   "0131"   "0132"   "0132"   "01231"  "0131"   "0111"   "0111"   "01131"  "0132"  
#> [1471] "0131"   "0333"   "01231"  "0313"   "0333"   "0313"   "0112"   "02121"  "0131"   "0221"  
#> [1481] "01232"  "0131"   "0132"   "0111"   "0131"   "0131"   "0131"   "0321"   "0141"   "0131"  
#> [1491] "0141"   "0131"   "0131"   "0111"   "0231"   "0141"   "0131"   "0111"   "0131"   "0233"  
#> [1501] "01231"  "0141"   "0131"   "0111"   "01231"  "0321"   "0132"   "02222"  "0131"   "0223"  
#> [1511] "01231"  "0131"   "01231"  "0132"   "0131"   "01231"  "0131"   "0221"   "0331"   "0221"  
#> [1521] "0233"   "0233"   "0142"   "0221"   "0142"   "0132"   "0333"   "0132"   "0132"   "0131"  
#> [1531] "0142"   "0131"   "0132"   "02113"  "01223"  "0223"   "0112"   "0111"   "0132"   "0131"  
#> [1541] "01232"  "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1551] "0311"   "0131"   "0111"   "0131"   "0131"   "0131"   "0142"   "02121"  "0233"   "0131"  
#> [1561] "01231"  "01231"  "0143"   "03121"  "0223"   "01133"  "0132"   "0333"   "0131"   "01231" 
#> [1571] "0131"   "0223"   "02121"  "0142"   "02121"  "0332"   "0332"   "02113"  "0233"   "0233"  
#> [1581] "0332"   "02113"  "0332"   "0233"   "0332"   "0332"   "0331"   "0332"   "0331"   "0332"  
#> [1591] "0132"   "0331"   "0332"   "02221"  "0331"   "02113"  "02121"  "0233"   "0132"   "02113" 
#> [1601] "0132"   "0332"   "0132"   "02123"  "02113"  "0132"   "0132"   "0233"   "02113"  "02113" 
#> [1611] "0331"   "0331"   "0332"   "0331"   "0331"   "0331"   "0331"   "02113"  "0132"   "02221" 
#> [1621] "02113"  "0233"   "0132"   "0331"   "01132"  "02122"  "01234"  "0132"   "01234"  "0132"  
#> [1631] "0141"   "01234"  "0323"   "01234"  "02122"  "01234"  "01234"  "01234"  "0221"   "01234" 
#> [1641] "01234"  "0132"   "01234"  "0233"   "0141"   "01234"  "0141"   "01234"  "01234"  "01234" 
#> [1651] "0142"   "01234"  "01234"  "0321"   "01234"  "0111"   "01231"  "0111"   "01133"  "01234" 
#> [1661] "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234" 
#> [1671] "01234"  "01231"  "01233"  "01233"  "01233"  "0231"   "01233"  "0112"   "0112"   "0233"  
#> [1681] "01233"  "01233"  "01221"  "0141"   "01233"  "01212"  "01132"  "01211"  "01232"  "01223" 
#> [1691] "01233"  "01233"  "0322"   "01212"  "01233"  "01233"  "01233"  "0112"   "01233"  "01233" 
#> [1701] "0112"   "01233"  "0311"   "01233"  "01233"  "01221"  "0323"   "01223"  "01233"  "01233" 
#> [1711] "0131"   "0311"   "01233"  "01233"  "01223"  "0132"   "01233"  "01233"  "0323"   "0323"  
#> [1721] "0131"   "01233"  "0141"   "01233"  "01233"  "01233"  "01233"  "0313"   "01233"  "0311"  
#> [1731] "0311"   "01233"  "01211"  "02121"  "01231"  "01133"  "01223"  "01133"  "0112"   "0111"  
#> [1741] "01221"  "01223"  "0132"   "01221"  "0131"   "01221"  "01222"  "01223"  "0323"   "01222" 
#> [1751] "03121"  "01223"  "0221"   "01221"  "0221"   "01221"  "0111"   "01221"  "0142"   "031221"
#> [1761] "0223"   "01221"  "0112"   "01223"  "0111"   "0221"   "0311"   "0111"   "0131"   "0221"  
#> [1771] "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01132"  "01221"  "01221"  "01221" 
#> [1781] "0322"   "01132"  "01221"  "01221"  "0112"   "01221"  "0313"   "0111"   "01221"  "0323"  
#> [1791] "01222"  "0313"   "0313"   "0323"   "0223"   "01132"  "01221"  "0313"   "0223"   "01221" 
#> [1801] "01221"  "01221"  "01222"  "0323"   "01221"  "01221"  "0233"   "02121"  "0223"   "0311"  
#> [1811] "0221"   "01221"  "01221"  "01131"  "01223"  "01221"  "01221"  "01221"  "01221"  "01221" 
#> [1821] "0313"   "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01222"  "0223"  
#> [1831] "01221"  "01221"  "0323"   "01221"  "01222"  "02122"  "0223"   "01221"  "0111"   "01221" 
#> [1841] "01222"  "01222"  "02121"  "01221"  "01221"  "0143"   "01221"  "01221"  "01222"  "01221" 
#> [1851] "01222"  "0323"   "01223"  "01234"  "0111"   "01234"  "01223"  "01132"  "0322"   "01233" 
#> [1861] "031222" "01233"  "01233"  "0332"   "0223"   "031221" "0321"   "0323"   "02122"  "01221" 
#> [1871] "01221"  "0323"   "0323"   "01221"  "01222"  "01223"  "0231"   "01221"  "01223"  "01211" 
#> [1881] "02112"  "01223"  "01223"  "01223"  "01223"  "0323"   "01222"  "031222" "01222"  "01222" 
#> [1891] "01132"  "0221"   "01221"  "01221"  "01222"  "0311"   "01221"  "01222"  "01221"  "03121" 
#> [1901] "0132"   "0323"   "01223"  "0311"   "01223"  "01223"  "0332"   "01223"  "01222"  "01222" 
#> [1911] "01222"  "01222"  "01222"  "01221"  "0323"   "01222"  "01221"  "01132"  "01221"  "031221"
#> [1921] "0223"   "01222"  "0323"   "0323"   "01222"  "0311"   "01222"  "01222"  "01222"  "0233"  
#> [1931] "0323"   "01222"  "02112"  "01222"  "0323"   "0233"   "0333"   "01222"  "01222"  "0323"  
#> [1941] "0323"   "01222"  "0323"   "01222"  "0332"   "02221"  "031221" "0323"   "01222"  "03121" 
#> [1951] "0323"   "01222"  "01222"  "02123"  "01222"  "01222"  "0233"   "0323"   "02113"  "0323"  
#> [1961] "0221"   "0323"   "0323"   "02221"  "01222"  "0323"   "02112"  "0331"   "0323"   "031222"
#> [1971] "01222"  "0233"   "031222" "0323"   "02122"  "0311"   "01222"  "02122"  "0323"   "02121" 
#> [1981] "0323"   "0323"   "0332"   "0232"   "02112"  "0232"   "02121"  "02122"  "02122"  "02112" 
#> [1991] "0221"   "02122"  "0231"   "0232"   "0223"   "02123"  "0231"   "0231"   "02112"  "0231"  
#> [2001] "0223"   "02113"  "02112"  "0232"   "02112"  "02221"  "0221"   "02121"  "0232"   "0232"  
#> [2011] "02123"  "0231"   "02121"  "0231"   "0142"   "0221"   "0231"   "0321"   "0223"   "02112" 
#> [2021] "02122"  "02221"  "0223"   "0221"   "02221"  "0321"   "0223"   "02122"  "02122"  "0223"  
#> [2031] "02221"  "02122"  "0223"   "0232"   "0221"   "02113"  "0221"   "02112"  "0223"   "0223"  
#> [2041] "0221"   "0321"   "02112"  "0233"   "0232"   "02113"  "02122"  "02121"  "02121"  "0142"  
#> [2051] "0221"   "02113"  "0231"   "02113"  "02112"  "02121"  "0223"   "02122"  "0321"   "0223"  
#> [2061] "02112"  "0223"   "0223"   "02122"  "0221"   "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2071] "02112"  "0223"   "0232"   "02221"  "02113"  "0233"   "02112"  "02221"  "02112"  "02112" 
#> [2081] "02112"  "02123"  "02122"  "0231"   "02121"  "02122"  "02121"  "0232"   "02121"  "0221"  
#> [2091] "02121"  "0223"   "0223"   "02122"  "0223"   "0223"   "0223"   "02121"  "0223"   "0231"  
#> [2101] "02121"  "02121"  "02121"  "02122"  "02112"  "02112"  "02121"  "02112"  "0231"   "02112" 
#> [2111] "0231"   "0223"   "02112"  "02112"  "02112"  "02112"  "0223"   "02123"  "0231"   "0232"  
#> [2121] "02121"  "02121"  "0233"   "0232"   "0142"   "0223"   "02121"  "0142"   "02112"  "02112" 
#> [2131] "02122"  "02121"  "02112"  "02112"  "02112"  "02121"  "02122"  "02121"  "0221"   "02121" 
#> [2141] "02221"  "0223"   "02122"  "0221"   "0221"   "02221"  "0223"   "02121"  "0223"   "02121" 
#> [2151] "02112"  "02122"  "0223"   "0223"   "02122"  "02112"  "02121"  "0223"   "0223"   "02112" 
#> [2161] "0221"   "0223"   "0221"   "02122"  "0223"   "0223"   "0221"   "02121"  "0223"   "0223"  
#> [2171] "0223"   "0221"   "02121"  "0321"   "0221"   "0221"   "0221"   "021112" "02122"  "02122" 
#> [2181] "02122"  "0223"   "0234"   "02222"  "0223"   "0221"   "0221"   "0221"   "0221"   "0143"  
#> [2191] "0221"   "0142"   "0221"   "03121"  "0221"   "0321"   "0221"   "02113"  "02112"  "0221"  
#> [2201] "0232"   "0231"   "0223"   "0232"   "0232"   "02221"  "02121"  "02121"  "02121"  "0231"  
#> [2211] "0232"   "0221"   "0232"   "0223"   "02121"  "02123"  "02112"  "02112"  "02121"  "02121" 
#> [2221] "0223"   "02123"  "02121"  "02121"  "0221"   "02112"  "02112"  "02121"  "0223"   "02121" 
#> [2231] "0223"   "0223"   "0223"   "0223"   "02121"  "0221"   "0321"   "02221"  "0221"   "0321"  
#> [2241] "0221"   "0321"   "0223"   "0221"   "0223"   "0223"   "0223"   "0231"   "0231"   "0221"  
#> [2251] "02221"  "0321"   "02221"  "0221"   "0231"   "0231"   "0221"   "0221"   "0141"   "0321"  
#> [2261] "02112"  "0221"   "0221"   "0221"   "0223"   "0321"   "0231"   "0221"   "0321"   "0223"  
#> [2271] "0223"   "0223"   "0142"   "0223"   "0142"   "02221"  "0223"   "0321"   "0221"   "0231"  
#> [2281] "02221"  "0221"   "0141"   "02221"  "0221"   "0221"   "0142"   "0321"   "0321"   "0221"  
#> [2291] "0221"   "0321"   "0221"   "0221"   "0142"   "0221"   "0221"   "0221"   "0141"   "0321"  
#> [2301] "0142"   "0142"   "0141"   "0223"   "0142"   "02221"  "0142"   "0142"   "0142"   "0223"  
#> [2311] "0142"   "0321"   "0221"   "0142"   "0141"   "0141"   "01231"  "02122"  "0231"   "0221"  
#> [2321] "0142"   "0221"   "0223"   "0321"   "0221"   "0221"   "0221"   "0221"   "0221"   "0221"  
#> [2331] "0223"   "0221"   "0221"   "0223"   "0321"   "0142"   "0141"   "0321"   "0221"   "0141"  
#> [2341] "0321"   "0321"   "0221"   "02122"  "0232"   "0223"   "0223"   "0223"   "0221"   "0221"  
#> [2351] "0321"   "02221"  "0223"   "0223"   "0221"   "0221"   "0321"   "02121"  "02112"  "0221"  
#> [2361] "02121"  "0221"   "02121"  "0234"   "02121"  "02122"  "0221"   "02112"  "02112"  "0221"  
#> [2371] "0223"   "0223"   "02121"  "0223"   "02121"  "0223"   "0221"   "0221"   "02123"  "02121" 
#> [2381] "0232"   "0223"   "02112"  "02122"  "0232"   "0221"   "0223"   "0223"   "0223"   "0231"  
#> [2391] "02113"  "0223"   "0221"   "0221"   "021112" "02121"  "02122"  "0223"   "0321"   "0221"  
#> [2401] "0141"   "0141"   "0141"   "02122"  "0221"   "0231"   "021112" "0223"   "02122"  "02221" 
#> [2411] "02122"  "0221"   "02122"  "0142"   "0221"   "0223"   "0221"   "0223"   "0231"   "01231" 
#> [2421] "0223"   "0221"   "0321"   "02121"  "02121"  "0231"   "0223"   "0221"   "0223"   "0223"  
#> [2431] "0221"   "0221"   "0141"   "0321"   "0141"   "0221"   "0321"   "0321"   "0321"   "0141"  
#> [2441] "0141"   "01234"  "0321"   "0321"   "0321"   "0223"   "0223"   "0221"   "02122"  "0223"  
#> [2451] "02122"  "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "02122"  "0231"  
#> [2461] "02122"  "02122"  "02122"  "02123"  "02122"  "02123"  "02122"  "02122"  "02221"  "0221"  
#> [2471] "0321"   "0221"   "0221"   "0221"   "02122"  "02122"  "0223"   "02122"  "0223"   "0221"  
#> [2481] "0223"   "02122"  "0223"   "0223"   "02112"  "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2491] "02123"  "02122"  "02122"  "02112"  "0223"   "02122"  "0223"   "02122"  "02122"  "0221"  
#> [2501] "02122"  "0223"   "02121"  "0223"   "0223"   "0221"   "0223"   "0321"   "0321"   "0221"  
#> [2511] "0324"   "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "0221"   "02122" 
#> [2521] "02121"  "02112"  "0221"   "02221"  "0221"   "02122"  "02112"  "0221"   "02122"  "02113" 
#> [2531] "0223"   "02122"  "02112"  "0141"   "02121"  "0321"   "0221"   "0221"   "0221"   "0231"  
#> [2541] "0221"   "0221"   "0221"   "0221"   "0232"   "0221"   "0221"   "0223"   "0142"   "0221"  
#> [2551] "0321"   "0321"   "0142"   "0141"   "02121"  "0321"   "0221"   "0141"   "02112"  "02121" 
#> [2561] "0321"   "02122"  "0321"   "0223"   "0221"   "0321"   "0221"   "0221"   "0221"   "0221"  
#> [2571] "0223"   "0142"   "0141"   "0141"   "0321"   "0321"   "0221"   "0221"   "02112"  "02122" 
#> [2581] "02122"  "0223"   "0223"   "0221"   "0221"   "02221"  "0221"   "0142"   "021112" "0232"  
#> [2591] "0234"   "0232"   "02113"  "02113"  "021111" "02113"  "02113"  "021111" "0231"   "02113" 
#> [2601] "021111" "021111" "0232"   "02113"  "0232"   "0231"   "0234"   "0232"   "0323"   "0142"  
#> [2611] "0232"   "02112"  "0231"   "0221"   "0223"   "0321"   "0221"   "0231"   "0231"   "0234"  
#> [2621] "0233"   "0232"   "0142"   "02112"  "02222"  "0231"   "0142"   "0142"   "0141"   "0231"  
#> [2631] "02112"  "02112"  "02121"  "02112"  "02112"  "0223"   "02122"  "0223"   "0223"   "0221"  
#> [2641] "0221"   "0321"   "0221"   "0221"   "02121"  "0221"   "0221"   "0223"   "0321"   "0221"  
#> [2651] "01221"  "0221"   "0221"   "0221"   "0221"   "0221"   "0231"   "0221"   "02221"  "0221"  
#> [2661] "0221"   "0221"   "0221"   "0321"   "0321"   "0221"   "0321"   "0221"   "0221"   "0321"  
#> [2671] "0221"   "0141"   "0321"   "0221"   "0321"   "0221"   "0221"   "0324"   "01231"  "0141"  
#> [2681] "01231"  "0221"   "0141"   "01231"  "01212"  "0232"   "0232"   "02112"  "02112"  "0321"  
#> [2691] "02121"  "02121"  "0234"   "0231"   "0143"   "0221"   "0324"   "02121"  "0221"   "0321"  
#> [2701] "0221"   "02121"  "0141"   "02221"  "02221"  "0321"   "0142"   "02221"  "0141"   "0142"  
#> [2711] "02221"  "0141"   "0141"   "0231"   "02221"  "0231"   "0141"   "0142"   "0231"   "0141"  
#> [2721] "0223"   "02221"  "0141"   "02112"  "0321"   "0141"   "0321"   "0141"   "01231"  "0321"  
#> [2731] "02121"  "0221"   "0321"   "0221"   "0321"   "0141"   "0141"   "0321"   "0141"   "0321"  
#> [2741] "0141"   "0141"   "02121"  "0221"   "0221"   "0141"   "0141"   "0141"   "0142"   "0321"  
#> [2751] "0141"   "0141"   "0221"   "0221"   "0321"   "0323"   "0142"   "021111" "021111" "021111"
#> [2761] "021111" "021111" "021111" "021111" "0232"   "0142"   "0142"   "0221"   "021111" "02113" 
#> [2771] "021112" "021112" "021111" "021111" "021111" "021112" "021111" "021111" "021112" "021112"
#> [2781] "021112" "0231"   "021111" "021111" "021111" "0232"   "021111" "0232"   "021111" "0142"  
#> [2791] "0142"   "0223"   "0231"   "0231"   "021112" "021112" "021112" "021112" "021111" "021111"
#> [2801] "021111" "02113"  "0233"   "021112" "02113"  "021111" "021112" "0232"   "021111" "021111"
#> [2811] "021111" "021111" "021112" "021112" "021111" "021112" "0221"   "0142"   "0142"   "0142"  
#> [2821] "0221"   "02121"  "0231"   "021112" "021112" "02121"  "021112" "02121"  "021112" "0223"  
#> [2831] "02121"  "02121"  "021112" "02121"  "0231"   "0223"   "02121"  "02121"  "0232"   "0231"  
#> [2841] "021112" "021112" "02112"  "02112"  "02121"  "021111" "02112"  "021112" "021112" "02112" 
#> [2851] "021112" "021111" "0321"   "0231"   "0142"   "0221"   "02123"  "0141"   "0221"   "02112" 
#> [2861] "0231"   "0232"   "0223"   "0223"   "02121"  "02121"  "0231"   "0221"   "02121"  "0221"  
#> [2871] "021112" "02121"  "02123"  "021111" "021112" "02121"  "0223"   "02121"  "0142"   "02121" 
#> [2881] "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 577))
#>    [1] "01232"  "01232"  "0231"   "0322"   "01232"  "01232"  "0322"   "01131"  "01232"  "01232" 
#>   [11] "01232"  "01131"  "0322"   "01232"  "01232"  "01232"  "01232"  "01232"  "0313"   "01131" 
#>   [21] "0322"   "01232"  "01131"  "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "03121" 
#>   [31] "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "01232"  "01232"  "03121"  "0311"  
#>   [41] "01131"  "02222"  "01131"  "0311"   "01232"  "01232"  "0311"   "03121"  "0322"   "01131" 
#>   [51] "03121"  "01131"  "01131"  "01232"  "01232"  "02123"  "02123"  "0143"   "01133"  "0313"  
#>   [61] "0322"   "01131"  "01131"  "02221"  "0311"   "01132"  "01232"  "01232"  "0322"   "01232" 
#>   [71] "0322"   "0311"   "0322"   "01131"  "01131"  "0143"   "0111"   "0112"   "02221"  "01131" 
#>   [81] "0143"   "0322"   "01131"  "0143"   "01133"  "02221"  "01131"  "01131"  "01131"  "01231" 
#>   [91] "0322"   "0111"   "02113"  "01131"  "01131"  "01131"  "01131"  "01132"  "0143"   "0313"  
#>  [101] "01131"  "01131"  "0111"   "01133"  "0111"   "0322"   "02221"  "0141"   "0142"   "0111"  
#>  [111] "01131"  "01131"  "01133"  "0143"   "01132"  "02221"  "02221"  "0322"   "01132"  "0321"  
#>  [121] "0313"   "0322"   "02222"  "02221"  "02222"  "0234"   "01231"  "0111"   "01133"  "01133" 
#>  [131] "01231"  "01131"  "01133"  "0324"   "0111"   "02222"  "01131"  "01131"  "0322"   "0111"  
#>  [141] "01131"  "0111"   "01232"  "01231"  "01231"  "02222"  "01131"  "02123"  "01131"  "0324"  
#>  [151] "0313"   "0313"   "01131"  "0313"   "0322"   "01131"  "0313"   "0234"   "0322"   "0322"  
#>  [161] "0322"   "01131"  "0313"   "0313"   "02222"  "01131"  "0322"   "0313"   "01131"  "01131" 
#>  [171] "0322"   "0313"   "0313"   "02222"  "02222"  "0313"   "0313"   "01131"  "0313"   "0313"  
#>  [181] "03121"  "0313"   "0322"   "0313"   "0322"   "0313"   "0313"   "0313"   "03121"  "02222" 
#>  [191] "0322"   "01131"  "0313"   "03121"  "0313"   "0322"   "03121"  "03121"  "03121"  "03122" 
#>  [201] "03121"  "0313"   "03121"  "0313"   "03121"  "03121"  "0322"   "0313"   "0322"   "02222" 
#>  [211] "0313"   "0234"   "0313"   "03121"  "0313"   "0313"   "0322"   "02222"  "03121"  "01133" 
#>  [221] "03121"  "0313"   "03122"  "0313"   "03121"  "0313"   "03121"  "03121"  "01131"  "02113" 
#>  [231] "0313"   "0313"   "03121"  "0313"   "02113"  "03121"  "03121"  "0313"   "03121"  "0313"  
#>  [241] "0313"   "0313"   "03121"  "01133"  "03121"  "03121"  "03121"  "02222"  "03121"  "0313"  
#>  [251] "01133"  "0313"   "03121"  "03121"  "0313"   "0313"   "01133"  "03121"  "0313"   "0313"  
#>  [261] "01133"  "0313"   "01133"  "01133"  "01133"  "0313"   "01133"  "01133"  "01133"  "0313"  
#>  [271] "01133"  "01133"  "0313"   "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "0322"  
#>  [281] "02123"  "01133"  "0313"   "0313"   "0313"   "02222"  "0313"   "0313"   "03121"  "03121" 
#>  [291] "03121"  "03122"  "03121"  "03121"  "03121"  "03121"  "03121"  "03122"  "02113"  "03121" 
#>  [301] "02113"  "0313"   "0313"   "0234"   "0313"   "02113"  "02222"  "03122"  "02222"  "03121" 
#>  [311] "03121"  "0313"   "02222"  "0313"   "0313"   "03121"  "01133"  "0313"   "0313"   "01133" 
#>  [321] "0313"   "01133"  "03121"  "0313"   "0311"   "01133"  "0313"   "0313"   "0313"   "0313"  
#>  [331] "0313"   "01133"  "01133"  "01133"  "01132"  "02222"  "02222"  "01132"  "0313"   "0112"  
#>  [341] "0313"   "0313"   "02222"  "0313"   "0313"   "0313"   "02222"  "0311"   "0311"   "02222" 
#>  [351] "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "03122"  "03121"  "03122"  "03122" 
#>  [361] "03121"  "0313"   "0313"   "0313"   "0313"   "0313"   "0313"   "03121"  "03121"  "03121" 
#>  [371] "0313"   "03122"  "03122"  "03121"  "03121"  "03121"  "03121"  "03122"  "03122"  "0313"  
#>  [381] "0111"   "0112"   "02222"  "0311"   "0112"   "0111"   "0112"   "0311"   "0324"   "0311"  
#>  [391] "0112"   "0311"   "0112"   "0311"   "02222"  "0311"   "0313"   "0311"   "0112"   "0111"  
#>  [401] "0311"   "0112"   "0143"   "0311"   "0112"   "02222"  "0111"   "0311"   "0112"   "0112"  
#>  [411] "0311"   "0311"   "02123"  "0112"   "0112"   "0112"   "0111"   "01133"  "0311"   "0111"  
#>  [421] "0111"   "0111"   "0112"   "0313"   "0234"   "0112"   "0111"   "0112"   "0112"   "0112"  
#>  [431] "0112"   "0234"   "0112"   "0234"   "0111"   "02221"  "0112"   "02123"  "0112"   "0234"  
#>  [441] "0234"   "0311"   "0311"   "0311"   "0311"   "0112"   "0112"   "03122"  "03122"  "03121" 
#>  [451] "0311"   "0112"   "0311"   "0112"   "0112"   "03121"  "0112"   "0112"   "03122"  "03122" 
#>  [461] "0311"   "03122"  "0311"   "0311"   "03122"  "03122"  "03122"  "0311"   "03122"  "03122" 
#>  [471] "03122"  "0311"   "03122"  "03122"  "03122"  "0311"   "0311"   "03121"  "0311"   "0311"  
#>  [481] "0311"   "0311"   "0311"   "0112"   "02123"  "03122"  "0311"   "0311"   "02222"  "02222" 
#>  [491] "02123"  "03121"  "03122"  "02222"  "03122"  "0112"   "02123"  "02113"  "0112"   "03122" 
#>  [501] "02113"  "0112"   "0311"   "03122"  "0311"   "02113"  "0112"   "0311"   "0311"   "0311"  
#>  [511] "0311"   "02222"  "0311"   "0311"   "0112"   "0112"   "02222"  "0311"   "03121"  "0311"  
#>  [521] "0112"   "0112"   "0112"   "03122"  "03121"  "0313"   "03121"  "0112"   "0112"   "02221" 
#>  [531] "02123"  "02123"  "0112"   "02222"  "0111"   "0111"   "0111"   "02123"  "0111"   "0311"  
#>  [541] "0112"   "02222"  "0111"   "0112"   "02222"  "0111"   "0111"   "0112"   "0311"   "0111"  
#>  [551] "0111"   "0112"   "0112"   "0112"   "0111"   "0143"   "0112"   "0311"   "0311"   "0143"  
#>  [561] "0311"   "01132"  "0324"   "0324"   "01132"  "0112"   "0111"   "02221"  "0311"   "0112"  
#>  [571] "0112"   "02221"  "0324"   "0311"   "0112"   "03121"  "0111"   "0112"   "0112"   "02221" 
#>  [581] "0112"   "0112"   "0111"   "0112"   "0311"   "0112"   "0311"   "0112"   "0111"   "01132" 
#>  [591] "0111"   "0313"   "0112"   "03122"  "0313"   "0324"   "0112"   "0313"   "0313"   "0111"  
#>  [601] "0111"   "01132"  "0111"   "0313"   "0111"   "0112"   "02222"  "0111"   "0111"   "0111"  
#>  [611] "0111"   "0111"   "0112"   "0111"   "0111"   "0234"   "0311"   "0311"   "0112"   "0311"  
#>  [621] "0311"   "0313"   "0112"   "0311"   "0112"   "0311"   "0311"   "0311"   "0311"   "0311"  
#>  [631] "0112"   "0112"   "0313"   "0112"   "0311"   "02113"  "0311"   "0112"   "0112"   "0112"  
#>  [641] "0112"   "0311"   "0311"   "0112"   "0311"   "03121"  "0112"   "0112"   "02222"  "0112"  
#>  [651] "0112"   "0112"   "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0311"  
#>  [661] "0311"   "0112"   "0234"   "0112"   "0112"   "03122"  "0311"   "0311"   "0311"   "0311"  
#>  [671] "02222"  "0112"   "02222"  "0311"   "0313"   "0234"   "0311"   "0311"   "02222"  "0112"  
#>  [681] "0311"   "0311"   "03122"  "03122"  "0311"   "03122"  "03122"  "03122"  "0311"   "0311"  
#>  [691] "0311"   "0112"   "03122"  "0311"   "02222"  "0311"   "03122"  "0112"   "03122"  "0143"  
#>  [701] "03122"  "0112"   "0111"   "0311"   "0311"   "02222"  "02222"  "0112"   "0324"   "0112"  
#>  [711] "0324"   "02123"  "0111"   "0112"   "0111"   "0112"   "0111"   "0111"   "02221"  "0311"  
#>  [721] "0311"   "02221"  "0234"   "0112"   "02221"  "0311"   "0311"   "0311"   "0112"   "0112"  
#>  [731] "0311"   "0112"   "0111"   "0311"   "0112"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [741] "0112"   "0112"   "0112"   "0311"   "0311"   "0112"   "0311"   "03122"  "03122"  "03122" 
#>  [751] "0311"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0112"   "0324"   "0311"  
#>  [761] "02123"  "02222"  "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0111"   "0111"  
#>  [771] "03122"  "0112"   "0112"   "0311"   "0112"   "02222"  "0111"   "0112"   "02113"  "0112"  
#>  [781] "0311"   "0112"   "0112"   "0111"   "0112"   "0112"   "03122"  "0111"   "0311"   "0311"  
#>  [791] "0112"   "0112"   "03122"  "02222"  "0112"   "03122"  "0111"   "0111"   "0234"   "0311"  
#>  [801] "03122"  "02222"  "0311"   "0311"   "0311"   "0234"   "0311"   "0112"   "0311"   "0112"  
#>  [811] "0112"   "0112"   "0324"   "0324"   "01231"  "0143"   "0111"   "0112"   "0111"   "02123" 
#>  [821] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"  
#>  [831] "0111"   "0111"   "0111"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [841] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0324"   "01231" 
#>  [851] "01132"  "0234"   "0324"   "02222"  "0111"   "0143"   "0143"   "0143"   "0324"   "0111"  
#>  [861] "0111"   "0324"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0311"  
#>  [871] "0112"   "0111"   "0112"   "0111"   "0111"   "0111"   "0143"   "0111"   "0111"   "0111"  
#>  [881] "0111"   "0111"   "0111"   "0111"   "01231"  "02123"  "0111"   "0324"   "0111"   "0324"  
#>  [891] "0111"   "0311"   "0111"   "0111"   "0111"   "02221"  "02221"  "0111"   "0111"   "0111"  
#>  [901] "0111"   "0111"   "0311"   "0111"   "0111"   "0112"   "0112"   "0112"   "0112"   "0111"  
#>  [911] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [921] "0111"   "0111"   "0111"   "0112"   "0111"   "0111"   "0111"   "0111"   "02221"  "0111"  
#>  [931] "0143"   "0111"   "0111"   "0111"   "02221"  "0324"   "0111"   "02221"  "0111"   "0111"  
#>  [941] "0111"   "0143"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [951] "0111"   "0111"   "0111"   "0311"   "01132"  "02123"  "0143"   "0143"   "0111"   "02123" 
#>  [961] "02221"  "0112"   "0111"   "02123"  "0311"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [971] "0111"   "0111"   "02221"  "0112"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [981] "0324"   "0324"   "02222"  "02221"  "0311"   "0112"   "0111"   "0112"   "0112"   "0311"  
#>  [991] "0311"   "0112"   "0112"   "0111"   "0311"   "0111"   "0111"   "0324"   "0324"   "0111"  
#> [1001] "02221"  "0132"   "01211"  "01212"  "01212"  "01212"  "01212"  "01212"  "01212"  "01212" 
#> [1011] "01212"  "01212"  "01212"  "02221"  "01212"  "02221"  "01212"  "01212"  "01212"  "01212" 
#> [1021] "01212"  "01212"  "01212"  "01212"  "01212"  "0323"   "0142"   "01212"  "01212"  "01212" 
#> [1031] "01212"  "01212"  "01212"  "01212"  "01212"  "0311"   "01212"  "03121"  "01212"  "02113" 
#> [1041] "01212"  "01132"  "0322"   "01212"  "01212"  "01212"  "03121"  "01211"  "01211"  "01212" 
#> [1051] "01132"  "01212"  "01212"  "01211"  "01211"  "01211"  "01212"  "01212"  "01132"  "01211" 
#> [1061] "01211"  "01212"  "01212"  "01211"  "01211"  "01212"  "01212"  "01212"  "01212"  "01211" 
#> [1071] "01211"  "01212"  "0132"   "01212"  "0322"   "01211"  "01211"  "01211"  "0132"   "01211" 
#> [1081] "01212"  "01211"  "03121"  "01211"  "01211"  "01211"  "01211"  "0311"   "01211"  "01212" 
#> [1091] "01211"  "01212"  "01132"  "0132"   "01211"  "01211"  "01211"  "01212"  "01211"  "01212" 
#> [1101] "0142"   "01212"  "01212"  "01212"  "01212"  "01212"  "01211"  "01211"  "01212"  "0311"  
#> [1111] "01212"  "01212"  "01212"  "01212"  "01212"  "0132"   "01212"  "0313"   "01212"  "0141"  
#> [1121] "01212"  "0313"   "01212"  "01212"  "01211"  "01212"  "01211"  "03122"  "01212"  "01211" 
#> [1131] "01211"  "01132"  "01132"  "01211"  "0322"   "01211"  "01212"  "01211"  "01211"  "01211" 
#> [1141] "0221"   "01211"  "01211"  "01132"  "0322"   "01232"  "01211"  "0111"   "01211"  "0142"  
#> [1151] "01211"  "01211"  "01231"  "01232"  "01211"  "01211"  "01211"  "01211"  "01211"  "01211" 
#> [1161] "01132"  "01232"  "01132"  "01211"  "01211"  "01211"  "01211"  "0111"   "01132"  "0111"  
#> [1171] "01231"  "0311"   "01132"  "01211"  "01132"  "01132"  "01211"  "01211"  "01211"  "01211" 
#> [1181] "0223"   "01211"  "0141"   "01211"  "0221"   "0111"   "01211"  "01211"  "01132"  "01211" 
#> [1191] "01211"  "01211"  "01211"  "01211"  "01211"  "0141"   "01211"  "01231"  "0131"   "01211" 
#> [1201] "01211"  "0141"   "01211"  "01211"  "01211"  "01211"  "01211"  "0112"   "01211"  "01211" 
#> [1211] "0131"   "01211"  "01232"  "0141"   "02221"  "01211"  "0321"   "0313"   "01211"  "01211" 
#> [1221] "01131"  "01211"  "01211"  "0221"   "01211"  "0223"   "01232"  "01211"  "01211"  "0141"  
#> [1231] "01211"  "01211"  "01211"  "01132"  "01211"  "01131"  "0112"   "0313"   "0141"   "01211" 
#> [1241] "0333"   "0321"   "0311"   "01211"  "01211"  "01211"  "01132"  "01132"  "01211"  "01211" 
#> [1251] "01132"  "01234"  "0112"   "0111"   "0112"   "0221"   "0221"   "0221"   "0223"   "01223" 
#> [1261] "01212"  "01223"  "01211"  "01234"  "0311"   "0141"   "0111"   "01132"  "0132"   "0132"  
#> [1271] "0132"   "0131"   "0331"   "0131"   "0131"   "0132"   "0333"   "02122"  "0332"   "0332"  
#> [1281] "0331"   "0132"   "0332"   "0132"   "0132"   "0132"   "0132"   "0132"   "0332"   "0332"  
#> [1291] "0132"   "0331"   "0132"   "0132"   "0233"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1301] "0132"   "0131"   "0131"   "0132"   "0131"   "0131"   "0131"   "0132"   "0132"   "0132"  
#> [1311] "0132"   "0132"   "0223"   "0331"   "0221"   "0131"   "0333"   "02122"  "0132"   "0131"  
#> [1321] "0131"   "0132"   "0132"   "0132"   "0131"   "0132"   "0333"   "01223"  "0131"   "0131"  
#> [1331] "0132"   "02113"  "0132"   "0331"   "0132"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1341] "0132"   "0132"   "02221"  "0132"   "0131"   "0223"   "0233"   "02113"  "0131"   "0132"  
#> [1351] "0131"   "0131"   "02113"  "0223"   "0132"   "0131"   "0131"   "0132"   "0131"   "0131"  
#> [1361] "02122"  "02122"  "0131"   "0132"   "0331"   "0331"   "0131"   "0331"   "0132"   "0331"  
#> [1371] "0331"   "0331"   "0332"   "0132"   "0331"   "0132"   "0132"   "0131"   "0131"   "0132"  
#> [1381] "0131"   "0132"   "0132"   "0132"   "0132"   "0132"   "0132"   "01234"  "01223"  "01231" 
#> [1391] "01234"  "0321"   "0131"   "0131"   "0231"   "0141"   "02113"  "0233"   "0233"   "01231" 
#> [1401] "0233"   "0132"   "0132"   "0131"   "0131"   "0333"   "0233"   "0131"   "0131"   "0311"  
#> [1411] "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0333"   "0131"  
#> [1421] "0131"   "0311"   "0131"   "0131"   "0131"   "0132"   "0131"   "0131"   "0333"   "0311"  
#> [1431] "0131"   "0112"   "0131"   "0311"   "01231"  "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1441] "0131"   "0131"   "0131"   "0131"   "0131"   "01231"  "0131"   "0131"   "0233"   "0131"  
#> [1451] "0333"   "0221"   "0132"   "0131"   "0221"   "0131"   "0131"   "0131"   "0223"   "0131"  
#> [1461] "0131"   "0131"   "0132"   "0132"   "01231"  "0131"   "0111"   "0111"   "01131"  "0132"  
#> [1471] "0131"   "0333"   "01231"  "0313"   "0333"   "0313"   "0112"   "02121"  "0131"   "0221"  
#> [1481] "01232"  "0131"   "0132"   "0111"   "0131"   "0131"   "0131"   "0321"   "0141"   "0131"  
#> [1491] "0141"   "0131"   "0131"   "0111"   "0231"   "0141"   "0131"   "0111"   "0131"   "0233"  
#> [1501] "01231"  "0141"   "0131"   "0111"   "01231"  "0321"   "0132"   "02222"  "0131"   "0223"  
#> [1511] "01231"  "0131"   "01231"  "0132"   "0131"   "01231"  "0131"   "0221"   "0331"   "0221"  
#> [1521] "0233"   "0233"   "0142"   "0221"   "0142"   "0132"   "0333"   "0132"   "0132"   "0131"  
#> [1531] "0142"   "0131"   "0132"   "02113"  "01223"  "0223"   "0112"   "0111"   "0132"   "0131"  
#> [1541] "01232"  "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1551] "0311"   "0131"   "0111"   "0131"   "0131"   "0131"   "0142"   "02121"  "0233"   "0131"  
#> [1561] "01231"  "01231"  "0143"   "03121"  "0223"   "01133"  "0132"   "0333"   "0131"   "01231" 
#> [1571] "0131"   "0223"   "02121"  "0142"   "02121"  "0332"   "0332"   "02113"  "0233"   "0233"  
#> [1581] "0332"   "02113"  "0332"   "0233"   "0332"   "0332"   "0331"   "0332"   "0331"   "0332"  
#> [1591] "0132"   "0331"   "0332"   "02221"  "0331"   "02113"  "02121"  "0233"   "0132"   "02113" 
#> [1601] "0132"   "0332"   "0132"   "02123"  "02113"  "0132"   "0132"   "0233"   "02113"  "02113" 
#> [1611] "0331"   "0331"   "0332"   "0331"   "0331"   "0331"   "0331"   "02113"  "0132"   "02221" 
#> [1621] "02113"  "0233"   "0132"   "0331"   "01132"  "02122"  "01234"  "0132"   "01234"  "0132"  
#> [1631] "0141"   "01234"  "0323"   "01234"  "02122"  "01234"  "01234"  "01234"  "0221"   "01234" 
#> [1641] "01234"  "0132"   "01234"  "0233"   "0141"   "01234"  "0141"   "01234"  "01234"  "01234" 
#> [1651] "0142"   "01234"  "01234"  "0321"   "01234"  "0111"   "01231"  "0111"   "01133"  "01234" 
#> [1661] "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234" 
#> [1671] "01234"  "01231"  "01233"  "01233"  "01233"  "0231"   "01233"  "0112"   "0112"   "0233"  
#> [1681] "01233"  "01233"  "01221"  "0141"   "01233"  "01212"  "01132"  "01211"  "01232"  "01223" 
#> [1691] "01233"  "01233"  "0322"   "01212"  "01233"  "01233"  "01233"  "0112"   "01233"  "01233" 
#> [1701] "0112"   "01233"  "0311"   "01233"  "01233"  "01221"  "0323"   "01223"  "01233"  "01233" 
#> [1711] "0131"   "0311"   "01233"  "01233"  "01223"  "0132"   "01233"  "01233"  "0323"   "0323"  
#> [1721] "0131"   "01233"  "0141"   "01233"  "01233"  "01233"  "01233"  "0313"   "01233"  "0311"  
#> [1731] "0311"   "01233"  "01211"  "02121"  "01231"  "01133"  "01223"  "01133"  "0112"   "0111"  
#> [1741] "01221"  "01223"  "0132"   "01221"  "0131"   "01221"  "01222"  "01223"  "0323"   "01222" 
#> [1751] "03121"  "01223"  "0221"   "01221"  "0221"   "01221"  "0111"   "01221"  "0142"   "03122" 
#> [1761] "0223"   "01221"  "0112"   "01223"  "0111"   "0221"   "0311"   "0111"   "0131"   "0221"  
#> [1771] "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01132"  "01221"  "01221"  "01221" 
#> [1781] "0322"   "01132"  "01221"  "01221"  "0112"   "01221"  "0313"   "0111"   "01221"  "0323"  
#> [1791] "01222"  "0313"   "0313"   "0323"   "0223"   "01132"  "01221"  "0313"   "0223"   "01221" 
#> [1801] "01221"  "01221"  "01222"  "0323"   "01221"  "01221"  "0233"   "02121"  "0223"   "0311"  
#> [1811] "0221"   "01221"  "01221"  "01131"  "01223"  "01221"  "01221"  "01221"  "01221"  "01221" 
#> [1821] "0313"   "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01222"  "0223"  
#> [1831] "01221"  "01221"  "0323"   "01221"  "01222"  "02122"  "0223"   "01221"  "0111"   "01221" 
#> [1841] "01222"  "01222"  "02121"  "01221"  "01221"  "0143"   "01221"  "01221"  "01222"  "01221" 
#> [1851] "01222"  "0323"   "01223"  "01234"  "0111"   "01234"  "01223"  "01132"  "0322"   "01233" 
#> [1861] "03122"  "01233"  "01233"  "0332"   "0223"   "03122"  "0321"   "0323"   "02122"  "01221" 
#> [1871] "01221"  "0323"   "0323"   "01221"  "01222"  "01223"  "0231"   "01221"  "01223"  "01211" 
#> [1881] "02112"  "01223"  "01223"  "01223"  "01223"  "0323"   "01222"  "03122"  "01222"  "01222" 
#> [1891] "01132"  "0221"   "01221"  "01221"  "01222"  "0311"   "01221"  "01222"  "01221"  "03121" 
#> [1901] "0132"   "0323"   "01223"  "0311"   "01223"  "01223"  "0332"   "01223"  "01222"  "01222" 
#> [1911] "01222"  "01222"  "01222"  "01221"  "0323"   "01222"  "01221"  "01132"  "01221"  "03122" 
#> [1921] "0223"   "01222"  "0323"   "0323"   "01222"  "0311"   "01222"  "01222"  "01222"  "0233"  
#> [1931] "0323"   "01222"  "02112"  "01222"  "0323"   "0233"   "0333"   "01222"  "01222"  "0323"  
#> [1941] "0323"   "01222"  "0323"   "01222"  "0332"   "02221"  "03122"  "0323"   "01222"  "03121" 
#> [1951] "0323"   "01222"  "01222"  "02123"  "01222"  "01222"  "0233"   "0323"   "02113"  "0323"  
#> [1961] "0221"   "0323"   "0323"   "02221"  "01222"  "0323"   "02112"  "0331"   "0323"   "03122" 
#> [1971] "01222"  "0233"   "03122"  "0323"   "02122"  "0311"   "01222"  "02122"  "0323"   "02121" 
#> [1981] "0323"   "0323"   "0332"   "0232"   "02112"  "0232"   "02121"  "02122"  "02122"  "02112" 
#> [1991] "0221"   "02122"  "0231"   "0232"   "0223"   "02123"  "0231"   "0231"   "02112"  "0231"  
#> [2001] "0223"   "02113"  "02112"  "0232"   "02112"  "02221"  "0221"   "02121"  "0232"   "0232"  
#> [2011] "02123"  "0231"   "02121"  "0231"   "0142"   "0221"   "0231"   "0321"   "0223"   "02112" 
#> [2021] "02122"  "02221"  "0223"   "0221"   "02221"  "0321"   "0223"   "02122"  "02122"  "0223"  
#> [2031] "02221"  "02122"  "0223"   "0232"   "0221"   "02113"  "0221"   "02112"  "0223"   "0223"  
#> [2041] "0221"   "0321"   "02112"  "0233"   "0232"   "02113"  "02122"  "02121"  "02121"  "0142"  
#> [2051] "0221"   "02113"  "0231"   "02113"  "02112"  "02121"  "0223"   "02122"  "0321"   "0223"  
#> [2061] "02112"  "0223"   "0223"   "02122"  "0221"   "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2071] "02112"  "0223"   "0232"   "02221"  "02113"  "0233"   "02112"  "02221"  "02112"  "02112" 
#> [2081] "02112"  "02123"  "02122"  "0231"   "02121"  "02122"  "02121"  "0232"   "02121"  "0221"  
#> [2091] "02121"  "0223"   "0223"   "02122"  "0223"   "0223"   "0223"   "02121"  "0223"   "0231"  
#> [2101] "02121"  "02121"  "02121"  "02122"  "02112"  "02112"  "02121"  "02112"  "0231"   "02112" 
#> [2111] "0231"   "0223"   "02112"  "02112"  "02112"  "02112"  "0223"   "02123"  "0231"   "0232"  
#> [2121] "02121"  "02121"  "0233"   "0232"   "0142"   "0223"   "02121"  "0142"   "02112"  "02112" 
#> [2131] "02122"  "02121"  "02112"  "02112"  "02112"  "02121"  "02122"  "02121"  "0221"   "02121" 
#> [2141] "02221"  "0223"   "02122"  "0221"   "0221"   "02221"  "0223"   "02121"  "0223"   "02121" 
#> [2151] "02112"  "02122"  "0223"   "0223"   "02122"  "02112"  "02121"  "0223"   "0223"   "02112" 
#> [2161] "0221"   "0223"   "0221"   "02122"  "0223"   "0223"   "0221"   "02121"  "0223"   "0223"  
#> [2171] "0223"   "0221"   "02121"  "0321"   "0221"   "0221"   "0221"   "021112" "02122"  "02122" 
#> [2181] "02122"  "0223"   "0234"   "02222"  "0223"   "0221"   "0221"   "0221"   "0221"   "0143"  
#> [2191] "0221"   "0142"   "0221"   "03121"  "0221"   "0321"   "0221"   "02113"  "02112"  "0221"  
#> [2201] "0232"   "0231"   "0223"   "0232"   "0232"   "02221"  "02121"  "02121"  "02121"  "0231"  
#> [2211] "0232"   "0221"   "0232"   "0223"   "02121"  "02123"  "02112"  "02112"  "02121"  "02121" 
#> [2221] "0223"   "02123"  "02121"  "02121"  "0221"   "02112"  "02112"  "02121"  "0223"   "02121" 
#> [2231] "0223"   "0223"   "0223"   "0223"   "02121"  "0221"   "0321"   "02221"  "0221"   "0321"  
#> [2241] "0221"   "0321"   "0223"   "0221"   "0223"   "0223"   "0223"   "0231"   "0231"   "0221"  
#> [2251] "02221"  "0321"   "02221"  "0221"   "0231"   "0231"   "0221"   "0221"   "0141"   "0321"  
#> [2261] "02112"  "0221"   "0221"   "0221"   "0223"   "0321"   "0231"   "0221"   "0321"   "0223"  
#> [2271] "0223"   "0223"   "0142"   "0223"   "0142"   "02221"  "0223"   "0321"   "0221"   "0231"  
#> [2281] "02221"  "0221"   "0141"   "02221"  "0221"   "0221"   "0142"   "0321"   "0321"   "0221"  
#> [2291] "0221"   "0321"   "0221"   "0221"   "0142"   "0221"   "0221"   "0221"   "0141"   "0321"  
#> [2301] "0142"   "0142"   "0141"   "0223"   "0142"   "02221"  "0142"   "0142"   "0142"   "0223"  
#> [2311] "0142"   "0321"   "0221"   "0142"   "0141"   "0141"   "01231"  "02122"  "0231"   "0221"  
#> [2321] "0142"   "0221"   "0223"   "0321"   "0221"   "0221"   "0221"   "0221"   "0221"   "0221"  
#> [2331] "0223"   "0221"   "0221"   "0223"   "0321"   "0142"   "0141"   "0321"   "0221"   "0141"  
#> [2341] "0321"   "0321"   "0221"   "02122"  "0232"   "0223"   "0223"   "0223"   "0221"   "0221"  
#> [2351] "0321"   "02221"  "0223"   "0223"   "0221"   "0221"   "0321"   "02121"  "02112"  "0221"  
#> [2361] "02121"  "0221"   "02121"  "0234"   "02121"  "02122"  "0221"   "02112"  "02112"  "0221"  
#> [2371] "0223"   "0223"   "02121"  "0223"   "02121"  "0223"   "0221"   "0221"   "02123"  "02121" 
#> [2381] "0232"   "0223"   "02112"  "02122"  "0232"   "0221"   "0223"   "0223"   "0223"   "0231"  
#> [2391] "02113"  "0223"   "0221"   "0221"   "021112" "02121"  "02122"  "0223"   "0321"   "0221"  
#> [2401] "0141"   "0141"   "0141"   "02122"  "0221"   "0231"   "021112" "0223"   "02122"  "02221" 
#> [2411] "02122"  "0221"   "02122"  "0142"   "0221"   "0223"   "0221"   "0223"   "0231"   "01231" 
#> [2421] "0223"   "0221"   "0321"   "02121"  "02121"  "0231"   "0223"   "0221"   "0223"   "0223"  
#> [2431] "0221"   "0221"   "0141"   "0321"   "0141"   "0221"   "0321"   "0321"   "0321"   "0141"  
#> [2441] "0141"   "01234"  "0321"   "0321"   "0321"   "0223"   "0223"   "0221"   "02122"  "0223"  
#> [2451] "02122"  "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "02122"  "0231"  
#> [2461] "02122"  "02122"  "02122"  "02123"  "02122"  "02123"  "02122"  "02122"  "02221"  "0221"  
#> [2471] "0321"   "0221"   "0221"   "0221"   "02122"  "02122"  "0223"   "02122"  "0223"   "0221"  
#> [2481] "0223"   "02122"  "0223"   "0223"   "02112"  "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2491] "02123"  "02122"  "02122"  "02112"  "0223"   "02122"  "0223"   "02122"  "02122"  "0221"  
#> [2501] "02122"  "0223"   "02121"  "0223"   "0223"   "0221"   "0223"   "0321"   "0321"   "0221"  
#> [2511] "0324"   "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "0221"   "02122" 
#> [2521] "02121"  "02112"  "0221"   "02221"  "0221"   "02122"  "02112"  "0221"   "02122"  "02113" 
#> [2531] "0223"   "02122"  "02112"  "0141"   "02121"  "0321"   "0221"   "0221"   "0221"   "0231"  
#> [2541] "0221"   "0221"   "0221"   "0221"   "0232"   "0221"   "0221"   "0223"   "0142"   "0221"  
#> [2551] "0321"   "0321"   "0142"   "0141"   "02121"  "0321"   "0221"   "0141"   "02112"  "02121" 
#> [2561] "0321"   "02122"  "0321"   "0223"   "0221"   "0321"   "0221"   "0221"   "0221"   "0221"  
#> [2571] "0223"   "0142"   "0141"   "0141"   "0321"   "0321"   "0221"   "0221"   "02112"  "02122" 
#> [2581] "02122"  "0223"   "0223"   "0221"   "0221"   "02221"  "0221"   "0142"   "021112" "0232"  
#> [2591] "0234"   "0232"   "02113"  "02113"  "021111" "02113"  "02113"  "021111" "0231"   "02113" 
#> [2601] "021111" "021111" "0232"   "02113"  "0232"   "0231"   "0234"   "0232"   "0323"   "0142"  
#> [2611] "0232"   "02112"  "0231"   "0221"   "0223"   "0321"   "0221"   "0231"   "0231"   "0234"  
#> [2621] "0233"   "0232"   "0142"   "02112"  "02222"  "0231"   "0142"   "0142"   "0141"   "0231"  
#> [2631] "02112"  "02112"  "02121"  "02112"  "02112"  "0223"   "02122"  "0223"   "0223"   "0221"  
#> [2641] "0221"   "0321"   "0221"   "0221"   "02121"  "0221"   "0221"   "0223"   "0321"   "0221"  
#> [2651] "01221"  "0221"   "0221"   "0221"   "0221"   "0221"   "0231"   "0221"   "02221"  "0221"  
#> [2661] "0221"   "0221"   "0221"   "0321"   "0321"   "0221"   "0321"   "0221"   "0221"   "0321"  
#> [2671] "0221"   "0141"   "0321"   "0221"   "0321"   "0221"   "0221"   "0324"   "01231"  "0141"  
#> [2681] "01231"  "0221"   "0141"   "01231"  "01212"  "0232"   "0232"   "02112"  "02112"  "0321"  
#> [2691] "02121"  "02121"  "0234"   "0231"   "0143"   "0221"   "0324"   "02121"  "0221"   "0321"  
#> [2701] "0221"   "02121"  "0141"   "02221"  "02221"  "0321"   "0142"   "02221"  "0141"   "0142"  
#> [2711] "02221"  "0141"   "0141"   "0231"   "02221"  "0231"   "0141"   "0142"   "0231"   "0141"  
#> [2721] "0223"   "02221"  "0141"   "02112"  "0321"   "0141"   "0321"   "0141"   "01231"  "0321"  
#> [2731] "02121"  "0221"   "0321"   "0221"   "0321"   "0141"   "0141"   "0321"   "0141"   "0321"  
#> [2741] "0141"   "0141"   "02121"  "0221"   "0221"   "0141"   "0141"   "0141"   "0142"   "0321"  
#> [2751] "0141"   "0141"   "0221"   "0221"   "0321"   "0323"   "0142"   "021111" "021111" "021111"
#> [2761] "021111" "021111" "021111" "021111" "0232"   "0142"   "0142"   "0221"   "021111" "02113" 
#> [2771] "021112" "021112" "021111" "021111" "021111" "021112" "021111" "021111" "021112" "021112"
#> [2781] "021112" "0231"   "021111" "021111" "021111" "0232"   "021111" "0232"   "021111" "0142"  
#> [2791] "0142"   "0223"   "0231"   "0231"   "021112" "021112" "021112" "021112" "021111" "021111"
#> [2801] "021111" "02113"  "0233"   "021112" "02113"  "021111" "021112" "0232"   "021111" "021111"
#> [2811] "021111" "021111" "021112" "021112" "021111" "021112" "0221"   "0142"   "0142"   "0142"  
#> [2821] "0221"   "02121"  "0231"   "021112" "021112" "02121"  "021112" "02121"  "021112" "0223"  
#> [2831] "02121"  "02121"  "021112" "02121"  "0231"   "0223"   "02121"  "02121"  "0232"   "0231"  
#> [2841] "021112" "021112" "02112"  "02112"  "02121"  "021111" "02112"  "021112" "021112" "02112" 
#> [2851] "021112" "021111" "0321"   "0231"   "0142"   "0221"   "02123"  "0141"   "0221"   "02112" 
#> [2861] "0231"   "0232"   "0223"   "0223"   "02121"  "02121"  "0231"   "0221"   "02121"  "0221"  
#> [2871] "021112" "02121"  "02123"  "021111" "021112" "02121"  "0223"   "02121"  "0142"   "02121" 
#> [2881] "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 628))
#>    [1] "01232"  "01232"  "0231"   "0322"   "01232"  "01232"  "0322"   "01131"  "01232"  "01232" 
#>   [11] "01232"  "01131"  "0322"   "01232"  "01232"  "01232"  "01232"  "01232"  "0313"   "01131" 
#>   [21] "0322"   "01232"  "01131"  "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "03121" 
#>   [31] "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "01232"  "01232"  "03121"  "0311"  
#>   [41] "01131"  "02222"  "01131"  "0311"   "01232"  "01232"  "0311"   "03121"  "0322"   "01131" 
#>   [51] "03121"  "01131"  "01131"  "01232"  "01232"  "02123"  "02123"  "0143"   "01133"  "0313"  
#>   [61] "0322"   "01131"  "01131"  "02221"  "0311"   "01132"  "01232"  "01232"  "0322"   "01232" 
#>   [71] "0322"   "0311"   "0322"   "01131"  "01131"  "0143"   "0111"   "0112"   "02221"  "01131" 
#>   [81] "0143"   "0322"   "01131"  "0143"   "01133"  "02221"  "01131"  "01131"  "01131"  "01231" 
#>   [91] "0322"   "0111"   "02113"  "01131"  "01131"  "01131"  "01131"  "01132"  "0143"   "0313"  
#>  [101] "01131"  "01131"  "0111"   "01133"  "0111"   "0322"   "02221"  "0141"   "0142"   "0111"  
#>  [111] "01131"  "01131"  "01133"  "0143"   "01132"  "02221"  "02221"  "0322"   "01132"  "0321"  
#>  [121] "0313"   "0322"   "02222"  "02221"  "02222"  "0234"   "01231"  "0111"   "01133"  "01133" 
#>  [131] "01231"  "01131"  "01133"  "0324"   "0111"   "02222"  "01131"  "01131"  "0322"   "0111"  
#>  [141] "01131"  "0111"   "01232"  "01231"  "01231"  "02222"  "01131"  "02123"  "01131"  "0324"  
#>  [151] "0313"   "0313"   "01131"  "0313"   "0322"   "01131"  "0313"   "0234"   "0322"   "0322"  
#>  [161] "0322"   "01131"  "0313"   "0313"   "02222"  "01131"  "0322"   "0313"   "01131"  "01131" 
#>  [171] "0322"   "0313"   "0313"   "02222"  "02222"  "0313"   "0313"   "01131"  "0313"   "0313"  
#>  [181] "03121"  "0313"   "0322"   "0313"   "0322"   "0313"   "0313"   "0313"   "03121"  "02222" 
#>  [191] "0322"   "01131"  "0313"   "03121"  "0313"   "0322"   "03121"  "03121"  "03121"  "03122" 
#>  [201] "03121"  "0313"   "03121"  "0313"   "03121"  "03121"  "0322"   "0313"   "0322"   "02222" 
#>  [211] "0313"   "0234"   "0313"   "03121"  "0313"   "0313"   "0322"   "02222"  "03121"  "01133" 
#>  [221] "03121"  "0313"   "03122"  "0313"   "03121"  "0313"   "03121"  "03121"  "01131"  "02113" 
#>  [231] "0313"   "0313"   "03121"  "0313"   "02113"  "03121"  "03121"  "0313"   "03121"  "0313"  
#>  [241] "0313"   "0313"   "03121"  "01133"  "03121"  "03121"  "03121"  "02222"  "03121"  "0313"  
#>  [251] "01133"  "0313"   "03121"  "03121"  "0313"   "0313"   "01133"  "03121"  "0313"   "0313"  
#>  [261] "01133"  "0313"   "01133"  "01133"  "01133"  "0313"   "01133"  "01133"  "01133"  "0313"  
#>  [271] "01133"  "01133"  "0313"   "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "0322"  
#>  [281] "02123"  "01133"  "0313"   "0313"   "0313"   "02222"  "0313"   "0313"   "03121"  "03121" 
#>  [291] "03121"  "03122"  "03121"  "03121"  "03121"  "03121"  "03121"  "03122"  "02113"  "03121" 
#>  [301] "02113"  "0313"   "0313"   "0234"   "0313"   "02113"  "02222"  "03122"  "02222"  "03121" 
#>  [311] "03121"  "0313"   "02222"  "0313"   "0313"   "03121"  "01133"  "0313"   "0313"   "01133" 
#>  [321] "0313"   "01133"  "03121"  "0313"   "0311"   "01133"  "0313"   "0313"   "0313"   "0313"  
#>  [331] "0313"   "01133"  "01133"  "01133"  "01132"  "02222"  "02222"  "01132"  "0313"   "0112"  
#>  [341] "0313"   "0313"   "02222"  "0313"   "0313"   "0313"   "02222"  "0311"   "0311"   "02222" 
#>  [351] "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "03122"  "03121"  "03122"  "03122" 
#>  [361] "03121"  "0313"   "0313"   "0313"   "0313"   "0313"   "0313"   "03121"  "03121"  "03121" 
#>  [371] "0313"   "03122"  "03122"  "03121"  "03121"  "03121"  "03121"  "03122"  "03122"  "0313"  
#>  [381] "0111"   "0112"   "02222"  "0311"   "0112"   "0111"   "0112"   "0311"   "0324"   "0311"  
#>  [391] "0112"   "0311"   "0112"   "0311"   "02222"  "0311"   "0313"   "0311"   "0112"   "0111"  
#>  [401] "0311"   "0112"   "0143"   "0311"   "0112"   "02222"  "0111"   "0311"   "0112"   "0112"  
#>  [411] "0311"   "0311"   "02123"  "0112"   "0112"   "0112"   "0111"   "01133"  "0311"   "0111"  
#>  [421] "0111"   "0111"   "0112"   "0313"   "0234"   "0112"   "0111"   "0112"   "0112"   "0112"  
#>  [431] "0112"   "0234"   "0112"   "0234"   "0111"   "02221"  "0112"   "02123"  "0112"   "0234"  
#>  [441] "0234"   "0311"   "0311"   "0311"   "0311"   "0112"   "0112"   "03122"  "03122"  "03121" 
#>  [451] "0311"   "0112"   "0311"   "0112"   "0112"   "03121"  "0112"   "0112"   "03122"  "03122" 
#>  [461] "0311"   "03122"  "0311"   "0311"   "03122"  "03122"  "03122"  "0311"   "03122"  "03122" 
#>  [471] "03122"  "0311"   "03122"  "03122"  "03122"  "0311"   "0311"   "03121"  "0311"   "0311"  
#>  [481] "0311"   "0311"   "0311"   "0112"   "02123"  "03122"  "0311"   "0311"   "02222"  "02222" 
#>  [491] "02123"  "03121"  "03122"  "02222"  "03122"  "0112"   "02123"  "02113"  "0112"   "03122" 
#>  [501] "02113"  "0112"   "0311"   "03122"  "0311"   "02113"  "0112"   "0311"   "0311"   "0311"  
#>  [511] "0311"   "02222"  "0311"   "0311"   "0112"   "0112"   "02222"  "0311"   "03121"  "0311"  
#>  [521] "0112"   "0112"   "0112"   "03122"  "03121"  "0313"   "03121"  "0112"   "0112"   "02221" 
#>  [531] "02123"  "02123"  "0112"   "02222"  "0111"   "0111"   "0111"   "02123"  "0111"   "0311"  
#>  [541] "0112"   "02222"  "0111"   "0112"   "02222"  "0111"   "0111"   "0112"   "0311"   "0111"  
#>  [551] "0111"   "0112"   "0112"   "0112"   "0111"   "0143"   "0112"   "0311"   "0311"   "0143"  
#>  [561] "0311"   "01132"  "0324"   "0324"   "01132"  "0112"   "0111"   "02221"  "0311"   "0112"  
#>  [571] "0112"   "02221"  "0324"   "0311"   "0112"   "03121"  "0111"   "0112"   "0112"   "02221" 
#>  [581] "0112"   "0112"   "0111"   "0112"   "0311"   "0112"   "0311"   "0112"   "0111"   "01132" 
#>  [591] "0111"   "0313"   "0112"   "03122"  "0313"   "0324"   "0112"   "0313"   "0313"   "0111"  
#>  [601] "0111"   "01132"  "0111"   "0313"   "0111"   "0112"   "02222"  "0111"   "0111"   "0111"  
#>  [611] "0111"   "0111"   "0112"   "0111"   "0111"   "0234"   "0311"   "0311"   "0112"   "0311"  
#>  [621] "0311"   "0313"   "0112"   "0311"   "0112"   "0311"   "0311"   "0311"   "0311"   "0311"  
#>  [631] "0112"   "0112"   "0313"   "0112"   "0311"   "02113"  "0311"   "0112"   "0112"   "0112"  
#>  [641] "0112"   "0311"   "0311"   "0112"   "0311"   "03121"  "0112"   "0112"   "02222"  "0112"  
#>  [651] "0112"   "0112"   "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0311"  
#>  [661] "0311"   "0112"   "0234"   "0112"   "0112"   "03122"  "0311"   "0311"   "0311"   "0311"  
#>  [671] "02222"  "0112"   "02222"  "0311"   "0313"   "0234"   "0311"   "0311"   "02222"  "0112"  
#>  [681] "0311"   "0311"   "03122"  "03122"  "0311"   "03122"  "03122"  "03122"  "0311"   "0311"  
#>  [691] "0311"   "0112"   "03122"  "0311"   "02222"  "0311"   "03122"  "0112"   "03122"  "0143"  
#>  [701] "03122"  "0112"   "0111"   "0311"   "0311"   "02222"  "02222"  "0112"   "0324"   "0112"  
#>  [711] "0324"   "02123"  "0111"   "0112"   "0111"   "0112"   "0111"   "0111"   "02221"  "0311"  
#>  [721] "0311"   "02221"  "0234"   "0112"   "02221"  "0311"   "0311"   "0311"   "0112"   "0112"  
#>  [731] "0311"   "0112"   "0111"   "0311"   "0112"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [741] "0112"   "0112"   "0112"   "0311"   "0311"   "0112"   "0311"   "03122"  "03122"  "03122" 
#>  [751] "0311"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0112"   "0324"   "0311"  
#>  [761] "02123"  "02222"  "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0111"   "0111"  
#>  [771] "03122"  "0112"   "0112"   "0311"   "0112"   "02222"  "0111"   "0112"   "02113"  "0112"  
#>  [781] "0311"   "0112"   "0112"   "0111"   "0112"   "0112"   "03122"  "0111"   "0311"   "0311"  
#>  [791] "0112"   "0112"   "03122"  "02222"  "0112"   "03122"  "0111"   "0111"   "0234"   "0311"  
#>  [801] "03122"  "02222"  "0311"   "0311"   "0311"   "0234"   "0311"   "0112"   "0311"   "0112"  
#>  [811] "0112"   "0112"   "0324"   "0324"   "01231"  "0143"   "0111"   "0112"   "0111"   "02123" 
#>  [821] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"  
#>  [831] "0111"   "0111"   "0111"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [841] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0324"   "01231" 
#>  [851] "01132"  "0234"   "0324"   "02222"  "0111"   "0143"   "0143"   "0143"   "0324"   "0111"  
#>  [861] "0111"   "0324"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0311"  
#>  [871] "0112"   "0111"   "0112"   "0111"   "0111"   "0111"   "0143"   "0111"   "0111"   "0111"  
#>  [881] "0111"   "0111"   "0111"   "0111"   "01231"  "02123"  "0111"   "0324"   "0111"   "0324"  
#>  [891] "0111"   "0311"   "0111"   "0111"   "0111"   "02221"  "02221"  "0111"   "0111"   "0111"  
#>  [901] "0111"   "0111"   "0311"   "0111"   "0111"   "0112"   "0112"   "0112"   "0112"   "0111"  
#>  [911] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [921] "0111"   "0111"   "0111"   "0112"   "0111"   "0111"   "0111"   "0111"   "02221"  "0111"  
#>  [931] "0143"   "0111"   "0111"   "0111"   "02221"  "0324"   "0111"   "02221"  "0111"   "0111"  
#>  [941] "0111"   "0143"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [951] "0111"   "0111"   "0111"   "0311"   "01132"  "02123"  "0143"   "0143"   "0111"   "02123" 
#>  [961] "02221"  "0112"   "0111"   "02123"  "0311"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [971] "0111"   "0111"   "02221"  "0112"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [981] "0324"   "0324"   "02222"  "02221"  "0311"   "0112"   "0111"   "0112"   "0112"   "0311"  
#>  [991] "0311"   "0112"   "0112"   "0111"   "0311"   "0111"   "0111"   "0324"   "0324"   "0111"  
#> [1001] "02221"  "0132"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1011] "0121"   "0121"   "0121"   "02221"  "0121"   "02221"  "0121"   "0121"   "0121"   "0121"  
#> [1021] "0121"   "0121"   "0121"   "0121"   "0121"   "0323"   "0142"   "0121"   "0121"   "0121"  
#> [1031] "0121"   "0121"   "0121"   "0121"   "0121"   "0311"   "0121"   "03121"  "0121"   "02113" 
#> [1041] "0121"   "01132"  "0322"   "0121"   "0121"   "0121"   "03121"  "0121"   "0121"   "0121"  
#> [1051] "01132"  "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "01132"  "0121"  
#> [1061] "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1071] "0121"   "0121"   "0132"   "0121"   "0322"   "0121"   "0121"   "0121"   "0132"   "0121"  
#> [1081] "0121"   "0121"   "03121"  "0121"   "0121"   "0121"   "0121"   "0311"   "0121"   "0121"  
#> [1091] "0121"   "0121"   "01132"  "0132"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1101] "0142"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0311"  
#> [1111] "0121"   "0121"   "0121"   "0121"   "0121"   "0132"   "0121"   "0313"   "0121"   "0141"  
#> [1121] "0121"   "0313"   "0121"   "0121"   "0121"   "0121"   "0121"   "03122"  "0121"   "0121"  
#> [1131] "0121"   "01132"  "01132"  "0121"   "0322"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1141] "0221"   "0121"   "0121"   "01132"  "0322"   "01232"  "0121"   "0111"   "0121"   "0142"  
#> [1151] "0121"   "0121"   "01231"  "01232"  "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1161] "01132"  "01232"  "01132"  "0121"   "0121"   "0121"   "0121"   "0111"   "01132"  "0111"  
#> [1171] "01231"  "0311"   "01132"  "0121"   "01132"  "01132"  "0121"   "0121"   "0121"   "0121"  
#> [1181] "0223"   "0121"   "0141"   "0121"   "0221"   "0111"   "0121"   "0121"   "01132"  "0121"  
#> [1191] "0121"   "0121"   "0121"   "0121"   "0121"   "0141"   "0121"   "01231"  "0131"   "0121"  
#> [1201] "0121"   "0141"   "0121"   "0121"   "0121"   "0121"   "0121"   "0112"   "0121"   "0121"  
#> [1211] "0131"   "0121"   "01232"  "0141"   "02221"  "0121"   "0321"   "0313"   "0121"   "0121"  
#> [1221] "01131"  "0121"   "0121"   "0221"   "0121"   "0223"   "01232"  "0121"   "0121"   "0141"  
#> [1231] "0121"   "0121"   "0121"   "01132"  "0121"   "01131"  "0112"   "0313"   "0141"   "0121"  
#> [1241] "0333"   "0321"   "0311"   "0121"   "0121"   "0121"   "01132"  "01132"  "0121"   "0121"  
#> [1251] "01132"  "01234"  "0112"   "0111"   "0112"   "0221"   "0221"   "0221"   "0223"   "01223" 
#> [1261] "0121"   "01223"  "0121"   "01234"  "0311"   "0141"   "0111"   "01132"  "0132"   "0132"  
#> [1271] "0132"   "0131"   "0331"   "0131"   "0131"   "0132"   "0333"   "02122"  "0332"   "0332"  
#> [1281] "0331"   "0132"   "0332"   "0132"   "0132"   "0132"   "0132"   "0132"   "0332"   "0332"  
#> [1291] "0132"   "0331"   "0132"   "0132"   "0233"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1301] "0132"   "0131"   "0131"   "0132"   "0131"   "0131"   "0131"   "0132"   "0132"   "0132"  
#> [1311] "0132"   "0132"   "0223"   "0331"   "0221"   "0131"   "0333"   "02122"  "0132"   "0131"  
#> [1321] "0131"   "0132"   "0132"   "0132"   "0131"   "0132"   "0333"   "01223"  "0131"   "0131"  
#> [1331] "0132"   "02113"  "0132"   "0331"   "0132"   "0333"   "0132"   "0132"   "0132"   "0131"  
#> [1341] "0132"   "0132"   "02221"  "0132"   "0131"   "0223"   "0233"   "02113"  "0131"   "0132"  
#> [1351] "0131"   "0131"   "02113"  "0223"   "0132"   "0131"   "0131"   "0132"   "0131"   "0131"  
#> [1361] "02122"  "02122"  "0131"   "0132"   "0331"   "0331"   "0131"   "0331"   "0132"   "0331"  
#> [1371] "0331"   "0331"   "0332"   "0132"   "0331"   "0132"   "0132"   "0131"   "0131"   "0132"  
#> [1381] "0131"   "0132"   "0132"   "0132"   "0132"   "0132"   "0132"   "01234"  "01223"  "01231" 
#> [1391] "01234"  "0321"   "0131"   "0131"   "0231"   "0141"   "02113"  "0233"   "0233"   "01231" 
#> [1401] "0233"   "0132"   "0132"   "0131"   "0131"   "0333"   "0233"   "0131"   "0131"   "0311"  
#> [1411] "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0333"   "0131"  
#> [1421] "0131"   "0311"   "0131"   "0131"   "0131"   "0132"   "0131"   "0131"   "0333"   "0311"  
#> [1431] "0131"   "0112"   "0131"   "0311"   "01231"  "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1441] "0131"   "0131"   "0131"   "0131"   "0131"   "01231"  "0131"   "0131"   "0233"   "0131"  
#> [1451] "0333"   "0221"   "0132"   "0131"   "0221"   "0131"   "0131"   "0131"   "0223"   "0131"  
#> [1461] "0131"   "0131"   "0132"   "0132"   "01231"  "0131"   "0111"   "0111"   "01131"  "0132"  
#> [1471] "0131"   "0333"   "01231"  "0313"   "0333"   "0313"   "0112"   "02121"  "0131"   "0221"  
#> [1481] "01232"  "0131"   "0132"   "0111"   "0131"   "0131"   "0131"   "0321"   "0141"   "0131"  
#> [1491] "0141"   "0131"   "0131"   "0111"   "0231"   "0141"   "0131"   "0111"   "0131"   "0233"  
#> [1501] "01231"  "0141"   "0131"   "0111"   "01231"  "0321"   "0132"   "02222"  "0131"   "0223"  
#> [1511] "01231"  "0131"   "01231"  "0132"   "0131"   "01231"  "0131"   "0221"   "0331"   "0221"  
#> [1521] "0233"   "0233"   "0142"   "0221"   "0142"   "0132"   "0333"   "0132"   "0132"   "0131"  
#> [1531] "0142"   "0131"   "0132"   "02113"  "01223"  "0223"   "0112"   "0111"   "0132"   "0131"  
#> [1541] "01232"  "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"   "0131"  
#> [1551] "0311"   "0131"   "0111"   "0131"   "0131"   "0131"   "0142"   "02121"  "0233"   "0131"  
#> [1561] "01231"  "01231"  "0143"   "03121"  "0223"   "01133"  "0132"   "0333"   "0131"   "01231" 
#> [1571] "0131"   "0223"   "02121"  "0142"   "02121"  "0332"   "0332"   "02113"  "0233"   "0233"  
#> [1581] "0332"   "02113"  "0332"   "0233"   "0332"   "0332"   "0331"   "0332"   "0331"   "0332"  
#> [1591] "0132"   "0331"   "0332"   "02221"  "0331"   "02113"  "02121"  "0233"   "0132"   "02113" 
#> [1601] "0132"   "0332"   "0132"   "02123"  "02113"  "0132"   "0132"   "0233"   "02113"  "02113" 
#> [1611] "0331"   "0331"   "0332"   "0331"   "0331"   "0331"   "0331"   "02113"  "0132"   "02221" 
#> [1621] "02113"  "0233"   "0132"   "0331"   "01132"  "02122"  "01234"  "0132"   "01234"  "0132"  
#> [1631] "0141"   "01234"  "0323"   "01234"  "02122"  "01234"  "01234"  "01234"  "0221"   "01234" 
#> [1641] "01234"  "0132"   "01234"  "0233"   "0141"   "01234"  "0141"   "01234"  "01234"  "01234" 
#> [1651] "0142"   "01234"  "01234"  "0321"   "01234"  "0111"   "01231"  "0111"   "01133"  "01234" 
#> [1661] "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234" 
#> [1671] "01234"  "01231"  "01233"  "01233"  "01233"  "0231"   "01233"  "0112"   "0112"   "0233"  
#> [1681] "01233"  "01233"  "01221"  "0141"   "01233"  "0121"   "01132"  "0121"   "01232"  "01223" 
#> [1691] "01233"  "01233"  "0322"   "0121"   "01233"  "01233"  "01233"  "0112"   "01233"  "01233" 
#> [1701] "0112"   "01233"  "0311"   "01233"  "01233"  "01221"  "0323"   "01223"  "01233"  "01233" 
#> [1711] "0131"   "0311"   "01233"  "01233"  "01223"  "0132"   "01233"  "01233"  "0323"   "0323"  
#> [1721] "0131"   "01233"  "0141"   "01233"  "01233"  "01233"  "01233"  "0313"   "01233"  "0311"  
#> [1731] "0311"   "01233"  "0121"   "02121"  "01231"  "01133"  "01223"  "01133"  "0112"   "0111"  
#> [1741] "01221"  "01223"  "0132"   "01221"  "0131"   "01221"  "01222"  "01223"  "0323"   "01222" 
#> [1751] "03121"  "01223"  "0221"   "01221"  "0221"   "01221"  "0111"   "01221"  "0142"   "03122" 
#> [1761] "0223"   "01221"  "0112"   "01223"  "0111"   "0221"   "0311"   "0111"   "0131"   "0221"  
#> [1771] "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01132"  "01221"  "01221"  "01221" 
#> [1781] "0322"   "01132"  "01221"  "01221"  "0112"   "01221"  "0313"   "0111"   "01221"  "0323"  
#> [1791] "01222"  "0313"   "0313"   "0323"   "0223"   "01132"  "01221"  "0313"   "0223"   "01221" 
#> [1801] "01221"  "01221"  "01222"  "0323"   "01221"  "01221"  "0233"   "02121"  "0223"   "0311"  
#> [1811] "0221"   "01221"  "01221"  "01131"  "01223"  "01221"  "01221"  "01221"  "01221"  "01221" 
#> [1821] "0313"   "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01222"  "0223"  
#> [1831] "01221"  "01221"  "0323"   "01221"  "01222"  "02122"  "0223"   "01221"  "0111"   "01221" 
#> [1841] "01222"  "01222"  "02121"  "01221"  "01221"  "0143"   "01221"  "01221"  "01222"  "01221" 
#> [1851] "01222"  "0323"   "01223"  "01234"  "0111"   "01234"  "01223"  "01132"  "0322"   "01233" 
#> [1861] "03122"  "01233"  "01233"  "0332"   "0223"   "03122"  "0321"   "0323"   "02122"  "01221" 
#> [1871] "01221"  "0323"   "0323"   "01221"  "01222"  "01223"  "0231"   "01221"  "01223"  "0121"  
#> [1881] "02112"  "01223"  "01223"  "01223"  "01223"  "0323"   "01222"  "03122"  "01222"  "01222" 
#> [1891] "01132"  "0221"   "01221"  "01221"  "01222"  "0311"   "01221"  "01222"  "01221"  "03121" 
#> [1901] "0132"   "0323"   "01223"  "0311"   "01223"  "01223"  "0332"   "01223"  "01222"  "01222" 
#> [1911] "01222"  "01222"  "01222"  "01221"  "0323"   "01222"  "01221"  "01132"  "01221"  "03122" 
#> [1921] "0223"   "01222"  "0323"   "0323"   "01222"  "0311"   "01222"  "01222"  "01222"  "0233"  
#> [1931] "0323"   "01222"  "02112"  "01222"  "0323"   "0233"   "0333"   "01222"  "01222"  "0323"  
#> [1941] "0323"   "01222"  "0323"   "01222"  "0332"   "02221"  "03122"  "0323"   "01222"  "03121" 
#> [1951] "0323"   "01222"  "01222"  "02123"  "01222"  "01222"  "0233"   "0323"   "02113"  "0323"  
#> [1961] "0221"   "0323"   "0323"   "02221"  "01222"  "0323"   "02112"  "0331"   "0323"   "03122" 
#> [1971] "01222"  "0233"   "03122"  "0323"   "02122"  "0311"   "01222"  "02122"  "0323"   "02121" 
#> [1981] "0323"   "0323"   "0332"   "0232"   "02112"  "0232"   "02121"  "02122"  "02122"  "02112" 
#> [1991] "0221"   "02122"  "0231"   "0232"   "0223"   "02123"  "0231"   "0231"   "02112"  "0231"  
#> [2001] "0223"   "02113"  "02112"  "0232"   "02112"  "02221"  "0221"   "02121"  "0232"   "0232"  
#> [2011] "02123"  "0231"   "02121"  "0231"   "0142"   "0221"   "0231"   "0321"   "0223"   "02112" 
#> [2021] "02122"  "02221"  "0223"   "0221"   "02221"  "0321"   "0223"   "02122"  "02122"  "0223"  
#> [2031] "02221"  "02122"  "0223"   "0232"   "0221"   "02113"  "0221"   "02112"  "0223"   "0223"  
#> [2041] "0221"   "0321"   "02112"  "0233"   "0232"   "02113"  "02122"  "02121"  "02121"  "0142"  
#> [2051] "0221"   "02113"  "0231"   "02113"  "02112"  "02121"  "0223"   "02122"  "0321"   "0223"  
#> [2061] "02112"  "0223"   "0223"   "02122"  "0221"   "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2071] "02112"  "0223"   "0232"   "02221"  "02113"  "0233"   "02112"  "02221"  "02112"  "02112" 
#> [2081] "02112"  "02123"  "02122"  "0231"   "02121"  "02122"  "02121"  "0232"   "02121"  "0221"  
#> [2091] "02121"  "0223"   "0223"   "02122"  "0223"   "0223"   "0223"   "02121"  "0223"   "0231"  
#> [2101] "02121"  "02121"  "02121"  "02122"  "02112"  "02112"  "02121"  "02112"  "0231"   "02112" 
#> [2111] "0231"   "0223"   "02112"  "02112"  "02112"  "02112"  "0223"   "02123"  "0231"   "0232"  
#> [2121] "02121"  "02121"  "0233"   "0232"   "0142"   "0223"   "02121"  "0142"   "02112"  "02112" 
#> [2131] "02122"  "02121"  "02112"  "02112"  "02112"  "02121"  "02122"  "02121"  "0221"   "02121" 
#> [2141] "02221"  "0223"   "02122"  "0221"   "0221"   "02221"  "0223"   "02121"  "0223"   "02121" 
#> [2151] "02112"  "02122"  "0223"   "0223"   "02122"  "02112"  "02121"  "0223"   "0223"   "02112" 
#> [2161] "0221"   "0223"   "0221"   "02122"  "0223"   "0223"   "0221"   "02121"  "0223"   "0223"  
#> [2171] "0223"   "0221"   "02121"  "0321"   "0221"   "0221"   "0221"   "021112" "02122"  "02122" 
#> [2181] "02122"  "0223"   "0234"   "02222"  "0223"   "0221"   "0221"   "0221"   "0221"   "0143"  
#> [2191] "0221"   "0142"   "0221"   "03121"  "0221"   "0321"   "0221"   "02113"  "02112"  "0221"  
#> [2201] "0232"   "0231"   "0223"   "0232"   "0232"   "02221"  "02121"  "02121"  "02121"  "0231"  
#> [2211] "0232"   "0221"   "0232"   "0223"   "02121"  "02123"  "02112"  "02112"  "02121"  "02121" 
#> [2221] "0223"   "02123"  "02121"  "02121"  "0221"   "02112"  "02112"  "02121"  "0223"   "02121" 
#> [2231] "0223"   "0223"   "0223"   "0223"   "02121"  "0221"   "0321"   "02221"  "0221"   "0321"  
#> [2241] "0221"   "0321"   "0223"   "0221"   "0223"   "0223"   "0223"   "0231"   "0231"   "0221"  
#> [2251] "02221"  "0321"   "02221"  "0221"   "0231"   "0231"   "0221"   "0221"   "0141"   "0321"  
#> [2261] "02112"  "0221"   "0221"   "0221"   "0223"   "0321"   "0231"   "0221"   "0321"   "0223"  
#> [2271] "0223"   "0223"   "0142"   "0223"   "0142"   "02221"  "0223"   "0321"   "0221"   "0231"  
#> [2281] "02221"  "0221"   "0141"   "02221"  "0221"   "0221"   "0142"   "0321"   "0321"   "0221"  
#> [2291] "0221"   "0321"   "0221"   "0221"   "0142"   "0221"   "0221"   "0221"   "0141"   "0321"  
#> [2301] "0142"   "0142"   "0141"   "0223"   "0142"   "02221"  "0142"   "0142"   "0142"   "0223"  
#> [2311] "0142"   "0321"   "0221"   "0142"   "0141"   "0141"   "01231"  "02122"  "0231"   "0221"  
#> [2321] "0142"   "0221"   "0223"   "0321"   "0221"   "0221"   "0221"   "0221"   "0221"   "0221"  
#> [2331] "0223"   "0221"   "0221"   "0223"   "0321"   "0142"   "0141"   "0321"   "0221"   "0141"  
#> [2341] "0321"   "0321"   "0221"   "02122"  "0232"   "0223"   "0223"   "0223"   "0221"   "0221"  
#> [2351] "0321"   "02221"  "0223"   "0223"   "0221"   "0221"   "0321"   "02121"  "02112"  "0221"  
#> [2361] "02121"  "0221"   "02121"  "0234"   "02121"  "02122"  "0221"   "02112"  "02112"  "0221"  
#> [2371] "0223"   "0223"   "02121"  "0223"   "02121"  "0223"   "0221"   "0221"   "02123"  "02121" 
#> [2381] "0232"   "0223"   "02112"  "02122"  "0232"   "0221"   "0223"   "0223"   "0223"   "0231"  
#> [2391] "02113"  "0223"   "0221"   "0221"   "021112" "02121"  "02122"  "0223"   "0321"   "0221"  
#> [2401] "0141"   "0141"   "0141"   "02122"  "0221"   "0231"   "021112" "0223"   "02122"  "02221" 
#> [2411] "02122"  "0221"   "02122"  "0142"   "0221"   "0223"   "0221"   "0223"   "0231"   "01231" 
#> [2421] "0223"   "0221"   "0321"   "02121"  "02121"  "0231"   "0223"   "0221"   "0223"   "0223"  
#> [2431] "0221"   "0221"   "0141"   "0321"   "0141"   "0221"   "0321"   "0321"   "0321"   "0141"  
#> [2441] "0141"   "01234"  "0321"   "0321"   "0321"   "0223"   "0223"   "0221"   "02122"  "0223"  
#> [2451] "02122"  "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "02122"  "0231"  
#> [2461] "02122"  "02122"  "02122"  "02123"  "02122"  "02123"  "02122"  "02122"  "02221"  "0221"  
#> [2471] "0321"   "0221"   "0221"   "0221"   "02122"  "02122"  "0223"   "02122"  "0223"   "0221"  
#> [2481] "0223"   "02122"  "0223"   "0223"   "02112"  "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2491] "02123"  "02122"  "02122"  "02112"  "0223"   "02122"  "0223"   "02122"  "02122"  "0221"  
#> [2501] "02122"  "0223"   "02121"  "0223"   "0223"   "0221"   "0223"   "0321"   "0321"   "0221"  
#> [2511] "0324"   "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "0221"   "02122" 
#> [2521] "02121"  "02112"  "0221"   "02221"  "0221"   "02122"  "02112"  "0221"   "02122"  "02113" 
#> [2531] "0223"   "02122"  "02112"  "0141"   "02121"  "0321"   "0221"   "0221"   "0221"   "0231"  
#> [2541] "0221"   "0221"   "0221"   "0221"   "0232"   "0221"   "0221"   "0223"   "0142"   "0221"  
#> [2551] "0321"   "0321"   "0142"   "0141"   "02121"  "0321"   "0221"   "0141"   "02112"  "02121" 
#> [2561] "0321"   "02122"  "0321"   "0223"   "0221"   "0321"   "0221"   "0221"   "0221"   "0221"  
#> [2571] "0223"   "0142"   "0141"   "0141"   "0321"   "0321"   "0221"   "0221"   "02112"  "02122" 
#> [2581] "02122"  "0223"   "0223"   "0221"   "0221"   "02221"  "0221"   "0142"   "021112" "0232"  
#> [2591] "0234"   "0232"   "02113"  "02113"  "021111" "02113"  "02113"  "021111" "0231"   "02113" 
#> [2601] "021111" "021111" "0232"   "02113"  "0232"   "0231"   "0234"   "0232"   "0323"   "0142"  
#> [2611] "0232"   "02112"  "0231"   "0221"   "0223"   "0321"   "0221"   "0231"   "0231"   "0234"  
#> [2621] "0233"   "0232"   "0142"   "02112"  "02222"  "0231"   "0142"   "0142"   "0141"   "0231"  
#> [2631] "02112"  "02112"  "02121"  "02112"  "02112"  "0223"   "02122"  "0223"   "0223"   "0221"  
#> [2641] "0221"   "0321"   "0221"   "0221"   "02121"  "0221"   "0221"   "0223"   "0321"   "0221"  
#> [2651] "01221"  "0221"   "0221"   "0221"   "0221"   "0221"   "0231"   "0221"   "02221"  "0221"  
#> [2661] "0221"   "0221"   "0221"   "0321"   "0321"   "0221"   "0321"   "0221"   "0221"   "0321"  
#> [2671] "0221"   "0141"   "0321"   "0221"   "0321"   "0221"   "0221"   "0324"   "01231"  "0141"  
#> [2681] "01231"  "0221"   "0141"   "01231"  "0121"   "0232"   "0232"   "02112"  "02112"  "0321"  
#> [2691] "02121"  "02121"  "0234"   "0231"   "0143"   "0221"   "0324"   "02121"  "0221"   "0321"  
#> [2701] "0221"   "02121"  "0141"   "02221"  "02221"  "0321"   "0142"   "02221"  "0141"   "0142"  
#> [2711] "02221"  "0141"   "0141"   "0231"   "02221"  "0231"   "0141"   "0142"   "0231"   "0141"  
#> [2721] "0223"   "02221"  "0141"   "02112"  "0321"   "0141"   "0321"   "0141"   "01231"  "0321"  
#> [2731] "02121"  "0221"   "0321"   "0221"   "0321"   "0141"   "0141"   "0321"   "0141"   "0321"  
#> [2741] "0141"   "0141"   "02121"  "0221"   "0221"   "0141"   "0141"   "0141"   "0142"   "0321"  
#> [2751] "0141"   "0141"   "0221"   "0221"   "0321"   "0323"   "0142"   "021111" "021111" "021111"
#> [2761] "021111" "021111" "021111" "021111" "0232"   "0142"   "0142"   "0221"   "021111" "02113" 
#> [2771] "021112" "021112" "021111" "021111" "021111" "021112" "021111" "021111" "021112" "021112"
#> [2781] "021112" "0231"   "021111" "021111" "021111" "0232"   "021111" "0232"   "021111" "0142"  
#> [2791] "0142"   "0223"   "0231"   "0231"   "021112" "021112" "021112" "021112" "021111" "021111"
#> [2801] "021111" "02113"  "0233"   "021112" "02113"  "021111" "021112" "0232"   "021111" "021111"
#> [2811] "021111" "021111" "021112" "021112" "021111" "021112" "0221"   "0142"   "0142"   "0142"  
#> [2821] "0221"   "02121"  "0231"   "021112" "021112" "02121"  "021112" "02121"  "021112" "0223"  
#> [2831] "02121"  "02121"  "021112" "02121"  "0231"   "0223"   "02121"  "02121"  "0232"   "0231"  
#> [2841] "021112" "021112" "02112"  "02112"  "02121"  "021111" "02112"  "021112" "021112" "02112" 
#> [2851] "021112" "021111" "0321"   "0231"   "0142"   "0221"   "02123"  "0141"   "0221"   "02112" 
#> [2861] "0231"   "0232"   "0223"   "0223"   "02121"  "02121"  "0231"   "0221"   "02121"  "0221"  
#> [2871] "021112" "02121"  "02123"  "021111" "021112" "02121"  "0223"   "02121"  "0142"   "02121" 
#> [2881] "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 634))
#>    [1] "01232"  "01232"  "0231"   "0322"   "01232"  "01232"  "0322"   "01131"  "01232"  "01232" 
#>   [11] "01232"  "01131"  "0322"   "01232"  "01232"  "01232"  "01232"  "01232"  "0313"   "01131" 
#>   [21] "0322"   "01232"  "01131"  "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "03121" 
#>   [31] "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "01232"  "01232"  "03121"  "0311"  
#>   [41] "01131"  "02222"  "01131"  "0311"   "01232"  "01232"  "0311"   "03121"  "0322"   "01131" 
#>   [51] "03121"  "01131"  "01131"  "01232"  "01232"  "02123"  "02123"  "0143"   "01133"  "0313"  
#>   [61] "0322"   "01131"  "01131"  "02221"  "0311"   "01132"  "01232"  "01232"  "0322"   "01232" 
#>   [71] "0322"   "0311"   "0322"   "01131"  "01131"  "0143"   "0111"   "0112"   "02221"  "01131" 
#>   [81] "0143"   "0322"   "01131"  "0143"   "01133"  "02221"  "01131"  "01131"  "01131"  "01231" 
#>   [91] "0322"   "0111"   "02113"  "01131"  "01131"  "01131"  "01131"  "01132"  "0143"   "0313"  
#>  [101] "01131"  "01131"  "0111"   "01133"  "0111"   "0322"   "02221"  "0141"   "0142"   "0111"  
#>  [111] "01131"  "01131"  "01133"  "0143"   "01132"  "02221"  "02221"  "0322"   "01132"  "0321"  
#>  [121] "0313"   "0322"   "02222"  "02221"  "02222"  "0234"   "01231"  "0111"   "01133"  "01133" 
#>  [131] "01231"  "01131"  "01133"  "0324"   "0111"   "02222"  "01131"  "01131"  "0322"   "0111"  
#>  [141] "01131"  "0111"   "01232"  "01231"  "01231"  "02222"  "01131"  "02123"  "01131"  "0324"  
#>  [151] "0313"   "0313"   "01131"  "0313"   "0322"   "01131"  "0313"   "0234"   "0322"   "0322"  
#>  [161] "0322"   "01131"  "0313"   "0313"   "02222"  "01131"  "0322"   "0313"   "01131"  "01131" 
#>  [171] "0322"   "0313"   "0313"   "02222"  "02222"  "0313"   "0313"   "01131"  "0313"   "0313"  
#>  [181] "03121"  "0313"   "0322"   "0313"   "0322"   "0313"   "0313"   "0313"   "03121"  "02222" 
#>  [191] "0322"   "01131"  "0313"   "03121"  "0313"   "0322"   "03121"  "03121"  "03121"  "03122" 
#>  [201] "03121"  "0313"   "03121"  "0313"   "03121"  "03121"  "0322"   "0313"   "0322"   "02222" 
#>  [211] "0313"   "0234"   "0313"   "03121"  "0313"   "0313"   "0322"   "02222"  "03121"  "01133" 
#>  [221] "03121"  "0313"   "03122"  "0313"   "03121"  "0313"   "03121"  "03121"  "01131"  "02113" 
#>  [231] "0313"   "0313"   "03121"  "0313"   "02113"  "03121"  "03121"  "0313"   "03121"  "0313"  
#>  [241] "0313"   "0313"   "03121"  "01133"  "03121"  "03121"  "03121"  "02222"  "03121"  "0313"  
#>  [251] "01133"  "0313"   "03121"  "03121"  "0313"   "0313"   "01133"  "03121"  "0313"   "0313"  
#>  [261] "01133"  "0313"   "01133"  "01133"  "01133"  "0313"   "01133"  "01133"  "01133"  "0313"  
#>  [271] "01133"  "01133"  "0313"   "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "0322"  
#>  [281] "02123"  "01133"  "0313"   "0313"   "0313"   "02222"  "0313"   "0313"   "03121"  "03121" 
#>  [291] "03121"  "03122"  "03121"  "03121"  "03121"  "03121"  "03121"  "03122"  "02113"  "03121" 
#>  [301] "02113"  "0313"   "0313"   "0234"   "0313"   "02113"  "02222"  "03122"  "02222"  "03121" 
#>  [311] "03121"  "0313"   "02222"  "0313"   "0313"   "03121"  "01133"  "0313"   "0313"   "01133" 
#>  [321] "0313"   "01133"  "03121"  "0313"   "0311"   "01133"  "0313"   "0313"   "0313"   "0313"  
#>  [331] "0313"   "01133"  "01133"  "01133"  "01132"  "02222"  "02222"  "01132"  "0313"   "0112"  
#>  [341] "0313"   "0313"   "02222"  "0313"   "0313"   "0313"   "02222"  "0311"   "0311"   "02222" 
#>  [351] "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "03122"  "03121"  "03122"  "03122" 
#>  [361] "03121"  "0313"   "0313"   "0313"   "0313"   "0313"   "0313"   "03121"  "03121"  "03121" 
#>  [371] "0313"   "03122"  "03122"  "03121"  "03121"  "03121"  "03121"  "03122"  "03122"  "0313"  
#>  [381] "0111"   "0112"   "02222"  "0311"   "0112"   "0111"   "0112"   "0311"   "0324"   "0311"  
#>  [391] "0112"   "0311"   "0112"   "0311"   "02222"  "0311"   "0313"   "0311"   "0112"   "0111"  
#>  [401] "0311"   "0112"   "0143"   "0311"   "0112"   "02222"  "0111"   "0311"   "0112"   "0112"  
#>  [411] "0311"   "0311"   "02123"  "0112"   "0112"   "0112"   "0111"   "01133"  "0311"   "0111"  
#>  [421] "0111"   "0111"   "0112"   "0313"   "0234"   "0112"   "0111"   "0112"   "0112"   "0112"  
#>  [431] "0112"   "0234"   "0112"   "0234"   "0111"   "02221"  "0112"   "02123"  "0112"   "0234"  
#>  [441] "0234"   "0311"   "0311"   "0311"   "0311"   "0112"   "0112"   "03122"  "03122"  "03121" 
#>  [451] "0311"   "0112"   "0311"   "0112"   "0112"   "03121"  "0112"   "0112"   "03122"  "03122" 
#>  [461] "0311"   "03122"  "0311"   "0311"   "03122"  "03122"  "03122"  "0311"   "03122"  "03122" 
#>  [471] "03122"  "0311"   "03122"  "03122"  "03122"  "0311"   "0311"   "03121"  "0311"   "0311"  
#>  [481] "0311"   "0311"   "0311"   "0112"   "02123"  "03122"  "0311"   "0311"   "02222"  "02222" 
#>  [491] "02123"  "03121"  "03122"  "02222"  "03122"  "0112"   "02123"  "02113"  "0112"   "03122" 
#>  [501] "02113"  "0112"   "0311"   "03122"  "0311"   "02113"  "0112"   "0311"   "0311"   "0311"  
#>  [511] "0311"   "02222"  "0311"   "0311"   "0112"   "0112"   "02222"  "0311"   "03121"  "0311"  
#>  [521] "0112"   "0112"   "0112"   "03122"  "03121"  "0313"   "03121"  "0112"   "0112"   "02221" 
#>  [531] "02123"  "02123"  "0112"   "02222"  "0111"   "0111"   "0111"   "02123"  "0111"   "0311"  
#>  [541] "0112"   "02222"  "0111"   "0112"   "02222"  "0111"   "0111"   "0112"   "0311"   "0111"  
#>  [551] "0111"   "0112"   "0112"   "0112"   "0111"   "0143"   "0112"   "0311"   "0311"   "0143"  
#>  [561] "0311"   "01132"  "0324"   "0324"   "01132"  "0112"   "0111"   "02221"  "0311"   "0112"  
#>  [571] "0112"   "02221"  "0324"   "0311"   "0112"   "03121"  "0111"   "0112"   "0112"   "02221" 
#>  [581] "0112"   "0112"   "0111"   "0112"   "0311"   "0112"   "0311"   "0112"   "0111"   "01132" 
#>  [591] "0111"   "0313"   "0112"   "03122"  "0313"   "0324"   "0112"   "0313"   "0313"   "0111"  
#>  [601] "0111"   "01132"  "0111"   "0313"   "0111"   "0112"   "02222"  "0111"   "0111"   "0111"  
#>  [611] "0111"   "0111"   "0112"   "0111"   "0111"   "0234"   "0311"   "0311"   "0112"   "0311"  
#>  [621] "0311"   "0313"   "0112"   "0311"   "0112"   "0311"   "0311"   "0311"   "0311"   "0311"  
#>  [631] "0112"   "0112"   "0313"   "0112"   "0311"   "02113"  "0311"   "0112"   "0112"   "0112"  
#>  [641] "0112"   "0311"   "0311"   "0112"   "0311"   "03121"  "0112"   "0112"   "02222"  "0112"  
#>  [651] "0112"   "0112"   "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0311"  
#>  [661] "0311"   "0112"   "0234"   "0112"   "0112"   "03122"  "0311"   "0311"   "0311"   "0311"  
#>  [671] "02222"  "0112"   "02222"  "0311"   "0313"   "0234"   "0311"   "0311"   "02222"  "0112"  
#>  [681] "0311"   "0311"   "03122"  "03122"  "0311"   "03122"  "03122"  "03122"  "0311"   "0311"  
#>  [691] "0311"   "0112"   "03122"  "0311"   "02222"  "0311"   "03122"  "0112"   "03122"  "0143"  
#>  [701] "03122"  "0112"   "0111"   "0311"   "0311"   "02222"  "02222"  "0112"   "0324"   "0112"  
#>  [711] "0324"   "02123"  "0111"   "0112"   "0111"   "0112"   "0111"   "0111"   "02221"  "0311"  
#>  [721] "0311"   "02221"  "0234"   "0112"   "02221"  "0311"   "0311"   "0311"   "0112"   "0112"  
#>  [731] "0311"   "0112"   "0111"   "0311"   "0112"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [741] "0112"   "0112"   "0112"   "0311"   "0311"   "0112"   "0311"   "03122"  "03122"  "03122" 
#>  [751] "0311"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0112"   "0324"   "0311"  
#>  [761] "02123"  "02222"  "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0111"   "0111"  
#>  [771] "03122"  "0112"   "0112"   "0311"   "0112"   "02222"  "0111"   "0112"   "02113"  "0112"  
#>  [781] "0311"   "0112"   "0112"   "0111"   "0112"   "0112"   "03122"  "0111"   "0311"   "0311"  
#>  [791] "0112"   "0112"   "03122"  "02222"  "0112"   "03122"  "0111"   "0111"   "0234"   "0311"  
#>  [801] "03122"  "02222"  "0311"   "0311"   "0311"   "0234"   "0311"   "0112"   "0311"   "0112"  
#>  [811] "0112"   "0112"   "0324"   "0324"   "01231"  "0143"   "0111"   "0112"   "0111"   "02123" 
#>  [821] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"  
#>  [831] "0111"   "0111"   "0111"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [841] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0324"   "01231" 
#>  [851] "01132"  "0234"   "0324"   "02222"  "0111"   "0143"   "0143"   "0143"   "0324"   "0111"  
#>  [861] "0111"   "0324"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0311"  
#>  [871] "0112"   "0111"   "0112"   "0111"   "0111"   "0111"   "0143"   "0111"   "0111"   "0111"  
#>  [881] "0111"   "0111"   "0111"   "0111"   "01231"  "02123"  "0111"   "0324"   "0111"   "0324"  
#>  [891] "0111"   "0311"   "0111"   "0111"   "0111"   "02221"  "02221"  "0111"   "0111"   "0111"  
#>  [901] "0111"   "0111"   "0311"   "0111"   "0111"   "0112"   "0112"   "0112"   "0112"   "0111"  
#>  [911] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [921] "0111"   "0111"   "0111"   "0112"   "0111"   "0111"   "0111"   "0111"   "02221"  "0111"  
#>  [931] "0143"   "0111"   "0111"   "0111"   "02221"  "0324"   "0111"   "02221"  "0111"   "0111"  
#>  [941] "0111"   "0143"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [951] "0111"   "0111"   "0111"   "0311"   "01132"  "02123"  "0143"   "0143"   "0111"   "02123" 
#>  [961] "02221"  "0112"   "0111"   "02123"  "0311"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [971] "0111"   "0111"   "02221"  "0112"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [981] "0324"   "0324"   "02222"  "02221"  "0311"   "0112"   "0111"   "0112"   "0112"   "0311"  
#>  [991] "0311"   "0112"   "0112"   "0111"   "0311"   "0111"   "0111"   "0324"   "0324"   "0111"  
#> [1001] "02221"  "013"    "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1011] "0121"   "0121"   "0121"   "02221"  "0121"   "02221"  "0121"   "0121"   "0121"   "0121"  
#> [1021] "0121"   "0121"   "0121"   "0121"   "0121"   "0323"   "0142"   "0121"   "0121"   "0121"  
#> [1031] "0121"   "0121"   "0121"   "0121"   "0121"   "0311"   "0121"   "03121"  "0121"   "02113" 
#> [1041] "0121"   "01132"  "0322"   "0121"   "0121"   "0121"   "03121"  "0121"   "0121"   "0121"  
#> [1051] "01132"  "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "01132"  "0121"  
#> [1061] "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1071] "0121"   "0121"   "013"    "0121"   "0322"   "0121"   "0121"   "0121"   "013"    "0121"  
#> [1081] "0121"   "0121"   "03121"  "0121"   "0121"   "0121"   "0121"   "0311"   "0121"   "0121"  
#> [1091] "0121"   "0121"   "01132"  "013"    "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1101] "0142"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0311"  
#> [1111] "0121"   "0121"   "0121"   "0121"   "0121"   "013"    "0121"   "0313"   "0121"   "0141"  
#> [1121] "0121"   "0313"   "0121"   "0121"   "0121"   "0121"   "0121"   "03122"  "0121"   "0121"  
#> [1131] "0121"   "01132"  "01132"  "0121"   "0322"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1141] "0221"   "0121"   "0121"   "01132"  "0322"   "01232"  "0121"   "0111"   "0121"   "0142"  
#> [1151] "0121"   "0121"   "01231"  "01232"  "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1161] "01132"  "01232"  "01132"  "0121"   "0121"   "0121"   "0121"   "0111"   "01132"  "0111"  
#> [1171] "01231"  "0311"   "01132"  "0121"   "01132"  "01132"  "0121"   "0121"   "0121"   "0121"  
#> [1181] "0223"   "0121"   "0141"   "0121"   "0221"   "0111"   "0121"   "0121"   "01132"  "0121"  
#> [1191] "0121"   "0121"   "0121"   "0121"   "0121"   "0141"   "0121"   "01231"  "013"    "0121"  
#> [1201] "0121"   "0141"   "0121"   "0121"   "0121"   "0121"   "0121"   "0112"   "0121"   "0121"  
#> [1211] "013"    "0121"   "01232"  "0141"   "02221"  "0121"   "0321"   "0313"   "0121"   "0121"  
#> [1221] "01131"  "0121"   "0121"   "0221"   "0121"   "0223"   "01232"  "0121"   "0121"   "0141"  
#> [1231] "0121"   "0121"   "0121"   "01132"  "0121"   "01131"  "0112"   "0313"   "0141"   "0121"  
#> [1241] "0333"   "0321"   "0311"   "0121"   "0121"   "0121"   "01132"  "01132"  "0121"   "0121"  
#> [1251] "01132"  "01234"  "0112"   "0111"   "0112"   "0221"   "0221"   "0221"   "0223"   "01223" 
#> [1261] "0121"   "01223"  "0121"   "01234"  "0311"   "0141"   "0111"   "01132"  "013"    "013"   
#> [1271] "013"    "013"    "0331"   "013"    "013"    "013"    "0333"   "02122"  "0332"   "0332"  
#> [1281] "0331"   "013"    "0332"   "013"    "013"    "013"    "013"    "013"    "0332"   "0332"  
#> [1291] "013"    "0331"   "013"    "013"    "0233"   "0333"   "013"    "013"    "013"    "013"   
#> [1301] "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"   
#> [1311] "013"    "013"    "0223"   "0331"   "0221"   "013"    "0333"   "02122"  "013"    "013"   
#> [1321] "013"    "013"    "013"    "013"    "013"    "013"    "0333"   "01223"  "013"    "013"   
#> [1331] "013"    "02113"  "013"    "0331"   "013"    "0333"   "013"    "013"    "013"    "013"   
#> [1341] "013"    "013"    "02221"  "013"    "013"    "0223"   "0233"   "02113"  "013"    "013"   
#> [1351] "013"    "013"    "02113"  "0223"   "013"    "013"    "013"    "013"    "013"    "013"   
#> [1361] "02122"  "02122"  "013"    "013"    "0331"   "0331"   "013"    "0331"   "013"    "0331"  
#> [1371] "0331"   "0331"   "0332"   "013"    "0331"   "013"    "013"    "013"    "013"    "013"   
#> [1381] "013"    "013"    "013"    "013"    "013"    "013"    "013"    "01234"  "01223"  "01231" 
#> [1391] "01234"  "0321"   "013"    "013"    "0231"   "0141"   "02113"  "0233"   "0233"   "01231" 
#> [1401] "0233"   "013"    "013"    "013"    "013"    "0333"   "0233"   "013"    "013"    "0311"  
#> [1411] "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"    "0333"   "013"   
#> [1421] "013"    "0311"   "013"    "013"    "013"    "013"    "013"    "013"    "0333"   "0311"  
#> [1431] "013"    "0112"   "013"    "0311"   "01231"  "013"    "013"    "013"    "013"    "013"   
#> [1441] "013"    "013"    "013"    "013"    "013"    "01231"  "013"    "013"    "0233"   "013"   
#> [1451] "0333"   "0221"   "013"    "013"    "0221"   "013"    "013"    "013"    "0223"   "013"   
#> [1461] "013"    "013"    "013"    "013"    "01231"  "013"    "0111"   "0111"   "01131"  "013"   
#> [1471] "013"    "0333"   "01231"  "0313"   "0333"   "0313"   "0112"   "02121"  "013"    "0221"  
#> [1481] "01232"  "013"    "013"    "0111"   "013"    "013"    "013"    "0321"   "0141"   "013"   
#> [1491] "0141"   "013"    "013"    "0111"   "0231"   "0141"   "013"    "0111"   "013"    "0233"  
#> [1501] "01231"  "0141"   "013"    "0111"   "01231"  "0321"   "013"    "02222"  "013"    "0223"  
#> [1511] "01231"  "013"    "01231"  "013"    "013"    "01231"  "013"    "0221"   "0331"   "0221"  
#> [1521] "0233"   "0233"   "0142"   "0221"   "0142"   "013"    "0333"   "013"    "013"    "013"   
#> [1531] "0142"   "013"    "013"    "02113"  "01223"  "0223"   "0112"   "0111"   "013"    "013"   
#> [1541] "01232"  "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"   
#> [1551] "0311"   "013"    "0111"   "013"    "013"    "013"    "0142"   "02121"  "0233"   "013"   
#> [1561] "01231"  "01231"  "0143"   "03121"  "0223"   "01133"  "013"    "0333"   "013"    "01231" 
#> [1571] "013"    "0223"   "02121"  "0142"   "02121"  "0332"   "0332"   "02113"  "0233"   "0233"  
#> [1581] "0332"   "02113"  "0332"   "0233"   "0332"   "0332"   "0331"   "0332"   "0331"   "0332"  
#> [1591] "013"    "0331"   "0332"   "02221"  "0331"   "02113"  "02121"  "0233"   "013"    "02113" 
#> [1601] "013"    "0332"   "013"    "02123"  "02113"  "013"    "013"    "0233"   "02113"  "02113" 
#> [1611] "0331"   "0331"   "0332"   "0331"   "0331"   "0331"   "0331"   "02113"  "013"    "02221" 
#> [1621] "02113"  "0233"   "013"    "0331"   "01132"  "02122"  "01234"  "013"    "01234"  "013"   
#> [1631] "0141"   "01234"  "0323"   "01234"  "02122"  "01234"  "01234"  "01234"  "0221"   "01234" 
#> [1641] "01234"  "013"    "01234"  "0233"   "0141"   "01234"  "0141"   "01234"  "01234"  "01234" 
#> [1651] "0142"   "01234"  "01234"  "0321"   "01234"  "0111"   "01231"  "0111"   "01133"  "01234" 
#> [1661] "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234" 
#> [1671] "01234"  "01231"  "01233"  "01233"  "01233"  "0231"   "01233"  "0112"   "0112"   "0233"  
#> [1681] "01233"  "01233"  "01221"  "0141"   "01233"  "0121"   "01132"  "0121"   "01232"  "01223" 
#> [1691] "01233"  "01233"  "0322"   "0121"   "01233"  "01233"  "01233"  "0112"   "01233"  "01233" 
#> [1701] "0112"   "01233"  "0311"   "01233"  "01233"  "01221"  "0323"   "01223"  "01233"  "01233" 
#> [1711] "013"    "0311"   "01233"  "01233"  "01223"  "013"    "01233"  "01233"  "0323"   "0323"  
#> [1721] "013"    "01233"  "0141"   "01233"  "01233"  "01233"  "01233"  "0313"   "01233"  "0311"  
#> [1731] "0311"   "01233"  "0121"   "02121"  "01231"  "01133"  "01223"  "01133"  "0112"   "0111"  
#> [1741] "01221"  "01223"  "013"    "01221"  "013"    "01221"  "01222"  "01223"  "0323"   "01222" 
#> [1751] "03121"  "01223"  "0221"   "01221"  "0221"   "01221"  "0111"   "01221"  "0142"   "03122" 
#> [1761] "0223"   "01221"  "0112"   "01223"  "0111"   "0221"   "0311"   "0111"   "013"    "0221"  
#> [1771] "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01132"  "01221"  "01221"  "01221" 
#> [1781] "0322"   "01132"  "01221"  "01221"  "0112"   "01221"  "0313"   "0111"   "01221"  "0323"  
#> [1791] "01222"  "0313"   "0313"   "0323"   "0223"   "01132"  "01221"  "0313"   "0223"   "01221" 
#> [1801] "01221"  "01221"  "01222"  "0323"   "01221"  "01221"  "0233"   "02121"  "0223"   "0311"  
#> [1811] "0221"   "01221"  "01221"  "01131"  "01223"  "01221"  "01221"  "01221"  "01221"  "01221" 
#> [1821] "0313"   "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01222"  "0223"  
#> [1831] "01221"  "01221"  "0323"   "01221"  "01222"  "02122"  "0223"   "01221"  "0111"   "01221" 
#> [1841] "01222"  "01222"  "02121"  "01221"  "01221"  "0143"   "01221"  "01221"  "01222"  "01221" 
#> [1851] "01222"  "0323"   "01223"  "01234"  "0111"   "01234"  "01223"  "01132"  "0322"   "01233" 
#> [1861] "03122"  "01233"  "01233"  "0332"   "0223"   "03122"  "0321"   "0323"   "02122"  "01221" 
#> [1871] "01221"  "0323"   "0323"   "01221"  "01222"  "01223"  "0231"   "01221"  "01223"  "0121"  
#> [1881] "02112"  "01223"  "01223"  "01223"  "01223"  "0323"   "01222"  "03122"  "01222"  "01222" 
#> [1891] "01132"  "0221"   "01221"  "01221"  "01222"  "0311"   "01221"  "01222"  "01221"  "03121" 
#> [1901] "013"    "0323"   "01223"  "0311"   "01223"  "01223"  "0332"   "01223"  "01222"  "01222" 
#> [1911] "01222"  "01222"  "01222"  "01221"  "0323"   "01222"  "01221"  "01132"  "01221"  "03122" 
#> [1921] "0223"   "01222"  "0323"   "0323"   "01222"  "0311"   "01222"  "01222"  "01222"  "0233"  
#> [1931] "0323"   "01222"  "02112"  "01222"  "0323"   "0233"   "0333"   "01222"  "01222"  "0323"  
#> [1941] "0323"   "01222"  "0323"   "01222"  "0332"   "02221"  "03122"  "0323"   "01222"  "03121" 
#> [1951] "0323"   "01222"  "01222"  "02123"  "01222"  "01222"  "0233"   "0323"   "02113"  "0323"  
#> [1961] "0221"   "0323"   "0323"   "02221"  "01222"  "0323"   "02112"  "0331"   "0323"   "03122" 
#> [1971] "01222"  "0233"   "03122"  "0323"   "02122"  "0311"   "01222"  "02122"  "0323"   "02121" 
#> [1981] "0323"   "0323"   "0332"   "0232"   "02112"  "0232"   "02121"  "02122"  "02122"  "02112" 
#> [1991] "0221"   "02122"  "0231"   "0232"   "0223"   "02123"  "0231"   "0231"   "02112"  "0231"  
#> [2001] "0223"   "02113"  "02112"  "0232"   "02112"  "02221"  "0221"   "02121"  "0232"   "0232"  
#> [2011] "02123"  "0231"   "02121"  "0231"   "0142"   "0221"   "0231"   "0321"   "0223"   "02112" 
#> [2021] "02122"  "02221"  "0223"   "0221"   "02221"  "0321"   "0223"   "02122"  "02122"  "0223"  
#> [2031] "02221"  "02122"  "0223"   "0232"   "0221"   "02113"  "0221"   "02112"  "0223"   "0223"  
#> [2041] "0221"   "0321"   "02112"  "0233"   "0232"   "02113"  "02122"  "02121"  "02121"  "0142"  
#> [2051] "0221"   "02113"  "0231"   "02113"  "02112"  "02121"  "0223"   "02122"  "0321"   "0223"  
#> [2061] "02112"  "0223"   "0223"   "02122"  "0221"   "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2071] "02112"  "0223"   "0232"   "02221"  "02113"  "0233"   "02112"  "02221"  "02112"  "02112" 
#> [2081] "02112"  "02123"  "02122"  "0231"   "02121"  "02122"  "02121"  "0232"   "02121"  "0221"  
#> [2091] "02121"  "0223"   "0223"   "02122"  "0223"   "0223"   "0223"   "02121"  "0223"   "0231"  
#> [2101] "02121"  "02121"  "02121"  "02122"  "02112"  "02112"  "02121"  "02112"  "0231"   "02112" 
#> [2111] "0231"   "0223"   "02112"  "02112"  "02112"  "02112"  "0223"   "02123"  "0231"   "0232"  
#> [2121] "02121"  "02121"  "0233"   "0232"   "0142"   "0223"   "02121"  "0142"   "02112"  "02112" 
#> [2131] "02122"  "02121"  "02112"  "02112"  "02112"  "02121"  "02122"  "02121"  "0221"   "02121" 
#> [2141] "02221"  "0223"   "02122"  "0221"   "0221"   "02221"  "0223"   "02121"  "0223"   "02121" 
#> [2151] "02112"  "02122"  "0223"   "0223"   "02122"  "02112"  "02121"  "0223"   "0223"   "02112" 
#> [2161] "0221"   "0223"   "0221"   "02122"  "0223"   "0223"   "0221"   "02121"  "0223"   "0223"  
#> [2171] "0223"   "0221"   "02121"  "0321"   "0221"   "0221"   "0221"   "021112" "02122"  "02122" 
#> [2181] "02122"  "0223"   "0234"   "02222"  "0223"   "0221"   "0221"   "0221"   "0221"   "0143"  
#> [2191] "0221"   "0142"   "0221"   "03121"  "0221"   "0321"   "0221"   "02113"  "02112"  "0221"  
#> [2201] "0232"   "0231"   "0223"   "0232"   "0232"   "02221"  "02121"  "02121"  "02121"  "0231"  
#> [2211] "0232"   "0221"   "0232"   "0223"   "02121"  "02123"  "02112"  "02112"  "02121"  "02121" 
#> [2221] "0223"   "02123"  "02121"  "02121"  "0221"   "02112"  "02112"  "02121"  "0223"   "02121" 
#> [2231] "0223"   "0223"   "0223"   "0223"   "02121"  "0221"   "0321"   "02221"  "0221"   "0321"  
#> [2241] "0221"   "0321"   "0223"   "0221"   "0223"   "0223"   "0223"   "0231"   "0231"   "0221"  
#> [2251] "02221"  "0321"   "02221"  "0221"   "0231"   "0231"   "0221"   "0221"   "0141"   "0321"  
#> [2261] "02112"  "0221"   "0221"   "0221"   "0223"   "0321"   "0231"   "0221"   "0321"   "0223"  
#> [2271] "0223"   "0223"   "0142"   "0223"   "0142"   "02221"  "0223"   "0321"   "0221"   "0231"  
#> [2281] "02221"  "0221"   "0141"   "02221"  "0221"   "0221"   "0142"   "0321"   "0321"   "0221"  
#> [2291] "0221"   "0321"   "0221"   "0221"   "0142"   "0221"   "0221"   "0221"   "0141"   "0321"  
#> [2301] "0142"   "0142"   "0141"   "0223"   "0142"   "02221"  "0142"   "0142"   "0142"   "0223"  
#> [2311] "0142"   "0321"   "0221"   "0142"   "0141"   "0141"   "01231"  "02122"  "0231"   "0221"  
#> [2321] "0142"   "0221"   "0223"   "0321"   "0221"   "0221"   "0221"   "0221"   "0221"   "0221"  
#> [2331] "0223"   "0221"   "0221"   "0223"   "0321"   "0142"   "0141"   "0321"   "0221"   "0141"  
#> [2341] "0321"   "0321"   "0221"   "02122"  "0232"   "0223"   "0223"   "0223"   "0221"   "0221"  
#> [2351] "0321"   "02221"  "0223"   "0223"   "0221"   "0221"   "0321"   "02121"  "02112"  "0221"  
#> [2361] "02121"  "0221"   "02121"  "0234"   "02121"  "02122"  "0221"   "02112"  "02112"  "0221"  
#> [2371] "0223"   "0223"   "02121"  "0223"   "02121"  "0223"   "0221"   "0221"   "02123"  "02121" 
#> [2381] "0232"   "0223"   "02112"  "02122"  "0232"   "0221"   "0223"   "0223"   "0223"   "0231"  
#> [2391] "02113"  "0223"   "0221"   "0221"   "021112" "02121"  "02122"  "0223"   "0321"   "0221"  
#> [2401] "0141"   "0141"   "0141"   "02122"  "0221"   "0231"   "021112" "0223"   "02122"  "02221" 
#> [2411] "02122"  "0221"   "02122"  "0142"   "0221"   "0223"   "0221"   "0223"   "0231"   "01231" 
#> [2421] "0223"   "0221"   "0321"   "02121"  "02121"  "0231"   "0223"   "0221"   "0223"   "0223"  
#> [2431] "0221"   "0221"   "0141"   "0321"   "0141"   "0221"   "0321"   "0321"   "0321"   "0141"  
#> [2441] "0141"   "01234"  "0321"   "0321"   "0321"   "0223"   "0223"   "0221"   "02122"  "0223"  
#> [2451] "02122"  "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "02122"  "0231"  
#> [2461] "02122"  "02122"  "02122"  "02123"  "02122"  "02123"  "02122"  "02122"  "02221"  "0221"  
#> [2471] "0321"   "0221"   "0221"   "0221"   "02122"  "02122"  "0223"   "02122"  "0223"   "0221"  
#> [2481] "0223"   "02122"  "0223"   "0223"   "02112"  "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2491] "02123"  "02122"  "02122"  "02112"  "0223"   "02122"  "0223"   "02122"  "02122"  "0221"  
#> [2501] "02122"  "0223"   "02121"  "0223"   "0223"   "0221"   "0223"   "0321"   "0321"   "0221"  
#> [2511] "0324"   "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "0221"   "02122" 
#> [2521] "02121"  "02112"  "0221"   "02221"  "0221"   "02122"  "02112"  "0221"   "02122"  "02113" 
#> [2531] "0223"   "02122"  "02112"  "0141"   "02121"  "0321"   "0221"   "0221"   "0221"   "0231"  
#> [2541] "0221"   "0221"   "0221"   "0221"   "0232"   "0221"   "0221"   "0223"   "0142"   "0221"  
#> [2551] "0321"   "0321"   "0142"   "0141"   "02121"  "0321"   "0221"   "0141"   "02112"  "02121" 
#> [2561] "0321"   "02122"  "0321"   "0223"   "0221"   "0321"   "0221"   "0221"   "0221"   "0221"  
#> [2571] "0223"   "0142"   "0141"   "0141"   "0321"   "0321"   "0221"   "0221"   "02112"  "02122" 
#> [2581] "02122"  "0223"   "0223"   "0221"   "0221"   "02221"  "0221"   "0142"   "021112" "0232"  
#> [2591] "0234"   "0232"   "02113"  "02113"  "021111" "02113"  "02113"  "021111" "0231"   "02113" 
#> [2601] "021111" "021111" "0232"   "02113"  "0232"   "0231"   "0234"   "0232"   "0323"   "0142"  
#> [2611] "0232"   "02112"  "0231"   "0221"   "0223"   "0321"   "0221"   "0231"   "0231"   "0234"  
#> [2621] "0233"   "0232"   "0142"   "02112"  "02222"  "0231"   "0142"   "0142"   "0141"   "0231"  
#> [2631] "02112"  "02112"  "02121"  "02112"  "02112"  "0223"   "02122"  "0223"   "0223"   "0221"  
#> [2641] "0221"   "0321"   "0221"   "0221"   "02121"  "0221"   "0221"   "0223"   "0321"   "0221"  
#> [2651] "01221"  "0221"   "0221"   "0221"   "0221"   "0221"   "0231"   "0221"   "02221"  "0221"  
#> [2661] "0221"   "0221"   "0221"   "0321"   "0321"   "0221"   "0321"   "0221"   "0221"   "0321"  
#> [2671] "0221"   "0141"   "0321"   "0221"   "0321"   "0221"   "0221"   "0324"   "01231"  "0141"  
#> [2681] "01231"  "0221"   "0141"   "01231"  "0121"   "0232"   "0232"   "02112"  "02112"  "0321"  
#> [2691] "02121"  "02121"  "0234"   "0231"   "0143"   "0221"   "0324"   "02121"  "0221"   "0321"  
#> [2701] "0221"   "02121"  "0141"   "02221"  "02221"  "0321"   "0142"   "02221"  "0141"   "0142"  
#> [2711] "02221"  "0141"   "0141"   "0231"   "02221"  "0231"   "0141"   "0142"   "0231"   "0141"  
#> [2721] "0223"   "02221"  "0141"   "02112"  "0321"   "0141"   "0321"   "0141"   "01231"  "0321"  
#> [2731] "02121"  "0221"   "0321"   "0221"   "0321"   "0141"   "0141"   "0321"   "0141"   "0321"  
#> [2741] "0141"   "0141"   "02121"  "0221"   "0221"   "0141"   "0141"   "0141"   "0142"   "0321"  
#> [2751] "0141"   "0141"   "0221"   "0221"   "0321"   "0323"   "0142"   "021111" "021111" "021111"
#> [2761] "021111" "021111" "021111" "021111" "0232"   "0142"   "0142"   "0221"   "021111" "02113" 
#> [2771] "021112" "021112" "021111" "021111" "021111" "021112" "021111" "021111" "021112" "021112"
#> [2781] "021112" "0231"   "021111" "021111" "021111" "0232"   "021111" "0232"   "021111" "0142"  
#> [2791] "0142"   "0223"   "0231"   "0231"   "021112" "021112" "021112" "021112" "021111" "021111"
#> [2801] "021111" "02113"  "0233"   "021112" "02113"  "021111" "021112" "0232"   "021111" "021111"
#> [2811] "021111" "021111" "021112" "021112" "021111" "021112" "0221"   "0142"   "0142"   "0142"  
#> [2821] "0221"   "02121"  "0231"   "021112" "021112" "02121"  "021112" "02121"  "021112" "0223"  
#> [2831] "02121"  "02121"  "021112" "02121"  "0231"   "0223"   "02121"  "02121"  "0232"   "0231"  
#> [2841] "021112" "021112" "02112"  "02112"  "02121"  "021111" "02112"  "021112" "021112" "02112" 
#> [2851] "021112" "021111" "0321"   "0231"   "0142"   "0221"   "02123"  "0141"   "0221"   "02112" 
#> [2861] "0231"   "0232"   "0223"   "0223"   "02121"  "02121"  "0231"   "0221"   "02121"  "0221"  
#> [2871] "021112" "02121"  "02123"  "021111" "021112" "02121"  "0223"   "02121"  "0142"   "02121" 
#> [2881] "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 677))
#>    [1] "01232"  "01232"  "0231"   "0322"   "01232"  "01232"  "0322"   "01131"  "01232"  "01232" 
#>   [11] "01232"  "01131"  "0322"   "01232"  "01232"  "01232"  "01232"  "01232"  "0313"   "01131" 
#>   [21] "0322"   "01232"  "01131"  "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "03121" 
#>   [31] "0322"   "01232"  "0322"   "0322"   "0322"   "01232"  "01232"  "01232"  "03121"  "0311"  
#>   [41] "01131"  "0222"   "01131"  "0311"   "01232"  "01232"  "0311"   "03121"  "0322"   "01131" 
#>   [51] "03121"  "01131"  "01131"  "01232"  "01232"  "02123"  "02123"  "0143"   "01133"  "0313"  
#>   [61] "0322"   "01131"  "01131"  "0222"   "0311"   "01132"  "01232"  "01232"  "0322"   "01232" 
#>   [71] "0322"   "0311"   "0322"   "01131"  "01131"  "0143"   "0111"   "0112"   "0222"   "01131" 
#>   [81] "0143"   "0322"   "01131"  "0143"   "01133"  "0222"   "01131"  "01131"  "01131"  "01231" 
#>   [91] "0322"   "0111"   "02113"  "01131"  "01131"  "01131"  "01131"  "01132"  "0143"   "0313"  
#>  [101] "01131"  "01131"  "0111"   "01133"  "0111"   "0322"   "0222"   "0141"   "0142"   "0111"  
#>  [111] "01131"  "01131"  "01133"  "0143"   "01132"  "0222"   "0222"   "0322"   "01132"  "0321"  
#>  [121] "0313"   "0322"   "0222"   "0222"   "0222"   "0234"   "01231"  "0111"   "01133"  "01133" 
#>  [131] "01231"  "01131"  "01133"  "0324"   "0111"   "0222"   "01131"  "01131"  "0322"   "0111"  
#>  [141] "01131"  "0111"   "01232"  "01231"  "01231"  "0222"   "01131"  "02123"  "01131"  "0324"  
#>  [151] "0313"   "0313"   "01131"  "0313"   "0322"   "01131"  "0313"   "0234"   "0322"   "0322"  
#>  [161] "0322"   "01131"  "0313"   "0313"   "0222"   "01131"  "0322"   "0313"   "01131"  "01131" 
#>  [171] "0322"   "0313"   "0313"   "0222"   "0222"   "0313"   "0313"   "01131"  "0313"   "0313"  
#>  [181] "03121"  "0313"   "0322"   "0313"   "0322"   "0313"   "0313"   "0313"   "03121"  "0222"  
#>  [191] "0322"   "01131"  "0313"   "03121"  "0313"   "0322"   "03121"  "03121"  "03121"  "03122" 
#>  [201] "03121"  "0313"   "03121"  "0313"   "03121"  "03121"  "0322"   "0313"   "0322"   "0222"  
#>  [211] "0313"   "0234"   "0313"   "03121"  "0313"   "0313"   "0322"   "0222"   "03121"  "01133" 
#>  [221] "03121"  "0313"   "03122"  "0313"   "03121"  "0313"   "03121"  "03121"  "01131"  "02113" 
#>  [231] "0313"   "0313"   "03121"  "0313"   "02113"  "03121"  "03121"  "0313"   "03121"  "0313"  
#>  [241] "0313"   "0313"   "03121"  "01133"  "03121"  "03121"  "03121"  "0222"   "03121"  "0313"  
#>  [251] "01133"  "0313"   "03121"  "03121"  "0313"   "0313"   "01133"  "03121"  "0313"   "0313"  
#>  [261] "01133"  "0313"   "01133"  "01133"  "01133"  "0313"   "01133"  "01133"  "01133"  "0313"  
#>  [271] "01133"  "01133"  "0313"   "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "0322"  
#>  [281] "02123"  "01133"  "0313"   "0313"   "0313"   "0222"   "0313"   "0313"   "03121"  "03121" 
#>  [291] "03121"  "03122"  "03121"  "03121"  "03121"  "03121"  "03121"  "03122"  "02113"  "03121" 
#>  [301] "02113"  "0313"   "0313"   "0234"   "0313"   "02113"  "0222"   "03122"  "0222"   "03121" 
#>  [311] "03121"  "0313"   "0222"   "0313"   "0313"   "03121"  "01133"  "0313"   "0313"   "01133" 
#>  [321] "0313"   "01133"  "03121"  "0313"   "0311"   "01133"  "0313"   "0313"   "0313"   "0313"  
#>  [331] "0313"   "01133"  "01133"  "01133"  "01132"  "0222"   "0222"   "01132"  "0313"   "0112"  
#>  [341] "0313"   "0313"   "0222"   "0313"   "0313"   "0313"   "0222"   "0311"   "0311"   "0222"  
#>  [351] "0313"   "01133"  "0313"   "0313"   "0313"   "0313"   "03122"  "03121"  "03122"  "03122" 
#>  [361] "03121"  "0313"   "0313"   "0313"   "0313"   "0313"   "0313"   "03121"  "03121"  "03121" 
#>  [371] "0313"   "03122"  "03122"  "03121"  "03121"  "03121"  "03121"  "03122"  "03122"  "0313"  
#>  [381] "0111"   "0112"   "0222"   "0311"   "0112"   "0111"   "0112"   "0311"   "0324"   "0311"  
#>  [391] "0112"   "0311"   "0112"   "0311"   "0222"   "0311"   "0313"   "0311"   "0112"   "0111"  
#>  [401] "0311"   "0112"   "0143"   "0311"   "0112"   "0222"   "0111"   "0311"   "0112"   "0112"  
#>  [411] "0311"   "0311"   "02123"  "0112"   "0112"   "0112"   "0111"   "01133"  "0311"   "0111"  
#>  [421] "0111"   "0111"   "0112"   "0313"   "0234"   "0112"   "0111"   "0112"   "0112"   "0112"  
#>  [431] "0112"   "0234"   "0112"   "0234"   "0111"   "0222"   "0112"   "02123"  "0112"   "0234"  
#>  [441] "0234"   "0311"   "0311"   "0311"   "0311"   "0112"   "0112"   "03122"  "03122"  "03121" 
#>  [451] "0311"   "0112"   "0311"   "0112"   "0112"   "03121"  "0112"   "0112"   "03122"  "03122" 
#>  [461] "0311"   "03122"  "0311"   "0311"   "03122"  "03122"  "03122"  "0311"   "03122"  "03122" 
#>  [471] "03122"  "0311"   "03122"  "03122"  "03122"  "0311"   "0311"   "03121"  "0311"   "0311"  
#>  [481] "0311"   "0311"   "0311"   "0112"   "02123"  "03122"  "0311"   "0311"   "0222"   "0222"  
#>  [491] "02123"  "03121"  "03122"  "0222"   "03122"  "0112"   "02123"  "02113"  "0112"   "03122" 
#>  [501] "02113"  "0112"   "0311"   "03122"  "0311"   "02113"  "0112"   "0311"   "0311"   "0311"  
#>  [511] "0311"   "0222"   "0311"   "0311"   "0112"   "0112"   "0222"   "0311"   "03121"  "0311"  
#>  [521] "0112"   "0112"   "0112"   "03122"  "03121"  "0313"   "03121"  "0112"   "0112"   "0222"  
#>  [531] "02123"  "02123"  "0112"   "0222"   "0111"   "0111"   "0111"   "02123"  "0111"   "0311"  
#>  [541] "0112"   "0222"   "0111"   "0112"   "0222"   "0111"   "0111"   "0112"   "0311"   "0111"  
#>  [551] "0111"   "0112"   "0112"   "0112"   "0111"   "0143"   "0112"   "0311"   "0311"   "0143"  
#>  [561] "0311"   "01132"  "0324"   "0324"   "01132"  "0112"   "0111"   "0222"   "0311"   "0112"  
#>  [571] "0112"   "0222"   "0324"   "0311"   "0112"   "03121"  "0111"   "0112"   "0112"   "0222"  
#>  [581] "0112"   "0112"   "0111"   "0112"   "0311"   "0112"   "0311"   "0112"   "0111"   "01132" 
#>  [591] "0111"   "0313"   "0112"   "03122"  "0313"   "0324"   "0112"   "0313"   "0313"   "0111"  
#>  [601] "0111"   "01132"  "0111"   "0313"   "0111"   "0112"   "0222"   "0111"   "0111"   "0111"  
#>  [611] "0111"   "0111"   "0112"   "0111"   "0111"   "0234"   "0311"   "0311"   "0112"   "0311"  
#>  [621] "0311"   "0313"   "0112"   "0311"   "0112"   "0311"   "0311"   "0311"   "0311"   "0311"  
#>  [631] "0112"   "0112"   "0313"   "0112"   "0311"   "02113"  "0311"   "0112"   "0112"   "0112"  
#>  [641] "0112"   "0311"   "0311"   "0112"   "0311"   "03121"  "0112"   "0112"   "0222"   "0112"  
#>  [651] "0112"   "0112"   "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0311"  
#>  [661] "0311"   "0112"   "0234"   "0112"   "0112"   "03122"  "0311"   "0311"   "0311"   "0311"  
#>  [671] "0222"   "0112"   "0222"   "0311"   "0313"   "0234"   "0311"   "0311"   "0222"   "0112"  
#>  [681] "0311"   "0311"   "03122"  "03122"  "0311"   "03122"  "03122"  "03122"  "0311"   "0311"  
#>  [691] "0311"   "0112"   "03122"  "0311"   "0222"   "0311"   "03122"  "0112"   "03122"  "0143"  
#>  [701] "03122"  "0112"   "0111"   "0311"   "0311"   "0222"   "0222"   "0112"   "0324"   "0112"  
#>  [711] "0324"   "02123"  "0111"   "0112"   "0111"   "0112"   "0111"   "0111"   "0222"   "0311"  
#>  [721] "0311"   "0222"   "0234"   "0112"   "0222"   "0311"   "0311"   "0311"   "0112"   "0112"  
#>  [731] "0311"   "0112"   "0111"   "0311"   "0112"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [741] "0112"   "0112"   "0112"   "0311"   "0311"   "0112"   "0311"   "03122"  "03122"  "03122" 
#>  [751] "0311"   "0112"   "0311"   "0112"   "0112"   "0112"   "0311"   "0112"   "0324"   "0311"  
#>  [761] "02123"  "0222"   "0112"   "0112"   "0311"   "0112"   "0112"   "0112"   "0111"   "0111"  
#>  [771] "03122"  "0112"   "0112"   "0311"   "0112"   "0222"   "0111"   "0112"   "02113"  "0112"  
#>  [781] "0311"   "0112"   "0112"   "0111"   "0112"   "0112"   "03122"  "0111"   "0311"   "0311"  
#>  [791] "0112"   "0112"   "03122"  "0222"   "0112"   "03122"  "0111"   "0111"   "0234"   "0311"  
#>  [801] "03122"  "0222"   "0311"   "0311"   "0311"   "0234"   "0311"   "0112"   "0311"   "0112"  
#>  [811] "0112"   "0112"   "0324"   "0324"   "01231"  "0143"   "0111"   "0112"   "0111"   "02123" 
#>  [821] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"  
#>  [831] "0111"   "0111"   "0111"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [841] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0324"   "01231" 
#>  [851] "01132"  "0234"   "0324"   "0222"   "0111"   "0143"   "0143"   "0143"   "0324"   "0111"  
#>  [861] "0111"   "0324"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0112"   "0311"  
#>  [871] "0112"   "0111"   "0112"   "0111"   "0111"   "0111"   "0143"   "0111"   "0111"   "0111"  
#>  [881] "0111"   "0111"   "0111"   "0111"   "01231"  "02123"  "0111"   "0324"   "0111"   "0324"  
#>  [891] "0111"   "0311"   "0111"   "0111"   "0111"   "0222"   "0222"   "0111"   "0111"   "0111"  
#>  [901] "0111"   "0111"   "0311"   "0111"   "0111"   "0112"   "0112"   "0112"   "0112"   "0111"  
#>  [911] "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [921] "0111"   "0111"   "0111"   "0112"   "0111"   "0111"   "0111"   "0111"   "0222"   "0111"  
#>  [931] "0143"   "0111"   "0111"   "0111"   "0222"   "0324"   "0111"   "0222"   "0111"   "0111"  
#>  [941] "0111"   "0143"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [951] "0111"   "0111"   "0111"   "0311"   "01132"  "02123"  "0143"   "0143"   "0111"   "02123" 
#>  [961] "0222"   "0112"   "0111"   "02123"  "0311"   "0112"   "0111"   "0111"   "0111"   "0311"  
#>  [971] "0111"   "0111"   "0222"   "0112"   "01231"  "0111"   "0111"   "0111"   "0111"   "0111"  
#>  [981] "0324"   "0324"   "0222"   "0222"   "0311"   "0112"   "0111"   "0112"   "0112"   "0311"  
#>  [991] "0311"   "0112"   "0112"   "0111"   "0311"   "0111"   "0111"   "0324"   "0324"   "0111"  
#> [1001] "0222"   "013"    "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1011] "0121"   "0121"   "0121"   "0222"   "0121"   "0222"   "0121"   "0121"   "0121"   "0121"  
#> [1021] "0121"   "0121"   "0121"   "0121"   "0121"   "0323"   "0142"   "0121"   "0121"   "0121"  
#> [1031] "0121"   "0121"   "0121"   "0121"   "0121"   "0311"   "0121"   "03121"  "0121"   "02113" 
#> [1041] "0121"   "01132"  "0322"   "0121"   "0121"   "0121"   "03121"  "0121"   "0121"   "0121"  
#> [1051] "01132"  "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "01132"  "0121"  
#> [1061] "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1071] "0121"   "0121"   "013"    "0121"   "0322"   "0121"   "0121"   "0121"   "013"    "0121"  
#> [1081] "0121"   "0121"   "03121"  "0121"   "0121"   "0121"   "0121"   "0311"   "0121"   "0121"  
#> [1091] "0121"   "0121"   "01132"  "013"    "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1101] "0142"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0121"   "0311"  
#> [1111] "0121"   "0121"   "0121"   "0121"   "0121"   "013"    "0121"   "0313"   "0121"   "0141"  
#> [1121] "0121"   "0313"   "0121"   "0121"   "0121"   "0121"   "0121"   "03122"  "0121"   "0121"  
#> [1131] "0121"   "01132"  "01132"  "0121"   "0322"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1141] "0221"   "0121"   "0121"   "01132"  "0322"   "01232"  "0121"   "0111"   "0121"   "0142"  
#> [1151] "0121"   "0121"   "01231"  "01232"  "0121"   "0121"   "0121"   "0121"   "0121"   "0121"  
#> [1161] "01132"  "01232"  "01132"  "0121"   "0121"   "0121"   "0121"   "0111"   "01132"  "0111"  
#> [1171] "01231"  "0311"   "01132"  "0121"   "01132"  "01132"  "0121"   "0121"   "0121"   "0121"  
#> [1181] "0223"   "0121"   "0141"   "0121"   "0221"   "0111"   "0121"   "0121"   "01132"  "0121"  
#> [1191] "0121"   "0121"   "0121"   "0121"   "0121"   "0141"   "0121"   "01231"  "013"    "0121"  
#> [1201] "0121"   "0141"   "0121"   "0121"   "0121"   "0121"   "0121"   "0112"   "0121"   "0121"  
#> [1211] "013"    "0121"   "01232"  "0141"   "0222"   "0121"   "0321"   "0313"   "0121"   "0121"  
#> [1221] "01131"  "0121"   "0121"   "0221"   "0121"   "0223"   "01232"  "0121"   "0121"   "0141"  
#> [1231] "0121"   "0121"   "0121"   "01132"  "0121"   "01131"  "0112"   "0313"   "0141"   "0121"  
#> [1241] "0333"   "0321"   "0311"   "0121"   "0121"   "0121"   "01132"  "01132"  "0121"   "0121"  
#> [1251] "01132"  "01234"  "0112"   "0111"   "0112"   "0221"   "0221"   "0221"   "0223"   "01223" 
#> [1261] "0121"   "01223"  "0121"   "01234"  "0311"   "0141"   "0111"   "01132"  "013"    "013"   
#> [1271] "013"    "013"    "0331"   "013"    "013"    "013"    "0333"   "02122"  "0332"   "0332"  
#> [1281] "0331"   "013"    "0332"   "013"    "013"    "013"    "013"    "013"    "0332"   "0332"  
#> [1291] "013"    "0331"   "013"    "013"    "0233"   "0333"   "013"    "013"    "013"    "013"   
#> [1301] "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"   
#> [1311] "013"    "013"    "0223"   "0331"   "0221"   "013"    "0333"   "02122"  "013"    "013"   
#> [1321] "013"    "013"    "013"    "013"    "013"    "013"    "0333"   "01223"  "013"    "013"   
#> [1331] "013"    "02113"  "013"    "0331"   "013"    "0333"   "013"    "013"    "013"    "013"   
#> [1341] "013"    "013"    "0222"   "013"    "013"    "0223"   "0233"   "02113"  "013"    "013"   
#> [1351] "013"    "013"    "02113"  "0223"   "013"    "013"    "013"    "013"    "013"    "013"   
#> [1361] "02122"  "02122"  "013"    "013"    "0331"   "0331"   "013"    "0331"   "013"    "0331"  
#> [1371] "0331"   "0331"   "0332"   "013"    "0331"   "013"    "013"    "013"    "013"    "013"   
#> [1381] "013"    "013"    "013"    "013"    "013"    "013"    "013"    "01234"  "01223"  "01231" 
#> [1391] "01234"  "0321"   "013"    "013"    "0231"   "0141"   "02113"  "0233"   "0233"   "01231" 
#> [1401] "0233"   "013"    "013"    "013"    "013"    "0333"   "0233"   "013"    "013"    "0311"  
#> [1411] "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"    "0333"   "013"   
#> [1421] "013"    "0311"   "013"    "013"    "013"    "013"    "013"    "013"    "0333"   "0311"  
#> [1431] "013"    "0112"   "013"    "0311"   "01231"  "013"    "013"    "013"    "013"    "013"   
#> [1441] "013"    "013"    "013"    "013"    "013"    "01231"  "013"    "013"    "0233"   "013"   
#> [1451] "0333"   "0221"   "013"    "013"    "0221"   "013"    "013"    "013"    "0223"   "013"   
#> [1461] "013"    "013"    "013"    "013"    "01231"  "013"    "0111"   "0111"   "01131"  "013"   
#> [1471] "013"    "0333"   "01231"  "0313"   "0333"   "0313"   "0112"   "02121"  "013"    "0221"  
#> [1481] "01232"  "013"    "013"    "0111"   "013"    "013"    "013"    "0321"   "0141"   "013"   
#> [1491] "0141"   "013"    "013"    "0111"   "0231"   "0141"   "013"    "0111"   "013"    "0233"  
#> [1501] "01231"  "0141"   "013"    "0111"   "01231"  "0321"   "013"    "0222"   "013"    "0223"  
#> [1511] "01231"  "013"    "01231"  "013"    "013"    "01231"  "013"    "0221"   "0331"   "0221"  
#> [1521] "0233"   "0233"   "0142"   "0221"   "0142"   "013"    "0333"   "013"    "013"    "013"   
#> [1531] "0142"   "013"    "013"    "02113"  "01223"  "0223"   "0112"   "0111"   "013"    "013"   
#> [1541] "01232"  "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"    "013"   
#> [1551] "0311"   "013"    "0111"   "013"    "013"    "013"    "0142"   "02121"  "0233"   "013"   
#> [1561] "01231"  "01231"  "0143"   "03121"  "0223"   "01133"  "013"    "0333"   "013"    "01231" 
#> [1571] "013"    "0223"   "02121"  "0142"   "02121"  "0332"   "0332"   "02113"  "0233"   "0233"  
#> [1581] "0332"   "02113"  "0332"   "0233"   "0332"   "0332"   "0331"   "0332"   "0331"   "0332"  
#> [1591] "013"    "0331"   "0332"   "0222"   "0331"   "02113"  "02121"  "0233"   "013"    "02113" 
#> [1601] "013"    "0332"   "013"    "02123"  "02113"  "013"    "013"    "0233"   "02113"  "02113" 
#> [1611] "0331"   "0331"   "0332"   "0331"   "0331"   "0331"   "0331"   "02113"  "013"    "0222"  
#> [1621] "02113"  "0233"   "013"    "0331"   "01132"  "02122"  "01234"  "013"    "01234"  "013"   
#> [1631] "0141"   "01234"  "0323"   "01234"  "02122"  "01234"  "01234"  "01234"  "0221"   "01234" 
#> [1641] "01234"  "013"    "01234"  "0233"   "0141"   "01234"  "0141"   "01234"  "01234"  "01234" 
#> [1651] "0142"   "01234"  "01234"  "0321"   "01234"  "0111"   "01231"  "0111"   "01133"  "01234" 
#> [1661] "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234"  "01234" 
#> [1671] "01234"  "01231"  "01233"  "01233"  "01233"  "0231"   "01233"  "0112"   "0112"   "0233"  
#> [1681] "01233"  "01233"  "01221"  "0141"   "01233"  "0121"   "01132"  "0121"   "01232"  "01223" 
#> [1691] "01233"  "01233"  "0322"   "0121"   "01233"  "01233"  "01233"  "0112"   "01233"  "01233" 
#> [1701] "0112"   "01233"  "0311"   "01233"  "01233"  "01221"  "0323"   "01223"  "01233"  "01233" 
#> [1711] "013"    "0311"   "01233"  "01233"  "01223"  "013"    "01233"  "01233"  "0323"   "0323"  
#> [1721] "013"    "01233"  "0141"   "01233"  "01233"  "01233"  "01233"  "0313"   "01233"  "0311"  
#> [1731] "0311"   "01233"  "0121"   "02121"  "01231"  "01133"  "01223"  "01133"  "0112"   "0111"  
#> [1741] "01221"  "01223"  "013"    "01221"  "013"    "01221"  "01222"  "01223"  "0323"   "01222" 
#> [1751] "03121"  "01223"  "0221"   "01221"  "0221"   "01221"  "0111"   "01221"  "0142"   "03122" 
#> [1761] "0223"   "01221"  "0112"   "01223"  "0111"   "0221"   "0311"   "0111"   "013"    "0221"  
#> [1771] "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01132"  "01221"  "01221"  "01221" 
#> [1781] "0322"   "01132"  "01221"  "01221"  "0112"   "01221"  "0313"   "0111"   "01221"  "0323"  
#> [1791] "01222"  "0313"   "0313"   "0323"   "0223"   "01132"  "01221"  "0313"   "0223"   "01221" 
#> [1801] "01221"  "01221"  "01222"  "0323"   "01221"  "01221"  "0233"   "02121"  "0223"   "0311"  
#> [1811] "0221"   "01221"  "01221"  "01131"  "01223"  "01221"  "01221"  "01221"  "01221"  "01221" 
#> [1821] "0313"   "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01221"  "01222"  "0223"  
#> [1831] "01221"  "01221"  "0323"   "01221"  "01222"  "02122"  "0223"   "01221"  "0111"   "01221" 
#> [1841] "01222"  "01222"  "02121"  "01221"  "01221"  "0143"   "01221"  "01221"  "01222"  "01221" 
#> [1851] "01222"  "0323"   "01223"  "01234"  "0111"   "01234"  "01223"  "01132"  "0322"   "01233" 
#> [1861] "03122"  "01233"  "01233"  "0332"   "0223"   "03122"  "0321"   "0323"   "02122"  "01221" 
#> [1871] "01221"  "0323"   "0323"   "01221"  "01222"  "01223"  "0231"   "01221"  "01223"  "0121"  
#> [1881] "02112"  "01223"  "01223"  "01223"  "01223"  "0323"   "01222"  "03122"  "01222"  "01222" 
#> [1891] "01132"  "0221"   "01221"  "01221"  "01222"  "0311"   "01221"  "01222"  "01221"  "03121" 
#> [1901] "013"    "0323"   "01223"  "0311"   "01223"  "01223"  "0332"   "01223"  "01222"  "01222" 
#> [1911] "01222"  "01222"  "01222"  "01221"  "0323"   "01222"  "01221"  "01132"  "01221"  "03122" 
#> [1921] "0223"   "01222"  "0323"   "0323"   "01222"  "0311"   "01222"  "01222"  "01222"  "0233"  
#> [1931] "0323"   "01222"  "02112"  "01222"  "0323"   "0233"   "0333"   "01222"  "01222"  "0323"  
#> [1941] "0323"   "01222"  "0323"   "01222"  "0332"   "0222"   "03122"  "0323"   "01222"  "03121" 
#> [1951] "0323"   "01222"  "01222"  "02123"  "01222"  "01222"  "0233"   "0323"   "02113"  "0323"  
#> [1961] "0221"   "0323"   "0323"   "0222"   "01222"  "0323"   "02112"  "0331"   "0323"   "03122" 
#> [1971] "01222"  "0233"   "03122"  "0323"   "02122"  "0311"   "01222"  "02122"  "0323"   "02121" 
#> [1981] "0323"   "0323"   "0332"   "0232"   "02112"  "0232"   "02121"  "02122"  "02122"  "02112" 
#> [1991] "0221"   "02122"  "0231"   "0232"   "0223"   "02123"  "0231"   "0231"   "02112"  "0231"  
#> [2001] "0223"   "02113"  "02112"  "0232"   "02112"  "0222"   "0221"   "02121"  "0232"   "0232"  
#> [2011] "02123"  "0231"   "02121"  "0231"   "0142"   "0221"   "0231"   "0321"   "0223"   "02112" 
#> [2021] "02122"  "0222"   "0223"   "0221"   "0222"   "0321"   "0223"   "02122"  "02122"  "0223"  
#> [2031] "0222"   "02122"  "0223"   "0232"   "0221"   "02113"  "0221"   "02112"  "0223"   "0223"  
#> [2041] "0221"   "0321"   "02112"  "0233"   "0232"   "02113"  "02122"  "02121"  "02121"  "0142"  
#> [2051] "0221"   "02113"  "0231"   "02113"  "02112"  "02121"  "0223"   "02122"  "0321"   "0223"  
#> [2061] "02112"  "0223"   "0223"   "02122"  "0221"   "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2071] "02112"  "0223"   "0232"   "0222"   "02113"  "0233"   "02112"  "0222"   "02112"  "02112" 
#> [2081] "02112"  "02123"  "02122"  "0231"   "02121"  "02122"  "02121"  "0232"   "02121"  "0221"  
#> [2091] "02121"  "0223"   "0223"   "02122"  "0223"   "0223"   "0223"   "02121"  "0223"   "0231"  
#> [2101] "02121"  "02121"  "02121"  "02122"  "02112"  "02112"  "02121"  "02112"  "0231"   "02112" 
#> [2111] "0231"   "0223"   "02112"  "02112"  "02112"  "02112"  "0223"   "02123"  "0231"   "0232"  
#> [2121] "02121"  "02121"  "0233"   "0232"   "0142"   "0223"   "02121"  "0142"   "02112"  "02112" 
#> [2131] "02122"  "02121"  "02112"  "02112"  "02112"  "02121"  "02122"  "02121"  "0221"   "02121" 
#> [2141] "0222"   "0223"   "02122"  "0221"   "0221"   "0222"   "0223"   "02121"  "0223"   "02121" 
#> [2151] "02112"  "02122"  "0223"   "0223"   "02122"  "02112"  "02121"  "0223"   "0223"   "02112" 
#> [2161] "0221"   "0223"   "0221"   "02122"  "0223"   "0223"   "0221"   "02121"  "0223"   "0223"  
#> [2171] "0223"   "0221"   "02121"  "0321"   "0221"   "0221"   "0221"   "021112" "02122"  "02122" 
#> [2181] "02122"  "0223"   "0234"   "0222"   "0223"   "0221"   "0221"   "0221"   "0221"   "0143"  
#> [2191] "0221"   "0142"   "0221"   "03121"  "0221"   "0321"   "0221"   "02113"  "02112"  "0221"  
#> [2201] "0232"   "0231"   "0223"   "0232"   "0232"   "0222"   "02121"  "02121"  "02121"  "0231"  
#> [2211] "0232"   "0221"   "0232"   "0223"   "02121"  "02123"  "02112"  "02112"  "02121"  "02121" 
#> [2221] "0223"   "02123"  "02121"  "02121"  "0221"   "02112"  "02112"  "02121"  "0223"   "02121" 
#> [2231] "0223"   "0223"   "0223"   "0223"   "02121"  "0221"   "0321"   "0222"   "0221"   "0321"  
#> [2241] "0221"   "0321"   "0223"   "0221"   "0223"   "0223"   "0223"   "0231"   "0231"   "0221"  
#> [2251] "0222"   "0321"   "0222"   "0221"   "0231"   "0231"   "0221"   "0221"   "0141"   "0321"  
#> [2261] "02112"  "0221"   "0221"   "0221"   "0223"   "0321"   "0231"   "0221"   "0321"   "0223"  
#> [2271] "0223"   "0223"   "0142"   "0223"   "0142"   "0222"   "0223"   "0321"   "0221"   "0231"  
#> [2281] "0222"   "0221"   "0141"   "0222"   "0221"   "0221"   "0142"   "0321"   "0321"   "0221"  
#> [2291] "0221"   "0321"   "0221"   "0221"   "0142"   "0221"   "0221"   "0221"   "0141"   "0321"  
#> [2301] "0142"   "0142"   "0141"   "0223"   "0142"   "0222"   "0142"   "0142"   "0142"   "0223"  
#> [2311] "0142"   "0321"   "0221"   "0142"   "0141"   "0141"   "01231"  "02122"  "0231"   "0221"  
#> [2321] "0142"   "0221"   "0223"   "0321"   "0221"   "0221"   "0221"   "0221"   "0221"   "0221"  
#> [2331] "0223"   "0221"   "0221"   "0223"   "0321"   "0142"   "0141"   "0321"   "0221"   "0141"  
#> [2341] "0321"   "0321"   "0221"   "02122"  "0232"   "0223"   "0223"   "0223"   "0221"   "0221"  
#> [2351] "0321"   "0222"   "0223"   "0223"   "0221"   "0221"   "0321"   "02121"  "02112"  "0221"  
#> [2361] "02121"  "0221"   "02121"  "0234"   "02121"  "02122"  "0221"   "02112"  "02112"  "0221"  
#> [2371] "0223"   "0223"   "02121"  "0223"   "02121"  "0223"   "0221"   "0221"   "02123"  "02121" 
#> [2381] "0232"   "0223"   "02112"  "02122"  "0232"   "0221"   "0223"   "0223"   "0223"   "0231"  
#> [2391] "02113"  "0223"   "0221"   "0221"   "021112" "02121"  "02122"  "0223"   "0321"   "0221"  
#> [2401] "0141"   "0141"   "0141"   "02122"  "0221"   "0231"   "021112" "0223"   "02122"  "0222"  
#> [2411] "02122"  "0221"   "02122"  "0142"   "0221"   "0223"   "0221"   "0223"   "0231"   "01231" 
#> [2421] "0223"   "0221"   "0321"   "02121"  "02121"  "0231"   "0223"   "0221"   "0223"   "0223"  
#> [2431] "0221"   "0221"   "0141"   "0321"   "0141"   "0221"   "0321"   "0321"   "0321"   "0141"  
#> [2441] "0141"   "01234"  "0321"   "0321"   "0321"   "0223"   "0223"   "0221"   "02122"  "0223"  
#> [2451] "02122"  "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "02122"  "0231"  
#> [2461] "02122"  "02122"  "02122"  "02123"  "02122"  "02123"  "02122"  "02122"  "0222"   "0221"  
#> [2471] "0321"   "0221"   "0221"   "0221"   "02122"  "02122"  "0223"   "02122"  "0223"   "0221"  
#> [2481] "0223"   "02122"  "0223"   "0223"   "02112"  "0223"   "02122"  "02122"  "02122"  "02112" 
#> [2491] "02123"  "02122"  "02122"  "02112"  "0223"   "02122"  "0223"   "02122"  "02122"  "0221"  
#> [2501] "02122"  "0223"   "02121"  "0223"   "0223"   "0221"   "0223"   "0321"   "0321"   "0221"  
#> [2511] "0324"   "02122"  "02122"  "02112"  "02122"  "02122"  "02112"  "02122"  "0221"   "02122" 
#> [2521] "02121"  "02112"  "0221"   "0222"   "0221"   "02122"  "02112"  "0221"   "02122"  "02113" 
#> [2531] "0223"   "02122"  "02112"  "0141"   "02121"  "0321"   "0221"   "0221"   "0221"   "0231"  
#> [2541] "0221"   "0221"   "0221"   "0221"   "0232"   "0221"   "0221"   "0223"   "0142"   "0221"  
#> [2551] "0321"   "0321"   "0142"   "0141"   "02121"  "0321"   "0221"   "0141"   "02112"  "02121" 
#> [2561] "0321"   "02122"  "0321"   "0223"   "0221"   "0321"   "0221"   "0221"   "0221"   "0221"  
#> [2571] "0223"   "0142"   "0141"   "0141"   "0321"   "0321"   "0221"   "0221"   "02112"  "02122" 
#> [2581] "02122"  "0223"   "0223"   "0221"   "0221"   "0222"   "0221"   "0142"   "021112" "0232"  
#> [2591] "0234"   "0232"   "02113"  "02113"  "021111" "02113"  "02113"  "021111" "0231"   "02113" 
#> [2601] "021111" "021111" "0232"   "02113"  "0232"   "0231"   "0234"   "0232"   "0323"   "0142"  
#> [2611] "0232"   "02112"  "0231"   "0221"   "0223"   "0321"   "0221"   "0231"   "0231"   "0234"  
#> [2621] "0233"   "0232"   "0142"   "02112"  "0222"   "0231"   "0142"   "0142"   "0141"   "0231"  
#> [2631] "02112"  "02112"  "02121"  "02112"  "02112"  "0223"   "02122"  "0223"   "0223"   "0221"  
#> [2641] "0221"   "0321"   "0221"   "0221"   "02121"  "0221"   "0221"   "0223"   "0321"   "0221"  
#> [2651] "01221"  "0221"   "0221"   "0221"   "0221"   "0221"   "0231"   "0221"   "0222"   "0221"  
#> [2661] "0221"   "0221"   "0221"   "0321"   "0321"   "0221"   "0321"   "0221"   "0221"   "0321"  
#> [2671] "0221"   "0141"   "0321"   "0221"   "0321"   "0221"   "0221"   "0324"   "01231"  "0141"  
#> [2681] "01231"  "0221"   "0141"   "01231"  "0121"   "0232"   "0232"   "02112"  "02112"  "0321"  
#> [2691] "02121"  "02121"  "0234"   "0231"   "0143"   "0221"   "0324"   "02121"  "0221"   "0321"  
#> [2701] "0221"   "02121"  "0141"   "0222"   "0222"   "0321"   "0142"   "0222"   "0141"   "0142"  
#> [2711] "0222"   "0141"   "0141"   "0231"   "0222"   "0231"   "0141"   "0142"   "0231"   "0141"  
#> [2721] "0223"   "0222"   "0141"   "02112"  "0321"   "0141"   "0321"   "0141"   "01231"  "0321"  
#> [2731] "02121"  "0221"   "0321"   "0221"   "0321"   "0141"   "0141"   "0321"   "0141"   "0321"  
#> [2741] "0141"   "0141"   "02121"  "0221"   "0221"   "0141"   "0141"   "0141"   "0142"   "0321"  
#> [2751] "0141"   "0141"   "0221"   "0221"   "0321"   "0323"   "0142"   "021111" "021111" "021111"
#> [2761] "021111" "021111" "021111" "021111" "0232"   "0142"   "0142"   "0221"   "021111" "02113" 
#> [2771] "021112" "021112" "021111" "021111" "021111" "021112" "021111" "021111" "021112" "021112"
#> [2781] "021112" "0231"   "021111" "021111" "021111" "0232"   "021111" "0232"   "021111" "0142"  
#> [2791] "0142"   "0223"   "0231"   "0231"   "021112" "021112" "021112" "021112" "021111" "021111"
#> [2801] "021111" "02113"  "0233"   "021112" "02113"  "021111" "021112" "0232"   "021111" "021111"
#> [2811] "021111" "021111" "021112" "021112" "021111" "021112" "0221"   "0142"   "0142"   "0142"  
#> [2821] "0221"   "02121"  "0231"   "021112" "021112" "02121"  "021112" "02121"  "021112" "0223"  
#> [2831] "02121"  "02121"  "021112" "02121"  "0231"   "0223"   "02121"  "02121"  "0232"   "0231"  
#> [2841] "021112" "021112" "02112"  "02112"  "02121"  "021111" "02112"  "021112" "021112" "02112" 
#> [2851] "021112" "021111" "0321"   "0231"   "0142"   "0221"   "02123"  "0141"   "0221"   "02112" 
#> [2861] "0231"   "0232"   "0223"   "0223"   "02121"  "02121"  "0231"   "0221"   "02121"  "0221"  
#> [2871] "021112" "02121"  "02123"  "021111" "021112" "02121"  "0223"   "02121"  "0142"   "02121" 
#> [2881] "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 755))
#>    [1] "01232" "01232" "0231"  "0322"  "01232" "01232" "0322"  "01131" "01232" "01232" "01232"
#>   [12] "01131" "0322"  "01232" "01232" "01232" "01232" "01232" "0313"  "01131" "0322"  "01232"
#>   [23] "01131" "0322"  "01232" "0322"  "0322"  "0322"  "01232" "03121" "0322"  "01232" "0322" 
#>   [34] "0322"  "0322"  "01232" "01232" "01232" "03121" "0311"  "01131" "0222"  "01131" "0311" 
#>   [45] "01232" "01232" "0311"  "03121" "0322"  "01131" "03121" "01131" "01131" "01232" "01232"
#>   [56] "02123" "02123" "0143"  "01133" "0313"  "0322"  "01131" "01131" "0222"  "0311"  "01132"
#>   [67] "01232" "01232" "0322"  "01232" "0322"  "0311"  "0322"  "01131" "01131" "0143"  "0111" 
#>   [78] "0112"  "0222"  "01131" "0143"  "0322"  "01131" "0143"  "01133" "0222"  "01131" "01131"
#>   [89] "01131" "01231" "0322"  "0111"  "02113" "01131" "01131" "01131" "01131" "01132" "0143" 
#>  [100] "0313"  "01131" "01131" "0111"  "01133" "0111"  "0322"  "0222"  "0141"  "0142"  "0111" 
#>  [111] "01131" "01131" "01133" "0143"  "01132" "0222"  "0222"  "0322"  "01132" "0321"  "0313" 
#>  [122] "0322"  "0222"  "0222"  "0222"  "0234"  "01231" "0111"  "01133" "01133" "01231" "01131"
#>  [133] "01133" "0324"  "0111"  "0222"  "01131" "01131" "0322"  "0111"  "01131" "0111"  "01232"
#>  [144] "01231" "01231" "0222"  "01131" "02123" "01131" "0324"  "0313"  "0313"  "01131" "0313" 
#>  [155] "0322"  "01131" "0313"  "0234"  "0322"  "0322"  "0322"  "01131" "0313"  "0313"  "0222" 
#>  [166] "01131" "0322"  "0313"  "01131" "01131" "0322"  "0313"  "0313"  "0222"  "0222"  "0313" 
#>  [177] "0313"  "01131" "0313"  "0313"  "03121" "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "03121" "0222"  "0322"  "01131" "0313"  "03121" "0313"  "0322"  "03121" "03121"
#>  [199] "03121" "03122" "03121" "0313"  "03121" "0313"  "03121" "03121" "0322"  "0313"  "0322" 
#>  [210] "0222"  "0313"  "0234"  "0313"  "03121" "0313"  "0313"  "0322"  "0222"  "03121" "01133"
#>  [221] "03121" "0313"  "03122" "0313"  "03121" "0313"  "03121" "03121" "01131" "02113" "0313" 
#>  [232] "0313"  "03121" "0313"  "02113" "03121" "03121" "0313"  "03121" "0313"  "0313"  "0313" 
#>  [243] "03121" "01133" "03121" "03121" "03121" "0222"  "03121" "0313"  "01133" "0313"  "03121"
#>  [254] "03121" "0313"  "0313"  "01133" "03121" "0313"  "0313"  "01133" "0313"  "01133" "01133"
#>  [265] "01133" "0313"  "01133" "01133" "01133" "0313"  "01133" "01133" "0313"  "0313"  "01133"
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "02123" "01133" "0313"  "0313"  "0313"  "0222" 
#>  [287] "0313"  "0313"  "03121" "03121" "03121" "03122" "03121" "03121" "03121" "03121" "03121"
#>  [298] "03122" "02113" "03121" "02113" "0313"  "0313"  "0234"  "0313"  "02113" "0222"  "03122"
#>  [309] "0222"  "03121" "03121" "0313"  "0222"  "0313"  "0313"  "03121" "01133" "0313"  "0313" 
#>  [320] "01133" "0313"  "01133" "03121" "0313"  "0311"  "01133" "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "01133" "01133" "01133" "01132" "0222"  "0222"  "01132" "0313"  "0112"  "0313" 
#>  [342] "0313"  "0222"  "0313"  "0313"  "0313"  "0222"  "0311"  "0311"  "0222"  "0313"  "01133"
#>  [353] "0313"  "0313"  "0313"  "0313"  "03122" "03121" "03122" "03122" "03121" "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "03121" "03121" "03121" "0313"  "03122" "03122" "03121"
#>  [375] "03121" "03121" "03121" "03122" "03122" "0313"  "0111"  "0112"  "0222"  "0311"  "0112" 
#>  [386] "0111"  "0112"  "0311"  "0324"  "0311"  "0112"  "0311"  "0112"  "0311"  "0222"  "0311" 
#>  [397] "0313"  "0311"  "0112"  "0111"  "0311"  "0112"  "0143"  "0311"  "0112"  "0222"  "0111" 
#>  [408] "0311"  "0112"  "0112"  "0311"  "0311"  "02123" "0112"  "0112"  "0112"  "0111"  "01133"
#>  [419] "0311"  "0111"  "0111"  "0111"  "0112"  "0313"  "0234"  "0112"  "0111"  "0112"  "0112" 
#>  [430] "0112"  "0112"  "0234"  "0112"  "0234"  "0111"  "0222"  "0112"  "02123" "0112"  "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "0112"  "0112"  "03122" "03122" "03121" "0311" 
#>  [452] "0112"  "0311"  "0112"  "0112"  "03121" "0112"  "0112"  "03122" "03122" "0311"  "03122"
#>  [463] "0311"  "0311"  "03122" "03122" "03122" "0311"  "03122" "03122" "03122" "0311"  "03122"
#>  [474] "03122" "03122" "0311"  "0311"  "03121" "0311"  "0311"  "0311"  "0311"  "0311"  "0112" 
#>  [485] "02123" "03122" "0311"  "0311"  "0222"  "0222"  "02123" "03121" "03122" "0222"  "03122"
#>  [496] "0112"  "02123" "02113" "0112"  "03122" "02113" "0112"  "0311"  "03122" "0311"  "02113"
#>  [507] "0112"  "0311"  "0311"  "0311"  "0311"  "0222"  "0311"  "0311"  "0112"  "0112"  "0222" 
#>  [518] "0311"  "03121" "0311"  "0112"  "0112"  "0112"  "03122" "03121" "0313"  "03121" "0112" 
#>  [529] "0112"  "0222"  "02123" "02123" "0112"  "0222"  "0111"  "0111"  "0111"  "02123" "0111" 
#>  [540] "0311"  "0112"  "0222"  "0111"  "0112"  "0222"  "0111"  "0111"  "0112"  "0311"  "0111" 
#>  [551] "0111"  "0112"  "0112"  "0112"  "0111"  "0143"  "0112"  "0311"  "0311"  "0143"  "0311" 
#>  [562] "01132" "0324"  "0324"  "01132" "0112"  "0111"  "0222"  "0311"  "0112"  "0112"  "0222" 
#>  [573] "0324"  "0311"  "0112"  "03121" "0111"  "0112"  "0112"  "0222"  "0112"  "0112"  "0111" 
#>  [584] "0112"  "0311"  "0112"  "0311"  "0112"  "0111"  "01132" "0111"  "0313"  "0112"  "03122"
#>  [595] "0313"  "0324"  "0112"  "0313"  "0313"  "0111"  "0111"  "01132" "0111"  "0313"  "0111" 
#>  [606] "0112"  "0222"  "0111"  "0111"  "0111"  "0111"  "0111"  "0112"  "0111"  "0111"  "0234" 
#>  [617] "0311"  "0311"  "0112"  "0311"  "0311"  "0313"  "0112"  "0311"  "0112"  "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "0112"  "0112"  "0313"  "0112"  "0311"  "02113" "0311"  "0112" 
#>  [639] "0112"  "0112"  "0112"  "0311"  "0311"  "0112"  "0311"  "03121" "0112"  "0112"  "0222" 
#>  [650] "0112"  "0112"  "0112"  "0112"  "0112"  "0311"  "0112"  "0112"  "0112"  "0311"  "0311" 
#>  [661] "0311"  "0112"  "0234"  "0112"  "0112"  "03122" "0311"  "0311"  "0311"  "0311"  "0222" 
#>  [672] "0112"  "0222"  "0311"  "0313"  "0234"  "0311"  "0311"  "0222"  "0112"  "0311"  "0311" 
#>  [683] "03122" "03122" "0311"  "03122" "03122" "03122" "0311"  "0311"  "0311"  "0112"  "03122"
#>  [694] "0311"  "0222"  "0311"  "03122" "0112"  "03122" "0143"  "03122" "0112"  "0111"  "0311" 
#>  [705] "0311"  "0222"  "0222"  "0112"  "0324"  "0112"  "0324"  "02123" "0111"  "0112"  "0111" 
#>  [716] "0112"  "0111"  "0111"  "0222"  "0311"  "0311"  "0222"  "0234"  "0112"  "0222"  "0311" 
#>  [727] "0311"  "0311"  "0112"  "0112"  "0311"  "0112"  "0111"  "0311"  "0112"  "0112"  "0111" 
#>  [738] "0111"  "0111"  "0311"  "0112"  "0112"  "0112"  "0311"  "0311"  "0112"  "0311"  "03122"
#>  [749] "03122" "03122" "0311"  "0112"  "0311"  "0112"  "0112"  "0112"  "0311"  "0112"  "0324" 
#>  [760] "0311"  "02123" "0222"  "0112"  "0112"  "0311"  "0112"  "0112"  "0112"  "0111"  "0111" 
#>  [771] "03122" "0112"  "0112"  "0311"  "0112"  "0222"  "0111"  "0112"  "02113" "0112"  "0311" 
#>  [782] "0112"  "0112"  "0111"  "0112"  "0112"  "03122" "0111"  "0311"  "0311"  "0112"  "0112" 
#>  [793] "03122" "0222"  "0112"  "03122" "0111"  "0111"  "0234"  "0311"  "03122" "0222"  "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "0112"  "0311"  "0112"  "0112"  "0112"  "0324"  "0324" 
#>  [815] "01231" "0143"  "0111"  "0112"  "0111"  "02123" "0111"  "0111"  "0111"  "0111"  "0111" 
#>  [826] "0111"  "0111"  "0111"  "0111"  "0112"  "0111"  "0111"  "0111"  "01231" "0111"  "0111" 
#>  [837] "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111" 
#>  [848] "0112"  "0324"  "01231" "01132" "0234"  "0324"  "0222"  "0111"  "0143"  "0143"  "0143" 
#>  [859] "0324"  "0111"  "0111"  "0324"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0112" 
#>  [870] "0311"  "0112"  "0111"  "0112"  "0111"  "0111"  "0111"  "0143"  "0111"  "0111"  "0111" 
#>  [881] "0111"  "0111"  "0111"  "0111"  "01231" "02123" "0111"  "0324"  "0111"  "0324"  "0111" 
#>  [892] "0311"  "0111"  "0111"  "0111"  "0222"  "0222"  "0111"  "0111"  "0111"  "0111"  "0111" 
#>  [903] "0311"  "0111"  "0111"  "0112"  "0112"  "0112"  "0112"  "0111"  "0111"  "0111"  "0111" 
#>  [914] "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0112" 
#>  [925] "0111"  "0111"  "0111"  "0111"  "0222"  "0111"  "0143"  "0111"  "0111"  "0111"  "0222" 
#>  [936] "0324"  "0111"  "0222"  "0111"  "0111"  "0111"  "0143"  "0111"  "0111"  "0111"  "0111" 
#>  [947] "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0311"  "01132" "02123" "0143" 
#>  [958] "0143"  "0111"  "02123" "0222"  "0112"  "0111"  "02123" "0311"  "0112"  "0111"  "0111" 
#>  [969] "0111"  "0311"  "0111"  "0111"  "0222"  "0112"  "01231" "0111"  "0111"  "0111"  "0111" 
#>  [980] "0111"  "0324"  "0324"  "0222"  "0222"  "0311"  "0112"  "0111"  "0112"  "0112"  "0311" 
#>  [991] "0311"  "0112"  "0112"  "0111"  "0311"  "0111"  "0111"  "0324"  "0324"  "0111"  "0222" 
#> [1002] "013"   "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1013] "0121"  "0222"  "0121"  "0222"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1024] "0121"  "0121"  "0323"  "0142"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1035] "0121"  "0311"  "0121"  "03121" "0121"  "02113" "0121"  "01132" "0322"  "0121"  "0121" 
#> [1046] "0121"  "03121" "0121"  "0121"  "0121"  "01132" "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1057] "0121"  "0121"  "01132" "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1068] "0121"  "0121"  "0121"  "0121"  "0121"  "013"   "0121"  "0322"  "0121"  "0121"  "0121" 
#> [1079] "013"   "0121"  "0121"  "0121"  "03121" "0121"  "0121"  "0121"  "0121"  "0311"  "0121" 
#> [1090] "0121"  "0121"  "0121"  "01132" "013"   "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1101] "0142"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0311"  "0121" 
#> [1112] "0121"  "0121"  "0121"  "0121"  "013"   "0121"  "0313"  "0121"  "0141"  "0121"  "0313" 
#> [1123] "0121"  "0121"  "0121"  "0121"  "0121"  "03122" "0121"  "0121"  "0121"  "01132" "01132"
#> [1134] "0121"  "0322"  "0121"  "0121"  "0121"  "0121"  "0121"  "0221"  "0121"  "0121"  "01132"
#> [1145] "0322"  "01232" "0121"  "0111"  "0121"  "0142"  "0121"  "0121"  "01231" "01232" "0121" 
#> [1156] "0121"  "0121"  "0121"  "0121"  "0121"  "01132" "01232" "01132" "0121"  "0121"  "0121" 
#> [1167] "0121"  "0111"  "01132" "0111"  "01231" "0311"  "01132" "0121"  "01132" "01132" "0121" 
#> [1178] "0121"  "0121"  "0121"  "0223"  "0121"  "0141"  "0121"  "0221"  "0111"  "0121"  "0121" 
#> [1189] "01132" "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0141"  "0121"  "01231" "013"  
#> [1200] "0121"  "0121"  "0141"  "0121"  "0121"  "0121"  "0121"  "0121"  "0112"  "0121"  "0121" 
#> [1211] "013"   "0121"  "01232" "0141"  "0222"  "0121"  "0321"  "0313"  "0121"  "0121"  "01131"
#> [1222] "0121"  "0121"  "0221"  "0121"  "0223"  "01232" "0121"  "0121"  "0141"  "0121"  "0121" 
#> [1233] "0121"  "01132" "0121"  "01131" "0112"  "0313"  "0141"  "0121"  "0333"  "0321"  "0311" 
#> [1244] "0121"  "0121"  "0121"  "01132" "01132" "0121"  "0121"  "01132" "01234" "0112"  "0111" 
#> [1255] "0112"  "0221"  "0221"  "0221"  "0223"  "01223" "0121"  "01223" "0121"  "01234" "0311" 
#> [1266] "0141"  "0111"  "01132" "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "02122" "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "0223"  "0331"  "0221"  "013"   "0333"  "02122" "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "01223" "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "0222"  "013"   "013"   "0223"  "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "0223"  "013"   "013"   "013"   "013"   "013"   "013"   "02122" "02122" "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "01234" "01223" "01231" "01234" "0321"  "013"   "013"   "0231"  "0141"  "02113"
#> [1398] "0233"  "0233"  "01231" "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "0112"  "013"   "0311"  "01231" "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "01231" "013"   "013"   "0233"  "013"   "0333"  "0221" 
#> [1453] "013"   "013"   "0221"  "013"   "013"   "013"   "0223"  "013"   "013"   "013"   "013"  
#> [1464] "013"   "01231" "013"   "0111"  "0111"  "01131" "013"   "013"   "0333"  "01231" "0313" 
#> [1475] "0333"  "0313"  "0112"  "02121" "013"   "0221"  "01232" "013"   "013"   "0111"  "013"  
#> [1486] "013"   "013"   "0321"  "0141"  "013"   "0141"  "013"   "013"   "0111"  "0231"  "0141" 
#> [1497] "013"   "0111"  "013"   "0233"  "01231" "0141"  "013"   "0111"  "01231" "0321"  "013"  
#> [1508] "0222"  "013"   "0223"  "01231" "013"   "01231" "013"   "013"   "01231" "013"   "0221" 
#> [1519] "0331"  "0221"  "0233"  "0233"  "0142"  "0221"  "0142"  "013"   "0333"  "013"   "013"  
#> [1530] "013"   "0142"  "013"   "013"   "02113" "01223" "0223"  "0112"  "0111"  "013"   "013"  
#> [1541] "01232" "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "0111"  "013"   "013"   "013"   "0142"  "02121" "0233"  "013"   "01231" "01231"
#> [1563] "0143"  "03121" "0223"  "01133" "013"   "0333"  "013"   "01231" "013"   "0223"  "02121"
#> [1574] "0142"  "02121" "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "0222"  "0331" 
#> [1596] "02113" "02121" "0233"  "013"   "02113" "013"   "0332"  "013"   "02123" "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "0222"  "02113" "0233"  "013"   "0331"  "01132" "02122" "01234" "013"  
#> [1629] "01234" "013"   "0141"  "01234" "0323"  "01234" "02122" "01234" "01234" "01234" "0221" 
#> [1640] "01234" "01234" "013"   "01234" "0233"  "0141"  "01234" "0141"  "01234" "01234" "01234"
#> [1651] "0142"  "01234" "01234" "0321"  "01234" "0111"  "01231" "0111"  "01133" "01234" "01234"
#> [1662] "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01231"
#> [1673] "01233" "01233" "01233" "0231"  "01233" "0112"  "0112"  "0233"  "01233" "01233" "01221"
#> [1684] "0141"  "01233" "0121"  "01132" "0121"  "01232" "01223" "01233" "01233" "0322"  "0121" 
#> [1695] "01233" "01233" "01233" "0112"  "01233" "01233" "0112"  "01233" "0311"  "01233" "01233"
#> [1706] "01221" "0323"  "01223" "01233" "01233" "013"   "0311"  "01233" "01233" "01223" "013"  
#> [1717] "01233" "01233" "0323"  "0323"  "013"   "01233" "0141"  "01233" "01233" "01233" "01233"
#> [1728] "0313"  "01233" "0311"  "0311"  "01233" "0121"  "02121" "01231" "01133" "01223" "01133"
#> [1739] "0112"  "0111"  "01221" "01223" "013"   "01221" "013"   "01221" "01222" "01223" "0323" 
#> [1750] "01222" "03121" "01223" "0221"  "01221" "0221"  "01221" "0111"  "01221" "0142"  "03122"
#> [1761] "0223"  "01221" "0112"  "01223" "0111"  "0221"  "0311"  "0111"  "013"   "0221"  "01221"
#> [1772] "01221" "01221" "01221" "01221" "01221" "01132" "01221" "01221" "01221" "0322"  "01132"
#> [1783] "01221" "01221" "0112"  "01221" "0313"  "0111"  "01221" "0323"  "01222" "0313"  "0313" 
#> [1794] "0323"  "0223"  "01132" "01221" "0313"  "0223"  "01221" "01221" "01221" "01222" "0323" 
#> [1805] "01221" "01221" "0233"  "02121" "0223"  "0311"  "0221"  "01221" "01221" "01131" "01223"
#> [1816] "01221" "01221" "01221" "01221" "01221" "0313"  "01221" "01221" "01221" "01221" "01221"
#> [1827] "01221" "01221" "01222" "0223"  "01221" "01221" "0323"  "01221" "01222" "02122" "0223" 
#> [1838] "01221" "0111"  "01221" "01222" "01222" "02121" "01221" "01221" "0143"  "01221" "01221"
#> [1849] "01222" "01221" "01222" "0323"  "01223" "01234" "0111"  "01234" "01223" "01132" "0322" 
#> [1860] "01233" "03122" "01233" "01233" "0332"  "0223"  "03122" "0321"  "0323"  "02122" "01221"
#> [1871] "01221" "0323"  "0323"  "01221" "01222" "01223" "0231"  "01221" "01223" "0121"  "02112"
#> [1882] "01223" "01223" "01223" "01223" "0323"  "01222" "03122" "01222" "01222" "01132" "0221" 
#> [1893] "01221" "01221" "01222" "0311"  "01221" "01222" "01221" "03121" "013"   "0323"  "01223"
#> [1904] "0311"  "01223" "01223" "0332"  "01223" "01222" "01222" "01222" "01222" "01222" "01221"
#> [1915] "0323"  "01222" "01221" "01132" "01221" "03122" "0223"  "01222" "0323"  "0323"  "01222"
#> [1926] "0311"  "01222" "01222" "01222" "0233"  "0323"  "01222" "02112" "01222" "0323"  "0233" 
#> [1937] "0333"  "01222" "01222" "0323"  "0323"  "01222" "0323"  "01222" "0332"  "0222"  "03122"
#> [1948] "0323"  "01222" "03121" "0323"  "01222" "01222" "02123" "01222" "01222" "0233"  "0323" 
#> [1959] "02113" "0323"  "0221"  "0323"  "0323"  "0222"  "01222" "0323"  "02112" "0331"  "0323" 
#> [1970] "03122" "01222" "0233"  "03122" "0323"  "02122" "0311"  "01222" "02122" "0323"  "02121"
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "02121" "02122" "02122" "02112" "0221" 
#> [1992] "02122" "0231"  "0232"  "0223"  "02123" "0231"  "0231"  "02112" "0231"  "0223"  "02113"
#> [2003] "02112" "0232"  "02112" "0222"  "0221"  "02121" "0232"  "0232"  "02123" "0231"  "02121"
#> [2014] "0231"  "0142"  "0221"  "0231"  "0321"  "0223"  "02112" "02122" "0222"  "0223"  "0221" 
#> [2025] "0222"  "0321"  "0223"  "02122" "02122" "0223"  "0222"  "02122" "0223"  "0232"  "0221" 
#> [2036] "02113" "0221"  "02112" "0223"  "0223"  "0221"  "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "02122" "02121" "02121" "0142"  "0221"  "02113" "0231"  "02113" "02112" "02121" "0223" 
#> [2058] "02122" "0321"  "0223"  "02112" "0223"  "0223"  "02122" "0221"  "0223"  "02122" "02122"
#> [2069] "02122" "02112" "02112" "0223"  "0232"  "0222"  "02113" "0233"  "02112" "0222"  "02112"
#> [2080] "02112" "02112" "02123" "02122" "0231"  "02121" "02122" "02121" "0232"  "02121" "0221" 
#> [2091] "02121" "0223"  "0223"  "02122" "0223"  "0223"  "0223"  "02121" "0223"  "0231"  "02121"
#> [2102] "02121" "02121" "02122" "02112" "02112" "02121" "02112" "0231"  "02112" "0231"  "0223" 
#> [2113] "02112" "02112" "02112" "02112" "0223"  "02123" "0231"  "0232"  "02121" "02121" "0233" 
#> [2124] "0232"  "0142"  "0223"  "02121" "0142"  "02112" "02112" "02122" "02121" "02112" "02112"
#> [2135] "02112" "02121" "02122" "02121" "0221"  "02121" "0222"  "0223"  "02122" "0221"  "0221" 
#> [2146] "0222"  "0223"  "02121" "0223"  "02121" "02112" "02122" "0223"  "0223"  "02122" "02112"
#> [2157] "02121" "0223"  "0223"  "02112" "0221"  "0223"  "0221"  "02122" "0223"  "0223"  "0221" 
#> [2168] "02121" "0223"  "0223"  "0223"  "0221"  "02121" "0321"  "0221"  "0221"  "0221"  "02111"
#> [2179] "02122" "02122" "02122" "0223"  "0234"  "0222"  "0223"  "0221"  "0221"  "0221"  "0221" 
#> [2190] "0143"  "0221"  "0142"  "0221"  "03121" "0221"  "0321"  "0221"  "02113" "02112" "0221" 
#> [2201] "0232"  "0231"  "0223"  "0232"  "0232"  "0222"  "02121" "02121" "02121" "0231"  "0232" 
#> [2212] "0221"  "0232"  "0223"  "02121" "02123" "02112" "02112" "02121" "02121" "0223"  "02123"
#> [2223] "02121" "02121" "0221"  "02112" "02112" "02121" "0223"  "02121" "0223"  "0223"  "0223" 
#> [2234] "0223"  "02121" "0221"  "0321"  "0222"  "0221"  "0321"  "0221"  "0321"  "0223"  "0221" 
#> [2245] "0223"  "0223"  "0223"  "0231"  "0231"  "0221"  "0222"  "0321"  "0222"  "0221"  "0231" 
#> [2256] "0231"  "0221"  "0221"  "0141"  "0321"  "02112" "0221"  "0221"  "0221"  "0223"  "0321" 
#> [2267] "0231"  "0221"  "0321"  "0223"  "0223"  "0223"  "0142"  "0223"  "0142"  "0222"  "0223" 
#> [2278] "0321"  "0221"  "0231"  "0222"  "0221"  "0141"  "0222"  "0221"  "0221"  "0142"  "0321" 
#> [2289] "0321"  "0221"  "0221"  "0321"  "0221"  "0221"  "0142"  "0221"  "0221"  "0221"  "0141" 
#> [2300] "0321"  "0142"  "0142"  "0141"  "0223"  "0142"  "0222"  "0142"  "0142"  "0142"  "0223" 
#> [2311] "0142"  "0321"  "0221"  "0142"  "0141"  "0141"  "01231" "02122" "0231"  "0221"  "0142" 
#> [2322] "0221"  "0223"  "0321"  "0221"  "0221"  "0221"  "0221"  "0221"  "0221"  "0223"  "0221" 
#> [2333] "0221"  "0223"  "0321"  "0142"  "0141"  "0321"  "0221"  "0141"  "0321"  "0321"  "0221" 
#> [2344] "02122" "0232"  "0223"  "0223"  "0223"  "0221"  "0221"  "0321"  "0222"  "0223"  "0223" 
#> [2355] "0221"  "0221"  "0321"  "02121" "02112" "0221"  "02121" "0221"  "02121" "0234"  "02121"
#> [2366] "02122" "0221"  "02112" "02112" "0221"  "0223"  "0223"  "02121" "0223"  "02121" "0223" 
#> [2377] "0221"  "0221"  "02123" "02121" "0232"  "0223"  "02112" "02122" "0232"  "0221"  "0223" 
#> [2388] "0223"  "0223"  "0231"  "02113" "0223"  "0221"  "0221"  "02111" "02121" "02122" "0223" 
#> [2399] "0321"  "0221"  "0141"  "0141"  "0141"  "02122" "0221"  "0231"  "02111" "0223"  "02122"
#> [2410] "0222"  "02122" "0221"  "02122" "0142"  "0221"  "0223"  "0221"  "0223"  "0231"  "01231"
#> [2421] "0223"  "0221"  "0321"  "02121" "02121" "0231"  "0223"  "0221"  "0223"  "0223"  "0221" 
#> [2432] "0221"  "0141"  "0321"  "0141"  "0221"  "0321"  "0321"  "0321"  "0141"  "0141"  "01234"
#> [2443] "0321"  "0321"  "0321"  "0223"  "0223"  "0221"  "02122" "0223"  "02122" "02122" "02122"
#> [2454] "02112" "02122" "02122" "02112" "02122" "02122" "0231"  "02122" "02122" "02122" "02123"
#> [2465] "02122" "02123" "02122" "02122" "0222"  "0221"  "0321"  "0221"  "0221"  "0221"  "02122"
#> [2476] "02122" "0223"  "02122" "0223"  "0221"  "0223"  "02122" "0223"  "0223"  "02112" "0223" 
#> [2487] "02122" "02122" "02122" "02112" "02123" "02122" "02122" "02112" "0223"  "02122" "0223" 
#> [2498] "02122" "02122" "0221"  "02122" "0223"  "02121" "0223"  "0223"  "0221"  "0223"  "0321" 
#> [2509] "0321"  "0221"  "0324"  "02122" "02122" "02112" "02122" "02122" "02112" "02122" "0221" 
#> [2520] "02122" "02121" "02112" "0221"  "0222"  "0221"  "02122" "02112" "0221"  "02122" "02113"
#> [2531] "0223"  "02122" "02112" "0141"  "02121" "0321"  "0221"  "0221"  "0221"  "0231"  "0221" 
#> [2542] "0221"  "0221"  "0221"  "0232"  "0221"  "0221"  "0223"  "0142"  "0221"  "0321"  "0321" 
#> [2553] "0142"  "0141"  "02121" "0321"  "0221"  "0141"  "02112" "02121" "0321"  "02122" "0321" 
#> [2564] "0223"  "0221"  "0321"  "0221"  "0221"  "0221"  "0221"  "0223"  "0142"  "0141"  "0141" 
#> [2575] "0321"  "0321"  "0221"  "0221"  "02112" "02122" "02122" "0223"  "0223"  "0221"  "0221" 
#> [2586] "0222"  "0221"  "0142"  "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "0142"  "0232"  "02112" "0231"  "0221"  "0223"  "0321"  "0221"  "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "0142"  "02112" "0222"  "0231"  "0142"  "0142"  "0141" 
#> [2630] "0231"  "02112" "02112" "02121" "02112" "02112" "0223"  "02122" "0223"  "0223"  "0221" 
#> [2641] "0221"  "0321"  "0221"  "0221"  "02121" "0221"  "0221"  "0223"  "0321"  "0221"  "01221"
#> [2652] "0221"  "0221"  "0221"  "0221"  "0221"  "0231"  "0221"  "0222"  "0221"  "0221"  "0221" 
#> [2663] "0221"  "0321"  "0321"  "0221"  "0321"  "0221"  "0221"  "0321"  "0221"  "0141"  "0321" 
#> [2674] "0221"  "0321"  "0221"  "0221"  "0324"  "01231" "0141"  "01231" "0221"  "0141"  "01231"
#> [2685] "0121"  "0232"  "0232"  "02112" "02112" "0321"  "02121" "02121" "0234"  "0231"  "0143" 
#> [2696] "0221"  "0324"  "02121" "0221"  "0321"  "0221"  "02121" "0141"  "0222"  "0222"  "0321" 
#> [2707] "0142"  "0222"  "0141"  "0142"  "0222"  "0141"  "0141"  "0231"  "0222"  "0231"  "0141" 
#> [2718] "0142"  "0231"  "0141"  "0223"  "0222"  "0141"  "02112" "0321"  "0141"  "0321"  "0141" 
#> [2729] "01231" "0321"  "02121" "0221"  "0321"  "0221"  "0321"  "0141"  "0141"  "0321"  "0141" 
#> [2740] "0321"  "0141"  "0141"  "02121" "0221"  "0221"  "0141"  "0141"  "0141"  "0142"  "0321" 
#> [2751] "0141"  "0141"  "0221"  "0221"  "0321"  "0323"  "0142"  "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "0142"  "0142"  "0221"  "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "0142"  "0142"  "0223"  "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "0221"  "0142"  "0142"  "0142"  "0221"  "02121" "0231"  "02111" "02111" "02121" "02111"
#> [2828] "02121" "02111" "0223"  "02121" "02121" "02111" "02121" "0231"  "0223"  "02121" "02121"
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "02121" "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "0142"  "0221"  "02123" "0141"  "0221"  "02112"
#> [2861] "0231"  "0232"  "0223"  "0223"  "02121" "02121" "0231"  "0221"  "02121" "0221"  "02111"
#> [2872] "02121" "02123" "02111" "02111" "02121" "0223"  "02121" "0142"  "02121" "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 890))
#>    [1] "01232" "01232" "0231"  "0322"  "01232" "01232" "0322"  "0113"  "01232" "01232" "01232"
#>   [12] "0113"  "0322"  "01232" "01232" "01232" "01232" "01232" "0313"  "0113"  "0322"  "01232"
#>   [23] "0113"  "0322"  "01232" "0322"  "0322"  "0322"  "01232" "03121" "0322"  "01232" "0322" 
#>   [34] "0322"  "0322"  "01232" "01232" "01232" "03121" "0311"  "0113"  "0222"  "0113"  "0311" 
#>   [45] "01232" "01232" "0311"  "03121" "0322"  "0113"  "03121" "0113"  "0113"  "01232" "01232"
#>   [56] "02123" "02123" "0143"  "0113"  "0313"  "0322"  "0113"  "0113"  "0222"  "0311"  "0113" 
#>   [67] "01232" "01232" "0322"  "01232" "0322"  "0311"  "0322"  "0113"  "0113"  "0143"  "0111" 
#>   [78] "0112"  "0222"  "0113"  "0143"  "0322"  "0113"  "0143"  "0113"  "0222"  "0113"  "0113" 
#>   [89] "0113"  "01231" "0322"  "0111"  "02113" "0113"  "0113"  "0113"  "0113"  "0113"  "0143" 
#>  [100] "0313"  "0113"  "0113"  "0111"  "0113"  "0111"  "0322"  "0222"  "0141"  "0142"  "0111" 
#>  [111] "0113"  "0113"  "0113"  "0143"  "0113"  "0222"  "0222"  "0322"  "0113"  "0321"  "0313" 
#>  [122] "0322"  "0222"  "0222"  "0222"  "0234"  "01231" "0111"  "0113"  "0113"  "01231" "0113" 
#>  [133] "0113"  "0324"  "0111"  "0222"  "0113"  "0113"  "0322"  "0111"  "0113"  "0111"  "01232"
#>  [144] "01231" "01231" "0222"  "0113"  "02123" "0113"  "0324"  "0313"  "0313"  "0113"  "0313" 
#>  [155] "0322"  "0113"  "0313"  "0234"  "0322"  "0322"  "0322"  "0113"  "0313"  "0313"  "0222" 
#>  [166] "0113"  "0322"  "0313"  "0113"  "0113"  "0322"  "0313"  "0313"  "0222"  "0222"  "0313" 
#>  [177] "0313"  "0113"  "0313"  "0313"  "03121" "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "03121" "0222"  "0322"  "0113"  "0313"  "03121" "0313"  "0322"  "03121" "03121"
#>  [199] "03121" "03122" "03121" "0313"  "03121" "0313"  "03121" "03121" "0322"  "0313"  "0322" 
#>  [210] "0222"  "0313"  "0234"  "0313"  "03121" "0313"  "0313"  "0322"  "0222"  "03121" "0113" 
#>  [221] "03121" "0313"  "03122" "0313"  "03121" "0313"  "03121" "03121" "0113"  "02113" "0313" 
#>  [232] "0313"  "03121" "0313"  "02113" "03121" "03121" "0313"  "03121" "0313"  "0313"  "0313" 
#>  [243] "03121" "0113"  "03121" "03121" "03121" "0222"  "03121" "0313"  "0113"  "0313"  "03121"
#>  [254] "03121" "0313"  "0313"  "0113"  "03121" "0313"  "0313"  "0113"  "0313"  "0113"  "0113" 
#>  [265] "0113"  "0313"  "0113"  "0113"  "0113"  "0313"  "0113"  "0113"  "0313"  "0313"  "0113" 
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "02123" "0113"  "0313"  "0313"  "0313"  "0222" 
#>  [287] "0313"  "0313"  "03121" "03121" "03121" "03122" "03121" "03121" "03121" "03121" "03121"
#>  [298] "03122" "02113" "03121" "02113" "0313"  "0313"  "0234"  "0313"  "02113" "0222"  "03122"
#>  [309] "0222"  "03121" "03121" "0313"  "0222"  "0313"  "0313"  "03121" "0113"  "0313"  "0313" 
#>  [320] "0113"  "0313"  "0113"  "03121" "0313"  "0311"  "0113"  "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "0113"  "0113"  "0113"  "0113"  "0222"  "0222"  "0113"  "0313"  "0112"  "0313" 
#>  [342] "0313"  "0222"  "0313"  "0313"  "0313"  "0222"  "0311"  "0311"  "0222"  "0313"  "0113" 
#>  [353] "0313"  "0313"  "0313"  "0313"  "03122" "03121" "03122" "03122" "03121" "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "03121" "03121" "03121" "0313"  "03122" "03122" "03121"
#>  [375] "03121" "03121" "03121" "03122" "03122" "0313"  "0111"  "0112"  "0222"  "0311"  "0112" 
#>  [386] "0111"  "0112"  "0311"  "0324"  "0311"  "0112"  "0311"  "0112"  "0311"  "0222"  "0311" 
#>  [397] "0313"  "0311"  "0112"  "0111"  "0311"  "0112"  "0143"  "0311"  "0112"  "0222"  "0111" 
#>  [408] "0311"  "0112"  "0112"  "0311"  "0311"  "02123" "0112"  "0112"  "0112"  "0111"  "0113" 
#>  [419] "0311"  "0111"  "0111"  "0111"  "0112"  "0313"  "0234"  "0112"  "0111"  "0112"  "0112" 
#>  [430] "0112"  "0112"  "0234"  "0112"  "0234"  "0111"  "0222"  "0112"  "02123" "0112"  "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "0112"  "0112"  "03122" "03122" "03121" "0311" 
#>  [452] "0112"  "0311"  "0112"  "0112"  "03121" "0112"  "0112"  "03122" "03122" "0311"  "03122"
#>  [463] "0311"  "0311"  "03122" "03122" "03122" "0311"  "03122" "03122" "03122" "0311"  "03122"
#>  [474] "03122" "03122" "0311"  "0311"  "03121" "0311"  "0311"  "0311"  "0311"  "0311"  "0112" 
#>  [485] "02123" "03122" "0311"  "0311"  "0222"  "0222"  "02123" "03121" "03122" "0222"  "03122"
#>  [496] "0112"  "02123" "02113" "0112"  "03122" "02113" "0112"  "0311"  "03122" "0311"  "02113"
#>  [507] "0112"  "0311"  "0311"  "0311"  "0311"  "0222"  "0311"  "0311"  "0112"  "0112"  "0222" 
#>  [518] "0311"  "03121" "0311"  "0112"  "0112"  "0112"  "03122" "03121" "0313"  "03121" "0112" 
#>  [529] "0112"  "0222"  "02123" "02123" "0112"  "0222"  "0111"  "0111"  "0111"  "02123" "0111" 
#>  [540] "0311"  "0112"  "0222"  "0111"  "0112"  "0222"  "0111"  "0111"  "0112"  "0311"  "0111" 
#>  [551] "0111"  "0112"  "0112"  "0112"  "0111"  "0143"  "0112"  "0311"  "0311"  "0143"  "0311" 
#>  [562] "0113"  "0324"  "0324"  "0113"  "0112"  "0111"  "0222"  "0311"  "0112"  "0112"  "0222" 
#>  [573] "0324"  "0311"  "0112"  "03121" "0111"  "0112"  "0112"  "0222"  "0112"  "0112"  "0111" 
#>  [584] "0112"  "0311"  "0112"  "0311"  "0112"  "0111"  "0113"  "0111"  "0313"  "0112"  "03122"
#>  [595] "0313"  "0324"  "0112"  "0313"  "0313"  "0111"  "0111"  "0113"  "0111"  "0313"  "0111" 
#>  [606] "0112"  "0222"  "0111"  "0111"  "0111"  "0111"  "0111"  "0112"  "0111"  "0111"  "0234" 
#>  [617] "0311"  "0311"  "0112"  "0311"  "0311"  "0313"  "0112"  "0311"  "0112"  "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "0112"  "0112"  "0313"  "0112"  "0311"  "02113" "0311"  "0112" 
#>  [639] "0112"  "0112"  "0112"  "0311"  "0311"  "0112"  "0311"  "03121" "0112"  "0112"  "0222" 
#>  [650] "0112"  "0112"  "0112"  "0112"  "0112"  "0311"  "0112"  "0112"  "0112"  "0311"  "0311" 
#>  [661] "0311"  "0112"  "0234"  "0112"  "0112"  "03122" "0311"  "0311"  "0311"  "0311"  "0222" 
#>  [672] "0112"  "0222"  "0311"  "0313"  "0234"  "0311"  "0311"  "0222"  "0112"  "0311"  "0311" 
#>  [683] "03122" "03122" "0311"  "03122" "03122" "03122" "0311"  "0311"  "0311"  "0112"  "03122"
#>  [694] "0311"  "0222"  "0311"  "03122" "0112"  "03122" "0143"  "03122" "0112"  "0111"  "0311" 
#>  [705] "0311"  "0222"  "0222"  "0112"  "0324"  "0112"  "0324"  "02123" "0111"  "0112"  "0111" 
#>  [716] "0112"  "0111"  "0111"  "0222"  "0311"  "0311"  "0222"  "0234"  "0112"  "0222"  "0311" 
#>  [727] "0311"  "0311"  "0112"  "0112"  "0311"  "0112"  "0111"  "0311"  "0112"  "0112"  "0111" 
#>  [738] "0111"  "0111"  "0311"  "0112"  "0112"  "0112"  "0311"  "0311"  "0112"  "0311"  "03122"
#>  [749] "03122" "03122" "0311"  "0112"  "0311"  "0112"  "0112"  "0112"  "0311"  "0112"  "0324" 
#>  [760] "0311"  "02123" "0222"  "0112"  "0112"  "0311"  "0112"  "0112"  "0112"  "0111"  "0111" 
#>  [771] "03122" "0112"  "0112"  "0311"  "0112"  "0222"  "0111"  "0112"  "02113" "0112"  "0311" 
#>  [782] "0112"  "0112"  "0111"  "0112"  "0112"  "03122" "0111"  "0311"  "0311"  "0112"  "0112" 
#>  [793] "03122" "0222"  "0112"  "03122" "0111"  "0111"  "0234"  "0311"  "03122" "0222"  "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "0112"  "0311"  "0112"  "0112"  "0112"  "0324"  "0324" 
#>  [815] "01231" "0143"  "0111"  "0112"  "0111"  "02123" "0111"  "0111"  "0111"  "0111"  "0111" 
#>  [826] "0111"  "0111"  "0111"  "0111"  "0112"  "0111"  "0111"  "0111"  "01231" "0111"  "0111" 
#>  [837] "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111" 
#>  [848] "0112"  "0324"  "01231" "0113"  "0234"  "0324"  "0222"  "0111"  "0143"  "0143"  "0143" 
#>  [859] "0324"  "0111"  "0111"  "0324"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0112" 
#>  [870] "0311"  "0112"  "0111"  "0112"  "0111"  "0111"  "0111"  "0143"  "0111"  "0111"  "0111" 
#>  [881] "0111"  "0111"  "0111"  "0111"  "01231" "02123" "0111"  "0324"  "0111"  "0324"  "0111" 
#>  [892] "0311"  "0111"  "0111"  "0111"  "0222"  "0222"  "0111"  "0111"  "0111"  "0111"  "0111" 
#>  [903] "0311"  "0111"  "0111"  "0112"  "0112"  "0112"  "0112"  "0111"  "0111"  "0111"  "0111" 
#>  [914] "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0112" 
#>  [925] "0111"  "0111"  "0111"  "0111"  "0222"  "0111"  "0143"  "0111"  "0111"  "0111"  "0222" 
#>  [936] "0324"  "0111"  "0222"  "0111"  "0111"  "0111"  "0143"  "0111"  "0111"  "0111"  "0111" 
#>  [947] "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0111"  "0311"  "0113"  "02123" "0143" 
#>  [958] "0143"  "0111"  "02123" "0222"  "0112"  "0111"  "02123" "0311"  "0112"  "0111"  "0111" 
#>  [969] "0111"  "0311"  "0111"  "0111"  "0222"  "0112"  "01231" "0111"  "0111"  "0111"  "0111" 
#>  [980] "0111"  "0324"  "0324"  "0222"  "0222"  "0311"  "0112"  "0111"  "0112"  "0112"  "0311" 
#>  [991] "0311"  "0112"  "0112"  "0111"  "0311"  "0111"  "0111"  "0324"  "0324"  "0111"  "0222" 
#> [1002] "013"   "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1013] "0121"  "0222"  "0121"  "0222"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1024] "0121"  "0121"  "0323"  "0142"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1035] "0121"  "0311"  "0121"  "03121" "0121"  "02113" "0121"  "0113"  "0322"  "0121"  "0121" 
#> [1046] "0121"  "03121" "0121"  "0121"  "0121"  "0113"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1057] "0121"  "0121"  "0113"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1068] "0121"  "0121"  "0121"  "0121"  "0121"  "013"   "0121"  "0322"  "0121"  "0121"  "0121" 
#> [1079] "013"   "0121"  "0121"  "0121"  "03121" "0121"  "0121"  "0121"  "0121"  "0311"  "0121" 
#> [1090] "0121"  "0121"  "0121"  "0113"  "013"   "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1101] "0142"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0311"  "0121" 
#> [1112] "0121"  "0121"  "0121"  "0121"  "013"   "0121"  "0313"  "0121"  "0141"  "0121"  "0313" 
#> [1123] "0121"  "0121"  "0121"  "0121"  "0121"  "03122" "0121"  "0121"  "0121"  "0113"  "0113" 
#> [1134] "0121"  "0322"  "0121"  "0121"  "0121"  "0121"  "0121"  "0221"  "0121"  "0121"  "0113" 
#> [1145] "0322"  "01232" "0121"  "0111"  "0121"  "0142"  "0121"  "0121"  "01231" "01232" "0121" 
#> [1156] "0121"  "0121"  "0121"  "0121"  "0121"  "0113"  "01232" "0113"  "0121"  "0121"  "0121" 
#> [1167] "0121"  "0111"  "0113"  "0111"  "01231" "0311"  "0113"  "0121"  "0113"  "0113"  "0121" 
#> [1178] "0121"  "0121"  "0121"  "0223"  "0121"  "0141"  "0121"  "0221"  "0111"  "0121"  "0121" 
#> [1189] "0113"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0141"  "0121"  "01231" "013"  
#> [1200] "0121"  "0121"  "0141"  "0121"  "0121"  "0121"  "0121"  "0121"  "0112"  "0121"  "0121" 
#> [1211] "013"   "0121"  "01232" "0141"  "0222"  "0121"  "0321"  "0313"  "0121"  "0121"  "0113" 
#> [1222] "0121"  "0121"  "0221"  "0121"  "0223"  "01232" "0121"  "0121"  "0141"  "0121"  "0121" 
#> [1233] "0121"  "0113"  "0121"  "0113"  "0112"  "0313"  "0141"  "0121"  "0333"  "0321"  "0311" 
#> [1244] "0121"  "0121"  "0121"  "0113"  "0113"  "0121"  "0121"  "0113"  "01234" "0112"  "0111" 
#> [1255] "0112"  "0221"  "0221"  "0221"  "0223"  "01223" "0121"  "01223" "0121"  "01234" "0311" 
#> [1266] "0141"  "0111"  "0113"  "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "02122" "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "0223"  "0331"  "0221"  "013"   "0333"  "02122" "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "01223" "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "0222"  "013"   "013"   "0223"  "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "0223"  "013"   "013"   "013"   "013"   "013"   "013"   "02122" "02122" "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "01234" "01223" "01231" "01234" "0321"  "013"   "013"   "0231"  "0141"  "02113"
#> [1398] "0233"  "0233"  "01231" "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "0112"  "013"   "0311"  "01231" "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "01231" "013"   "013"   "0233"  "013"   "0333"  "0221" 
#> [1453] "013"   "013"   "0221"  "013"   "013"   "013"   "0223"  "013"   "013"   "013"   "013"  
#> [1464] "013"   "01231" "013"   "0111"  "0111"  "0113"  "013"   "013"   "0333"  "01231" "0313" 
#> [1475] "0333"  "0313"  "0112"  "02121" "013"   "0221"  "01232" "013"   "013"   "0111"  "013"  
#> [1486] "013"   "013"   "0321"  "0141"  "013"   "0141"  "013"   "013"   "0111"  "0231"  "0141" 
#> [1497] "013"   "0111"  "013"   "0233"  "01231" "0141"  "013"   "0111"  "01231" "0321"  "013"  
#> [1508] "0222"  "013"   "0223"  "01231" "013"   "01231" "013"   "013"   "01231" "013"   "0221" 
#> [1519] "0331"  "0221"  "0233"  "0233"  "0142"  "0221"  "0142"  "013"   "0333"  "013"   "013"  
#> [1530] "013"   "0142"  "013"   "013"   "02113" "01223" "0223"  "0112"  "0111"  "013"   "013"  
#> [1541] "01232" "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "0111"  "013"   "013"   "013"   "0142"  "02121" "0233"  "013"   "01231" "01231"
#> [1563] "0143"  "03121" "0223"  "0113"  "013"   "0333"  "013"   "01231" "013"   "0223"  "02121"
#> [1574] "0142"  "02121" "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "0222"  "0331" 
#> [1596] "02113" "02121" "0233"  "013"   "02113" "013"   "0332"  "013"   "02123" "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "0222"  "02113" "0233"  "013"   "0331"  "0113"  "02122" "01234" "013"  
#> [1629] "01234" "013"   "0141"  "01234" "0323"  "01234" "02122" "01234" "01234" "01234" "0221" 
#> [1640] "01234" "01234" "013"   "01234" "0233"  "0141"  "01234" "0141"  "01234" "01234" "01234"
#> [1651] "0142"  "01234" "01234" "0321"  "01234" "0111"  "01231" "0111"  "0113"  "01234" "01234"
#> [1662] "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01231"
#> [1673] "01233" "01233" "01233" "0231"  "01233" "0112"  "0112"  "0233"  "01233" "01233" "01221"
#> [1684] "0141"  "01233" "0121"  "0113"  "0121"  "01232" "01223" "01233" "01233" "0322"  "0121" 
#> [1695] "01233" "01233" "01233" "0112"  "01233" "01233" "0112"  "01233" "0311"  "01233" "01233"
#> [1706] "01221" "0323"  "01223" "01233" "01233" "013"   "0311"  "01233" "01233" "01223" "013"  
#> [1717] "01233" "01233" "0323"  "0323"  "013"   "01233" "0141"  "01233" "01233" "01233" "01233"
#> [1728] "0313"  "01233" "0311"  "0311"  "01233" "0121"  "02121" "01231" "0113"  "01223" "0113" 
#> [1739] "0112"  "0111"  "01221" "01223" "013"   "01221" "013"   "01221" "01222" "01223" "0323" 
#> [1750] "01222" "03121" "01223" "0221"  "01221" "0221"  "01221" "0111"  "01221" "0142"  "03122"
#> [1761] "0223"  "01221" "0112"  "01223" "0111"  "0221"  "0311"  "0111"  "013"   "0221"  "01221"
#> [1772] "01221" "01221" "01221" "01221" "01221" "0113"  "01221" "01221" "01221" "0322"  "0113" 
#> [1783] "01221" "01221" "0112"  "01221" "0313"  "0111"  "01221" "0323"  "01222" "0313"  "0313" 
#> [1794] "0323"  "0223"  "0113"  "01221" "0313"  "0223"  "01221" "01221" "01221" "01222" "0323" 
#> [1805] "01221" "01221" "0233"  "02121" "0223"  "0311"  "0221"  "01221" "01221" "0113"  "01223"
#> [1816] "01221" "01221" "01221" "01221" "01221" "0313"  "01221" "01221" "01221" "01221" "01221"
#> [1827] "01221" "01221" "01222" "0223"  "01221" "01221" "0323"  "01221" "01222" "02122" "0223" 
#> [1838] "01221" "0111"  "01221" "01222" "01222" "02121" "01221" "01221" "0143"  "01221" "01221"
#> [1849] "01222" "01221" "01222" "0323"  "01223" "01234" "0111"  "01234" "01223" "0113"  "0322" 
#> [1860] "01233" "03122" "01233" "01233" "0332"  "0223"  "03122" "0321"  "0323"  "02122" "01221"
#> [1871] "01221" "0323"  "0323"  "01221" "01222" "01223" "0231"  "01221" "01223" "0121"  "02112"
#> [1882] "01223" "01223" "01223" "01223" "0323"  "01222" "03122" "01222" "01222" "0113"  "0221" 
#> [1893] "01221" "01221" "01222" "0311"  "01221" "01222" "01221" "03121" "013"   "0323"  "01223"
#> [1904] "0311"  "01223" "01223" "0332"  "01223" "01222" "01222" "01222" "01222" "01222" "01221"
#> [1915] "0323"  "01222" "01221" "0113"  "01221" "03122" "0223"  "01222" "0323"  "0323"  "01222"
#> [1926] "0311"  "01222" "01222" "01222" "0233"  "0323"  "01222" "02112" "01222" "0323"  "0233" 
#> [1937] "0333"  "01222" "01222" "0323"  "0323"  "01222" "0323"  "01222" "0332"  "0222"  "03122"
#> [1948] "0323"  "01222" "03121" "0323"  "01222" "01222" "02123" "01222" "01222" "0233"  "0323" 
#> [1959] "02113" "0323"  "0221"  "0323"  "0323"  "0222"  "01222" "0323"  "02112" "0331"  "0323" 
#> [1970] "03122" "01222" "0233"  "03122" "0323"  "02122" "0311"  "01222" "02122" "0323"  "02121"
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "02121" "02122" "02122" "02112" "0221" 
#> [1992] "02122" "0231"  "0232"  "0223"  "02123" "0231"  "0231"  "02112" "0231"  "0223"  "02113"
#> [2003] "02112" "0232"  "02112" "0222"  "0221"  "02121" "0232"  "0232"  "02123" "0231"  "02121"
#> [2014] "0231"  "0142"  "0221"  "0231"  "0321"  "0223"  "02112" "02122" "0222"  "0223"  "0221" 
#> [2025] "0222"  "0321"  "0223"  "02122" "02122" "0223"  "0222"  "02122" "0223"  "0232"  "0221" 
#> [2036] "02113" "0221"  "02112" "0223"  "0223"  "0221"  "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "02122" "02121" "02121" "0142"  "0221"  "02113" "0231"  "02113" "02112" "02121" "0223" 
#> [2058] "02122" "0321"  "0223"  "02112" "0223"  "0223"  "02122" "0221"  "0223"  "02122" "02122"
#> [2069] "02122" "02112" "02112" "0223"  "0232"  "0222"  "02113" "0233"  "02112" "0222"  "02112"
#> [2080] "02112" "02112" "02123" "02122" "0231"  "02121" "02122" "02121" "0232"  "02121" "0221" 
#> [2091] "02121" "0223"  "0223"  "02122" "0223"  "0223"  "0223"  "02121" "0223"  "0231"  "02121"
#> [2102] "02121" "02121" "02122" "02112" "02112" "02121" "02112" "0231"  "02112" "0231"  "0223" 
#> [2113] "02112" "02112" "02112" "02112" "0223"  "02123" "0231"  "0232"  "02121" "02121" "0233" 
#> [2124] "0232"  "0142"  "0223"  "02121" "0142"  "02112" "02112" "02122" "02121" "02112" "02112"
#> [2135] "02112" "02121" "02122" "02121" "0221"  "02121" "0222"  "0223"  "02122" "0221"  "0221" 
#> [2146] "0222"  "0223"  "02121" "0223"  "02121" "02112" "02122" "0223"  "0223"  "02122" "02112"
#> [2157] "02121" "0223"  "0223"  "02112" "0221"  "0223"  "0221"  "02122" "0223"  "0223"  "0221" 
#> [2168] "02121" "0223"  "0223"  "0223"  "0221"  "02121" "0321"  "0221"  "0221"  "0221"  "02111"
#> [2179] "02122" "02122" "02122" "0223"  "0234"  "0222"  "0223"  "0221"  "0221"  "0221"  "0221" 
#> [2190] "0143"  "0221"  "0142"  "0221"  "03121" "0221"  "0321"  "0221"  "02113" "02112" "0221" 
#> [2201] "0232"  "0231"  "0223"  "0232"  "0232"  "0222"  "02121" "02121" "02121" "0231"  "0232" 
#> [2212] "0221"  "0232"  "0223"  "02121" "02123" "02112" "02112" "02121" "02121" "0223"  "02123"
#> [2223] "02121" "02121" "0221"  "02112" "02112" "02121" "0223"  "02121" "0223"  "0223"  "0223" 
#> [2234] "0223"  "02121" "0221"  "0321"  "0222"  "0221"  "0321"  "0221"  "0321"  "0223"  "0221" 
#> [2245] "0223"  "0223"  "0223"  "0231"  "0231"  "0221"  "0222"  "0321"  "0222"  "0221"  "0231" 
#> [2256] "0231"  "0221"  "0221"  "0141"  "0321"  "02112" "0221"  "0221"  "0221"  "0223"  "0321" 
#> [2267] "0231"  "0221"  "0321"  "0223"  "0223"  "0223"  "0142"  "0223"  "0142"  "0222"  "0223" 
#> [2278] "0321"  "0221"  "0231"  "0222"  "0221"  "0141"  "0222"  "0221"  "0221"  "0142"  "0321" 
#> [2289] "0321"  "0221"  "0221"  "0321"  "0221"  "0221"  "0142"  "0221"  "0221"  "0221"  "0141" 
#> [2300] "0321"  "0142"  "0142"  "0141"  "0223"  "0142"  "0222"  "0142"  "0142"  "0142"  "0223" 
#> [2311] "0142"  "0321"  "0221"  "0142"  "0141"  "0141"  "01231" "02122" "0231"  "0221"  "0142" 
#> [2322] "0221"  "0223"  "0321"  "0221"  "0221"  "0221"  "0221"  "0221"  "0221"  "0223"  "0221" 
#> [2333] "0221"  "0223"  "0321"  "0142"  "0141"  "0321"  "0221"  "0141"  "0321"  "0321"  "0221" 
#> [2344] "02122" "0232"  "0223"  "0223"  "0223"  "0221"  "0221"  "0321"  "0222"  "0223"  "0223" 
#> [2355] "0221"  "0221"  "0321"  "02121" "02112" "0221"  "02121" "0221"  "02121" "0234"  "02121"
#> [2366] "02122" "0221"  "02112" "02112" "0221"  "0223"  "0223"  "02121" "0223"  "02121" "0223" 
#> [2377] "0221"  "0221"  "02123" "02121" "0232"  "0223"  "02112" "02122" "0232"  "0221"  "0223" 
#> [2388] "0223"  "0223"  "0231"  "02113" "0223"  "0221"  "0221"  "02111" "02121" "02122" "0223" 
#> [2399] "0321"  "0221"  "0141"  "0141"  "0141"  "02122" "0221"  "0231"  "02111" "0223"  "02122"
#> [2410] "0222"  "02122" "0221"  "02122" "0142"  "0221"  "0223"  "0221"  "0223"  "0231"  "01231"
#> [2421] "0223"  "0221"  "0321"  "02121" "02121" "0231"  "0223"  "0221"  "0223"  "0223"  "0221" 
#> [2432] "0221"  "0141"  "0321"  "0141"  "0221"  "0321"  "0321"  "0321"  "0141"  "0141"  "01234"
#> [2443] "0321"  "0321"  "0321"  "0223"  "0223"  "0221"  "02122" "0223"  "02122" "02122" "02122"
#> [2454] "02112" "02122" "02122" "02112" "02122" "02122" "0231"  "02122" "02122" "02122" "02123"
#> [2465] "02122" "02123" "02122" "02122" "0222"  "0221"  "0321"  "0221"  "0221"  "0221"  "02122"
#> [2476] "02122" "0223"  "02122" "0223"  "0221"  "0223"  "02122" "0223"  "0223"  "02112" "0223" 
#> [2487] "02122" "02122" "02122" "02112" "02123" "02122" "02122" "02112" "0223"  "02122" "0223" 
#> [2498] "02122" "02122" "0221"  "02122" "0223"  "02121" "0223"  "0223"  "0221"  "0223"  "0321" 
#> [2509] "0321"  "0221"  "0324"  "02122" "02122" "02112" "02122" "02122" "02112" "02122" "0221" 
#> [2520] "02122" "02121" "02112" "0221"  "0222"  "0221"  "02122" "02112" "0221"  "02122" "02113"
#> [2531] "0223"  "02122" "02112" "0141"  "02121" "0321"  "0221"  "0221"  "0221"  "0231"  "0221" 
#> [2542] "0221"  "0221"  "0221"  "0232"  "0221"  "0221"  "0223"  "0142"  "0221"  "0321"  "0321" 
#> [2553] "0142"  "0141"  "02121" "0321"  "0221"  "0141"  "02112" "02121" "0321"  "02122" "0321" 
#> [2564] "0223"  "0221"  "0321"  "0221"  "0221"  "0221"  "0221"  "0223"  "0142"  "0141"  "0141" 
#> [2575] "0321"  "0321"  "0221"  "0221"  "02112" "02122" "02122" "0223"  "0223"  "0221"  "0221" 
#> [2586] "0222"  "0221"  "0142"  "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "0142"  "0232"  "02112" "0231"  "0221"  "0223"  "0321"  "0221"  "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "0142"  "02112" "0222"  "0231"  "0142"  "0142"  "0141" 
#> [2630] "0231"  "02112" "02112" "02121" "02112" "02112" "0223"  "02122" "0223"  "0223"  "0221" 
#> [2641] "0221"  "0321"  "0221"  "0221"  "02121" "0221"  "0221"  "0223"  "0321"  "0221"  "01221"
#> [2652] "0221"  "0221"  "0221"  "0221"  "0221"  "0231"  "0221"  "0222"  "0221"  "0221"  "0221" 
#> [2663] "0221"  "0321"  "0321"  "0221"  "0321"  "0221"  "0221"  "0321"  "0221"  "0141"  "0321" 
#> [2674] "0221"  "0321"  "0221"  "0221"  "0324"  "01231" "0141"  "01231" "0221"  "0141"  "01231"
#> [2685] "0121"  "0232"  "0232"  "02112" "02112" "0321"  "02121" "02121" "0234"  "0231"  "0143" 
#> [2696] "0221"  "0324"  "02121" "0221"  "0321"  "0221"  "02121" "0141"  "0222"  "0222"  "0321" 
#> [2707] "0142"  "0222"  "0141"  "0142"  "0222"  "0141"  "0141"  "0231"  "0222"  "0231"  "0141" 
#> [2718] "0142"  "0231"  "0141"  "0223"  "0222"  "0141"  "02112" "0321"  "0141"  "0321"  "0141" 
#> [2729] "01231" "0321"  "02121" "0221"  "0321"  "0221"  "0321"  "0141"  "0141"  "0321"  "0141" 
#> [2740] "0321"  "0141"  "0141"  "02121" "0221"  "0221"  "0141"  "0141"  "0141"  "0142"  "0321" 
#> [2751] "0141"  "0141"  "0221"  "0221"  "0321"  "0323"  "0142"  "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "0142"  "0142"  "0221"  "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "0142"  "0142"  "0223"  "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "0221"  "0142"  "0142"  "0142"  "0221"  "02121" "0231"  "02111" "02111" "02121" "02111"
#> [2828] "02121" "02111" "0223"  "02121" "02121" "02111" "02121" "0231"  "0223"  "02121" "02121"
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "02121" "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "0142"  "0221"  "02123" "0141"  "0221"  "02112"
#> [2861] "0231"  "0232"  "0223"  "0223"  "02121" "02121" "0231"  "0221"  "02121" "0221"  "02111"
#> [2872] "02121" "02123" "02111" "02111" "02121" "0223"  "02121" "0142"  "02121" "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 960))
#>    [1] "01232" "01232" "0231"  "0322"  "01232" "01232" "0322"  "011"   "01232" "01232" "01232"
#>   [12] "011"   "0322"  "01232" "01232" "01232" "01232" "01232" "0313"  "011"   "0322"  "01232"
#>   [23] "011"   "0322"  "01232" "0322"  "0322"  "0322"  "01232" "03121" "0322"  "01232" "0322" 
#>   [34] "0322"  "0322"  "01232" "01232" "01232" "03121" "0311"  "011"   "0222"  "011"   "0311" 
#>   [45] "01232" "01232" "0311"  "03121" "0322"  "011"   "03121" "011"   "011"   "01232" "01232"
#>   [56] "02123" "02123" "0143"  "011"   "0313"  "0322"  "011"   "011"   "0222"  "0311"  "011"  
#>   [67] "01232" "01232" "0322"  "01232" "0322"  "0311"  "0322"  "011"   "011"   "0143"  "011"  
#>   [78] "011"   "0222"  "011"   "0143"  "0322"  "011"   "0143"  "011"   "0222"  "011"   "011"  
#>   [89] "011"   "01231" "0322"  "011"   "02113" "011"   "011"   "011"   "011"   "011"   "0143" 
#>  [100] "0313"  "011"   "011"   "011"   "011"   "011"   "0322"  "0222"  "0141"  "0142"  "011"  
#>  [111] "011"   "011"   "011"   "0143"  "011"   "0222"  "0222"  "0322"  "011"   "0321"  "0313" 
#>  [122] "0322"  "0222"  "0222"  "0222"  "0234"  "01231" "011"   "011"   "011"   "01231" "011"  
#>  [133] "011"   "0324"  "011"   "0222"  "011"   "011"   "0322"  "011"   "011"   "011"   "01232"
#>  [144] "01231" "01231" "0222"  "011"   "02123" "011"   "0324"  "0313"  "0313"  "011"   "0313" 
#>  [155] "0322"  "011"   "0313"  "0234"  "0322"  "0322"  "0322"  "011"   "0313"  "0313"  "0222" 
#>  [166] "011"   "0322"  "0313"  "011"   "011"   "0322"  "0313"  "0313"  "0222"  "0222"  "0313" 
#>  [177] "0313"  "011"   "0313"  "0313"  "03121" "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "03121" "0222"  "0322"  "011"   "0313"  "03121" "0313"  "0322"  "03121" "03121"
#>  [199] "03121" "03122" "03121" "0313"  "03121" "0313"  "03121" "03121" "0322"  "0313"  "0322" 
#>  [210] "0222"  "0313"  "0234"  "0313"  "03121" "0313"  "0313"  "0322"  "0222"  "03121" "011"  
#>  [221] "03121" "0313"  "03122" "0313"  "03121" "0313"  "03121" "03121" "011"   "02113" "0313" 
#>  [232] "0313"  "03121" "0313"  "02113" "03121" "03121" "0313"  "03121" "0313"  "0313"  "0313" 
#>  [243] "03121" "011"   "03121" "03121" "03121" "0222"  "03121" "0313"  "011"   "0313"  "03121"
#>  [254] "03121" "0313"  "0313"  "011"   "03121" "0313"  "0313"  "011"   "0313"  "011"   "011"  
#>  [265] "011"   "0313"  "011"   "011"   "011"   "0313"  "011"   "011"   "0313"  "0313"  "011"  
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "02123" "011"   "0313"  "0313"  "0313"  "0222" 
#>  [287] "0313"  "0313"  "03121" "03121" "03121" "03122" "03121" "03121" "03121" "03121" "03121"
#>  [298] "03122" "02113" "03121" "02113" "0313"  "0313"  "0234"  "0313"  "02113" "0222"  "03122"
#>  [309] "0222"  "03121" "03121" "0313"  "0222"  "0313"  "0313"  "03121" "011"   "0313"  "0313" 
#>  [320] "011"   "0313"  "011"   "03121" "0313"  "0311"  "011"   "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "011"   "011"   "011"   "011"   "0222"  "0222"  "011"   "0313"  "011"   "0313" 
#>  [342] "0313"  "0222"  "0313"  "0313"  "0313"  "0222"  "0311"  "0311"  "0222"  "0313"  "011"  
#>  [353] "0313"  "0313"  "0313"  "0313"  "03122" "03121" "03122" "03122" "03121" "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "03121" "03121" "03121" "0313"  "03122" "03122" "03121"
#>  [375] "03121" "03121" "03121" "03122" "03122" "0313"  "011"   "011"   "0222"  "0311"  "011"  
#>  [386] "011"   "011"   "0311"  "0324"  "0311"  "011"   "0311"  "011"   "0311"  "0222"  "0311" 
#>  [397] "0313"  "0311"  "011"   "011"   "0311"  "011"   "0143"  "0311"  "011"   "0222"  "011"  
#>  [408] "0311"  "011"   "011"   "0311"  "0311"  "02123" "011"   "011"   "011"   "011"   "011"  
#>  [419] "0311"  "011"   "011"   "011"   "011"   "0313"  "0234"  "011"   "011"   "011"   "011"  
#>  [430] "011"   "011"   "0234"  "011"   "0234"  "011"   "0222"  "011"   "02123" "011"   "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "011"   "011"   "03122" "03122" "03121" "0311" 
#>  [452] "011"   "0311"  "011"   "011"   "03121" "011"   "011"   "03122" "03122" "0311"  "03122"
#>  [463] "0311"  "0311"  "03122" "03122" "03122" "0311"  "03122" "03122" "03122" "0311"  "03122"
#>  [474] "03122" "03122" "0311"  "0311"  "03121" "0311"  "0311"  "0311"  "0311"  "0311"  "011"  
#>  [485] "02123" "03122" "0311"  "0311"  "0222"  "0222"  "02123" "03121" "03122" "0222"  "03122"
#>  [496] "011"   "02123" "02113" "011"   "03122" "02113" "011"   "0311"  "03122" "0311"  "02113"
#>  [507] "011"   "0311"  "0311"  "0311"  "0311"  "0222"  "0311"  "0311"  "011"   "011"   "0222" 
#>  [518] "0311"  "03121" "0311"  "011"   "011"   "011"   "03122" "03121" "0313"  "03121" "011"  
#>  [529] "011"   "0222"  "02123" "02123" "011"   "0222"  "011"   "011"   "011"   "02123" "011"  
#>  [540] "0311"  "011"   "0222"  "011"   "011"   "0222"  "011"   "011"   "011"   "0311"  "011"  
#>  [551] "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "0311"  "0311"  "0143"  "0311" 
#>  [562] "011"   "0324"  "0324"  "011"   "011"   "011"   "0222"  "0311"  "011"   "011"   "0222" 
#>  [573] "0324"  "0311"  "011"   "03121" "011"   "011"   "011"   "0222"  "011"   "011"   "011"  
#>  [584] "011"   "0311"  "011"   "0311"  "011"   "011"   "011"   "011"   "0313"  "011"   "03122"
#>  [595] "0313"  "0324"  "011"   "0313"  "0313"  "011"   "011"   "011"   "011"   "0313"  "011"  
#>  [606] "011"   "0222"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0234" 
#>  [617] "0311"  "0311"  "011"   "0311"  "0311"  "0313"  "011"   "0311"  "011"   "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "011"   "011"   "0313"  "011"   "0311"  "02113" "0311"  "011"  
#>  [639] "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "03121" "011"   "011"   "0222" 
#>  [650] "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311" 
#>  [661] "0311"  "011"   "0234"  "011"   "011"   "03122" "0311"  "0311"  "0311"  "0311"  "0222" 
#>  [672] "011"   "0222"  "0311"  "0313"  "0234"  "0311"  "0311"  "0222"  "011"   "0311"  "0311" 
#>  [683] "03122" "03122" "0311"  "03122" "03122" "03122" "0311"  "0311"  "0311"  "011"   "03122"
#>  [694] "0311"  "0222"  "0311"  "03122" "011"   "03122" "0143"  "03122" "011"   "011"   "0311" 
#>  [705] "0311"  "0222"  "0222"  "011"   "0324"  "011"   "0324"  "02123" "011"   "011"   "011"  
#>  [716] "011"   "011"   "011"   "0222"  "0311"  "0311"  "0222"  "0234"  "011"   "0222"  "0311" 
#>  [727] "0311"  "0311"  "011"   "011"   "0311"  "011"   "011"   "0311"  "011"   "011"   "011"  
#>  [738] "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "03122"
#>  [749] "03122" "03122" "0311"  "011"   "0311"  "011"   "011"   "011"   "0311"  "011"   "0324" 
#>  [760] "0311"  "02123" "0222"  "011"   "011"   "0311"  "011"   "011"   "011"   "011"   "011"  
#>  [771] "03122" "011"   "011"   "0311"  "011"   "0222"  "011"   "011"   "02113" "011"   "0311" 
#>  [782] "011"   "011"   "011"   "011"   "011"   "03122" "011"   "0311"  "0311"  "011"   "011"  
#>  [793] "03122" "0222"  "011"   "03122" "011"   "011"   "0234"  "0311"  "03122" "0222"  "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0324"  "0324" 
#>  [815] "01231" "0143"  "011"   "011"   "011"   "02123" "011"   "011"   "011"   "011"   "011"  
#>  [826] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "01231" "011"   "011"  
#>  [837] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [848] "011"   "0324"  "01231" "011"   "0234"  "0324"  "0222"  "011"   "0143"  "0143"  "0143" 
#>  [859] "0324"  "011"   "011"   "0324"  "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [870] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "011"   "011"  
#>  [881] "011"   "011"   "011"   "011"   "01231" "02123" "011"   "0324"  "011"   "0324"  "011"  
#>  [892] "0311"  "011"   "011"   "011"   "0222"  "0222"  "011"   "011"   "011"   "011"   "011"  
#>  [903] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [914] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [925] "011"   "011"   "011"   "011"   "0222"  "011"   "0143"  "011"   "011"   "011"   "0222" 
#>  [936] "0324"  "011"   "0222"  "011"   "011"   "011"   "0143"  "011"   "011"   "011"   "011"  
#>  [947] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "02123" "0143" 
#>  [958] "0143"  "011"   "02123" "0222"  "011"   "011"   "02123" "0311"  "011"   "011"   "011"  
#>  [969] "011"   "0311"  "011"   "011"   "0222"  "011"   "01231" "011"   "011"   "011"   "011"  
#>  [980] "011"   "0324"  "0324"  "0222"  "0222"  "0311"  "011"   "011"   "011"   "011"   "0311" 
#>  [991] "0311"  "011"   "011"   "011"   "0311"  "011"   "011"   "0324"  "0324"  "011"   "0222" 
#> [1002] "013"   "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1013] "0121"  "0222"  "0121"  "0222"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1024] "0121"  "0121"  "0323"  "0142"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1035] "0121"  "0311"  "0121"  "03121" "0121"  "02113" "0121"  "011"   "0322"  "0121"  "0121" 
#> [1046] "0121"  "03121" "0121"  "0121"  "0121"  "011"   "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1057] "0121"  "0121"  "011"   "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1068] "0121"  "0121"  "0121"  "0121"  "0121"  "013"   "0121"  "0322"  "0121"  "0121"  "0121" 
#> [1079] "013"   "0121"  "0121"  "0121"  "03121" "0121"  "0121"  "0121"  "0121"  "0311"  "0121" 
#> [1090] "0121"  "0121"  "0121"  "011"   "013"   "0121"  "0121"  "0121"  "0121"  "0121"  "0121" 
#> [1101] "0142"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0311"  "0121" 
#> [1112] "0121"  "0121"  "0121"  "0121"  "013"   "0121"  "0313"  "0121"  "0141"  "0121"  "0313" 
#> [1123] "0121"  "0121"  "0121"  "0121"  "0121"  "03122" "0121"  "0121"  "0121"  "011"   "011"  
#> [1134] "0121"  "0322"  "0121"  "0121"  "0121"  "0121"  "0121"  "0221"  "0121"  "0121"  "011"  
#> [1145] "0322"  "01232" "0121"  "011"   "0121"  "0142"  "0121"  "0121"  "01231" "01232" "0121" 
#> [1156] "0121"  "0121"  "0121"  "0121"  "0121"  "011"   "01232" "011"   "0121"  "0121"  "0121" 
#> [1167] "0121"  "011"   "011"   "011"   "01231" "0311"  "011"   "0121"  "011"   "011"   "0121" 
#> [1178] "0121"  "0121"  "0121"  "0223"  "0121"  "0141"  "0121"  "0221"  "011"   "0121"  "0121" 
#> [1189] "011"   "0121"  "0121"  "0121"  "0121"  "0121"  "0121"  "0141"  "0121"  "01231" "013"  
#> [1200] "0121"  "0121"  "0141"  "0121"  "0121"  "0121"  "0121"  "0121"  "011"   "0121"  "0121" 
#> [1211] "013"   "0121"  "01232" "0141"  "0222"  "0121"  "0321"  "0313"  "0121"  "0121"  "011"  
#> [1222] "0121"  "0121"  "0221"  "0121"  "0223"  "01232" "0121"  "0121"  "0141"  "0121"  "0121" 
#> [1233] "0121"  "011"   "0121"  "011"   "011"   "0313"  "0141"  "0121"  "0333"  "0321"  "0311" 
#> [1244] "0121"  "0121"  "0121"  "011"   "011"   "0121"  "0121"  "011"   "01234" "011"   "011"  
#> [1255] "011"   "0221"  "0221"  "0221"  "0223"  "01223" "0121"  "01223" "0121"  "01234" "0311" 
#> [1266] "0141"  "011"   "011"   "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "02122" "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "0223"  "0331"  "0221"  "013"   "0333"  "02122" "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "01223" "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "0222"  "013"   "013"   "0223"  "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "0223"  "013"   "013"   "013"   "013"   "013"   "013"   "02122" "02122" "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "01234" "01223" "01231" "01234" "0321"  "013"   "013"   "0231"  "0141"  "02113"
#> [1398] "0233"  "0233"  "01231" "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "011"   "013"   "0311"  "01231" "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "01231" "013"   "013"   "0233"  "013"   "0333"  "0221" 
#> [1453] "013"   "013"   "0221"  "013"   "013"   "013"   "0223"  "013"   "013"   "013"   "013"  
#> [1464] "013"   "01231" "013"   "011"   "011"   "011"   "013"   "013"   "0333"  "01231" "0313" 
#> [1475] "0333"  "0313"  "011"   "02121" "013"   "0221"  "01232" "013"   "013"   "011"   "013"  
#> [1486] "013"   "013"   "0321"  "0141"  "013"   "0141"  "013"   "013"   "011"   "0231"  "0141" 
#> [1497] "013"   "011"   "013"   "0233"  "01231" "0141"  "013"   "011"   "01231" "0321"  "013"  
#> [1508] "0222"  "013"   "0223"  "01231" "013"   "01231" "013"   "013"   "01231" "013"   "0221" 
#> [1519] "0331"  "0221"  "0233"  "0233"  "0142"  "0221"  "0142"  "013"   "0333"  "013"   "013"  
#> [1530] "013"   "0142"  "013"   "013"   "02113" "01223" "0223"  "011"   "011"   "013"   "013"  
#> [1541] "01232" "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "011"   "013"   "013"   "013"   "0142"  "02121" "0233"  "013"   "01231" "01231"
#> [1563] "0143"  "03121" "0223"  "011"   "013"   "0333"  "013"   "01231" "013"   "0223"  "02121"
#> [1574] "0142"  "02121" "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "0222"  "0331" 
#> [1596] "02113" "02121" "0233"  "013"   "02113" "013"   "0332"  "013"   "02123" "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "0222"  "02113" "0233"  "013"   "0331"  "011"   "02122" "01234" "013"  
#> [1629] "01234" "013"   "0141"  "01234" "0323"  "01234" "02122" "01234" "01234" "01234" "0221" 
#> [1640] "01234" "01234" "013"   "01234" "0233"  "0141"  "01234" "0141"  "01234" "01234" "01234"
#> [1651] "0142"  "01234" "01234" "0321"  "01234" "011"   "01231" "011"   "011"   "01234" "01234"
#> [1662] "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01234" "01231"
#> [1673] "01233" "01233" "01233" "0231"  "01233" "011"   "011"   "0233"  "01233" "01233" "01221"
#> [1684] "0141"  "01233" "0121"  "011"   "0121"  "01232" "01223" "01233" "01233" "0322"  "0121" 
#> [1695] "01233" "01233" "01233" "011"   "01233" "01233" "011"   "01233" "0311"  "01233" "01233"
#> [1706] "01221" "0323"  "01223" "01233" "01233" "013"   "0311"  "01233" "01233" "01223" "013"  
#> [1717] "01233" "01233" "0323"  "0323"  "013"   "01233" "0141"  "01233" "01233" "01233" "01233"
#> [1728] "0313"  "01233" "0311"  "0311"  "01233" "0121"  "02121" "01231" "011"   "01223" "011"  
#> [1739] "011"   "011"   "01221" "01223" "013"   "01221" "013"   "01221" "01222" "01223" "0323" 
#> [1750] "01222" "03121" "01223" "0221"  "01221" "0221"  "01221" "011"   "01221" "0142"  "03122"
#> [1761] "0223"  "01221" "011"   "01223" "011"   "0221"  "0311"  "011"   "013"   "0221"  "01221"
#> [1772] "01221" "01221" "01221" "01221" "01221" "011"   "01221" "01221" "01221" "0322"  "011"  
#> [1783] "01221" "01221" "011"   "01221" "0313"  "011"   "01221" "0323"  "01222" "0313"  "0313" 
#> [1794] "0323"  "0223"  "011"   "01221" "0313"  "0223"  "01221" "01221" "01221" "01222" "0323" 
#> [1805] "01221" "01221" "0233"  "02121" "0223"  "0311"  "0221"  "01221" "01221" "011"   "01223"
#> [1816] "01221" "01221" "01221" "01221" "01221" "0313"  "01221" "01221" "01221" "01221" "01221"
#> [1827] "01221" "01221" "01222" "0223"  "01221" "01221" "0323"  "01221" "01222" "02122" "0223" 
#> [1838] "01221" "011"   "01221" "01222" "01222" "02121" "01221" "01221" "0143"  "01221" "01221"
#> [1849] "01222" "01221" "01222" "0323"  "01223" "01234" "011"   "01234" "01223" "011"   "0322" 
#> [1860] "01233" "03122" "01233" "01233" "0332"  "0223"  "03122" "0321"  "0323"  "02122" "01221"
#> [1871] "01221" "0323"  "0323"  "01221" "01222" "01223" "0231"  "01221" "01223" "0121"  "02112"
#> [1882] "01223" "01223" "01223" "01223" "0323"  "01222" "03122" "01222" "01222" "011"   "0221" 
#> [1893] "01221" "01221" "01222" "0311"  "01221" "01222" "01221" "03121" "013"   "0323"  "01223"
#> [1904] "0311"  "01223" "01223" "0332"  "01223" "01222" "01222" "01222" "01222" "01222" "01221"
#> [1915] "0323"  "01222" "01221" "011"   "01221" "03122" "0223"  "01222" "0323"  "0323"  "01222"
#> [1926] "0311"  "01222" "01222" "01222" "0233"  "0323"  "01222" "02112" "01222" "0323"  "0233" 
#> [1937] "0333"  "01222" "01222" "0323"  "0323"  "01222" "0323"  "01222" "0332"  "0222"  "03122"
#> [1948] "0323"  "01222" "03121" "0323"  "01222" "01222" "02123" "01222" "01222" "0233"  "0323" 
#> [1959] "02113" "0323"  "0221"  "0323"  "0323"  "0222"  "01222" "0323"  "02112" "0331"  "0323" 
#> [1970] "03122" "01222" "0233"  "03122" "0323"  "02122" "0311"  "01222" "02122" "0323"  "02121"
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "02121" "02122" "02122" "02112" "0221" 
#> [1992] "02122" "0231"  "0232"  "0223"  "02123" "0231"  "0231"  "02112" "0231"  "0223"  "02113"
#> [2003] "02112" "0232"  "02112" "0222"  "0221"  "02121" "0232"  "0232"  "02123" "0231"  "02121"
#> [2014] "0231"  "0142"  "0221"  "0231"  "0321"  "0223"  "02112" "02122" "0222"  "0223"  "0221" 
#> [2025] "0222"  "0321"  "0223"  "02122" "02122" "0223"  "0222"  "02122" "0223"  "0232"  "0221" 
#> [2036] "02113" "0221"  "02112" "0223"  "0223"  "0221"  "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "02122" "02121" "02121" "0142"  "0221"  "02113" "0231"  "02113" "02112" "02121" "0223" 
#> [2058] "02122" "0321"  "0223"  "02112" "0223"  "0223"  "02122" "0221"  "0223"  "02122" "02122"
#> [2069] "02122" "02112" "02112" "0223"  "0232"  "0222"  "02113" "0233"  "02112" "0222"  "02112"
#> [2080] "02112" "02112" "02123" "02122" "0231"  "02121" "02122" "02121" "0232"  "02121" "0221" 
#> [2091] "02121" "0223"  "0223"  "02122" "0223"  "0223"  "0223"  "02121" "0223"  "0231"  "02121"
#> [2102] "02121" "02121" "02122" "02112" "02112" "02121" "02112" "0231"  "02112" "0231"  "0223" 
#> [2113] "02112" "02112" "02112" "02112" "0223"  "02123" "0231"  "0232"  "02121" "02121" "0233" 
#> [2124] "0232"  "0142"  "0223"  "02121" "0142"  "02112" "02112" "02122" "02121" "02112" "02112"
#> [2135] "02112" "02121" "02122" "02121" "0221"  "02121" "0222"  "0223"  "02122" "0221"  "0221" 
#> [2146] "0222"  "0223"  "02121" "0223"  "02121" "02112" "02122" "0223"  "0223"  "02122" "02112"
#> [2157] "02121" "0223"  "0223"  "02112" "0221"  "0223"  "0221"  "02122" "0223"  "0223"  "0221" 
#> [2168] "02121" "0223"  "0223"  "0223"  "0221"  "02121" "0321"  "0221"  "0221"  "0221"  "02111"
#> [2179] "02122" "02122" "02122" "0223"  "0234"  "0222"  "0223"  "0221"  "0221"  "0221"  "0221" 
#> [2190] "0143"  "0221"  "0142"  "0221"  "03121" "0221"  "0321"  "0221"  "02113" "02112" "0221" 
#> [2201] "0232"  "0231"  "0223"  "0232"  "0232"  "0222"  "02121" "02121" "02121" "0231"  "0232" 
#> [2212] "0221"  "0232"  "0223"  "02121" "02123" "02112" "02112" "02121" "02121" "0223"  "02123"
#> [2223] "02121" "02121" "0221"  "02112" "02112" "02121" "0223"  "02121" "0223"  "0223"  "0223" 
#> [2234] "0223"  "02121" "0221"  "0321"  "0222"  "0221"  "0321"  "0221"  "0321"  "0223"  "0221" 
#> [2245] "0223"  "0223"  "0223"  "0231"  "0231"  "0221"  "0222"  "0321"  "0222"  "0221"  "0231" 
#> [2256] "0231"  "0221"  "0221"  "0141"  "0321"  "02112" "0221"  "0221"  "0221"  "0223"  "0321" 
#> [2267] "0231"  "0221"  "0321"  "0223"  "0223"  "0223"  "0142"  "0223"  "0142"  "0222"  "0223" 
#> [2278] "0321"  "0221"  "0231"  "0222"  "0221"  "0141"  "0222"  "0221"  "0221"  "0142"  "0321" 
#> [2289] "0321"  "0221"  "0221"  "0321"  "0221"  "0221"  "0142"  "0221"  "0221"  "0221"  "0141" 
#> [2300] "0321"  "0142"  "0142"  "0141"  "0223"  "0142"  "0222"  "0142"  "0142"  "0142"  "0223" 
#> [2311] "0142"  "0321"  "0221"  "0142"  "0141"  "0141"  "01231" "02122" "0231"  "0221"  "0142" 
#> [2322] "0221"  "0223"  "0321"  "0221"  "0221"  "0221"  "0221"  "0221"  "0221"  "0223"  "0221" 
#> [2333] "0221"  "0223"  "0321"  "0142"  "0141"  "0321"  "0221"  "0141"  "0321"  "0321"  "0221" 
#> [2344] "02122" "0232"  "0223"  "0223"  "0223"  "0221"  "0221"  "0321"  "0222"  "0223"  "0223" 
#> [2355] "0221"  "0221"  "0321"  "02121" "02112" "0221"  "02121" "0221"  "02121" "0234"  "02121"
#> [2366] "02122" "0221"  "02112" "02112" "0221"  "0223"  "0223"  "02121" "0223"  "02121" "0223" 
#> [2377] "0221"  "0221"  "02123" "02121" "0232"  "0223"  "02112" "02122" "0232"  "0221"  "0223" 
#> [2388] "0223"  "0223"  "0231"  "02113" "0223"  "0221"  "0221"  "02111" "02121" "02122" "0223" 
#> [2399] "0321"  "0221"  "0141"  "0141"  "0141"  "02122" "0221"  "0231"  "02111" "0223"  "02122"
#> [2410] "0222"  "02122" "0221"  "02122" "0142"  "0221"  "0223"  "0221"  "0223"  "0231"  "01231"
#> [2421] "0223"  "0221"  "0321"  "02121" "02121" "0231"  "0223"  "0221"  "0223"  "0223"  "0221" 
#> [2432] "0221"  "0141"  "0321"  "0141"  "0221"  "0321"  "0321"  "0321"  "0141"  "0141"  "01234"
#> [2443] "0321"  "0321"  "0321"  "0223"  "0223"  "0221"  "02122" "0223"  "02122" "02122" "02122"
#> [2454] "02112" "02122" "02122" "02112" "02122" "02122" "0231"  "02122" "02122" "02122" "02123"
#> [2465] "02122" "02123" "02122" "02122" "0222"  "0221"  "0321"  "0221"  "0221"  "0221"  "02122"
#> [2476] "02122" "0223"  "02122" "0223"  "0221"  "0223"  "02122" "0223"  "0223"  "02112" "0223" 
#> [2487] "02122" "02122" "02122" "02112" "02123" "02122" "02122" "02112" "0223"  "02122" "0223" 
#> [2498] "02122" "02122" "0221"  "02122" "0223"  "02121" "0223"  "0223"  "0221"  "0223"  "0321" 
#> [2509] "0321"  "0221"  "0324"  "02122" "02122" "02112" "02122" "02122" "02112" "02122" "0221" 
#> [2520] "02122" "02121" "02112" "0221"  "0222"  "0221"  "02122" "02112" "0221"  "02122" "02113"
#> [2531] "0223"  "02122" "02112" "0141"  "02121" "0321"  "0221"  "0221"  "0221"  "0231"  "0221" 
#> [2542] "0221"  "0221"  "0221"  "0232"  "0221"  "0221"  "0223"  "0142"  "0221"  "0321"  "0321" 
#> [2553] "0142"  "0141"  "02121" "0321"  "0221"  "0141"  "02112" "02121" "0321"  "02122" "0321" 
#> [2564] "0223"  "0221"  "0321"  "0221"  "0221"  "0221"  "0221"  "0223"  "0142"  "0141"  "0141" 
#> [2575] "0321"  "0321"  "0221"  "0221"  "02112" "02122" "02122" "0223"  "0223"  "0221"  "0221" 
#> [2586] "0222"  "0221"  "0142"  "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "0142"  "0232"  "02112" "0231"  "0221"  "0223"  "0321"  "0221"  "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "0142"  "02112" "0222"  "0231"  "0142"  "0142"  "0141" 
#> [2630] "0231"  "02112" "02112" "02121" "02112" "02112" "0223"  "02122" "0223"  "0223"  "0221" 
#> [2641] "0221"  "0321"  "0221"  "0221"  "02121" "0221"  "0221"  "0223"  "0321"  "0221"  "01221"
#> [2652] "0221"  "0221"  "0221"  "0221"  "0221"  "0231"  "0221"  "0222"  "0221"  "0221"  "0221" 
#> [2663] "0221"  "0321"  "0321"  "0221"  "0321"  "0221"  "0221"  "0321"  "0221"  "0141"  "0321" 
#> [2674] "0221"  "0321"  "0221"  "0221"  "0324"  "01231" "0141"  "01231" "0221"  "0141"  "01231"
#> [2685] "0121"  "0232"  "0232"  "02112" "02112" "0321"  "02121" "02121" "0234"  "0231"  "0143" 
#> [2696] "0221"  "0324"  "02121" "0221"  "0321"  "0221"  "02121" "0141"  "0222"  "0222"  "0321" 
#> [2707] "0142"  "0222"  "0141"  "0142"  "0222"  "0141"  "0141"  "0231"  "0222"  "0231"  "0141" 
#> [2718] "0142"  "0231"  "0141"  "0223"  "0222"  "0141"  "02112" "0321"  "0141"  "0321"  "0141" 
#> [2729] "01231" "0321"  "02121" "0221"  "0321"  "0221"  "0321"  "0141"  "0141"  "0321"  "0141" 
#> [2740] "0321"  "0141"  "0141"  "02121" "0221"  "0221"  "0141"  "0141"  "0141"  "0142"  "0321" 
#> [2751] "0141"  "0141"  "0221"  "0221"  "0321"  "0323"  "0142"  "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "0142"  "0142"  "0221"  "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "0142"  "0142"  "0223"  "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "0221"  "0142"  "0142"  "0142"  "0221"  "02121" "0231"  "02111" "02111" "02121" "02111"
#> [2828] "02121" "02111" "0223"  "02121" "02121" "02111" "02121" "0231"  "0223"  "02121" "02121"
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "02121" "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "0142"  "0221"  "02123" "0141"  "0221"  "02112"
#> [2861] "0231"  "0232"  "0223"  "0223"  "02121" "02121" "0231"  "0221"  "02121" "0221"  "02111"
#> [2872] "02121" "02123" "02111" "02111" "02121" "0223"  "02121" "0142"  "02121" "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 979))
#>    [1] "012"   "012"   "0231"  "0322"  "012"   "012"   "0322"  "011"   "012"   "012"   "012"  
#>   [12] "011"   "0322"  "012"   "012"   "012"   "012"   "012"   "0313"  "011"   "0322"  "012"  
#>   [23] "011"   "0322"  "012"   "0322"  "0322"  "0322"  "012"   "03121" "0322"  "012"   "0322" 
#>   [34] "0322"  "0322"  "012"   "012"   "012"   "03121" "0311"  "011"   "0222"  "011"   "0311" 
#>   [45] "012"   "012"   "0311"  "03121" "0322"  "011"   "03121" "011"   "011"   "012"   "012"  
#>   [56] "02123" "02123" "0143"  "011"   "0313"  "0322"  "011"   "011"   "0222"  "0311"  "011"  
#>   [67] "012"   "012"   "0322"  "012"   "0322"  "0311"  "0322"  "011"   "011"   "0143"  "011"  
#>   [78] "011"   "0222"  "011"   "0143"  "0322"  "011"   "0143"  "011"   "0222"  "011"   "011"  
#>   [89] "011"   "012"   "0322"  "011"   "02113" "011"   "011"   "011"   "011"   "011"   "0143" 
#>  [100] "0313"  "011"   "011"   "011"   "011"   "011"   "0322"  "0222"  "0141"  "0142"  "011"  
#>  [111] "011"   "011"   "011"   "0143"  "011"   "0222"  "0222"  "0322"  "011"   "0321"  "0313" 
#>  [122] "0322"  "0222"  "0222"  "0222"  "0234"  "012"   "011"   "011"   "011"   "012"   "011"  
#>  [133] "011"   "0324"  "011"   "0222"  "011"   "011"   "0322"  "011"   "011"   "011"   "012"  
#>  [144] "012"   "012"   "0222"  "011"   "02123" "011"   "0324"  "0313"  "0313"  "011"   "0313" 
#>  [155] "0322"  "011"   "0313"  "0234"  "0322"  "0322"  "0322"  "011"   "0313"  "0313"  "0222" 
#>  [166] "011"   "0322"  "0313"  "011"   "011"   "0322"  "0313"  "0313"  "0222"  "0222"  "0313" 
#>  [177] "0313"  "011"   "0313"  "0313"  "03121" "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "03121" "0222"  "0322"  "011"   "0313"  "03121" "0313"  "0322"  "03121" "03121"
#>  [199] "03121" "03122" "03121" "0313"  "03121" "0313"  "03121" "03121" "0322"  "0313"  "0322" 
#>  [210] "0222"  "0313"  "0234"  "0313"  "03121" "0313"  "0313"  "0322"  "0222"  "03121" "011"  
#>  [221] "03121" "0313"  "03122" "0313"  "03121" "0313"  "03121" "03121" "011"   "02113" "0313" 
#>  [232] "0313"  "03121" "0313"  "02113" "03121" "03121" "0313"  "03121" "0313"  "0313"  "0313" 
#>  [243] "03121" "011"   "03121" "03121" "03121" "0222"  "03121" "0313"  "011"   "0313"  "03121"
#>  [254] "03121" "0313"  "0313"  "011"   "03121" "0313"  "0313"  "011"   "0313"  "011"   "011"  
#>  [265] "011"   "0313"  "011"   "011"   "011"   "0313"  "011"   "011"   "0313"  "0313"  "011"  
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "02123" "011"   "0313"  "0313"  "0313"  "0222" 
#>  [287] "0313"  "0313"  "03121" "03121" "03121" "03122" "03121" "03121" "03121" "03121" "03121"
#>  [298] "03122" "02113" "03121" "02113" "0313"  "0313"  "0234"  "0313"  "02113" "0222"  "03122"
#>  [309] "0222"  "03121" "03121" "0313"  "0222"  "0313"  "0313"  "03121" "011"   "0313"  "0313" 
#>  [320] "011"   "0313"  "011"   "03121" "0313"  "0311"  "011"   "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "011"   "011"   "011"   "011"   "0222"  "0222"  "011"   "0313"  "011"   "0313" 
#>  [342] "0313"  "0222"  "0313"  "0313"  "0313"  "0222"  "0311"  "0311"  "0222"  "0313"  "011"  
#>  [353] "0313"  "0313"  "0313"  "0313"  "03122" "03121" "03122" "03122" "03121" "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "03121" "03121" "03121" "0313"  "03122" "03122" "03121"
#>  [375] "03121" "03121" "03121" "03122" "03122" "0313"  "011"   "011"   "0222"  "0311"  "011"  
#>  [386] "011"   "011"   "0311"  "0324"  "0311"  "011"   "0311"  "011"   "0311"  "0222"  "0311" 
#>  [397] "0313"  "0311"  "011"   "011"   "0311"  "011"   "0143"  "0311"  "011"   "0222"  "011"  
#>  [408] "0311"  "011"   "011"   "0311"  "0311"  "02123" "011"   "011"   "011"   "011"   "011"  
#>  [419] "0311"  "011"   "011"   "011"   "011"   "0313"  "0234"  "011"   "011"   "011"   "011"  
#>  [430] "011"   "011"   "0234"  "011"   "0234"  "011"   "0222"  "011"   "02123" "011"   "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "011"   "011"   "03122" "03122" "03121" "0311" 
#>  [452] "011"   "0311"  "011"   "011"   "03121" "011"   "011"   "03122" "03122" "0311"  "03122"
#>  [463] "0311"  "0311"  "03122" "03122" "03122" "0311"  "03122" "03122" "03122" "0311"  "03122"
#>  [474] "03122" "03122" "0311"  "0311"  "03121" "0311"  "0311"  "0311"  "0311"  "0311"  "011"  
#>  [485] "02123" "03122" "0311"  "0311"  "0222"  "0222"  "02123" "03121" "03122" "0222"  "03122"
#>  [496] "011"   "02123" "02113" "011"   "03122" "02113" "011"   "0311"  "03122" "0311"  "02113"
#>  [507] "011"   "0311"  "0311"  "0311"  "0311"  "0222"  "0311"  "0311"  "011"   "011"   "0222" 
#>  [518] "0311"  "03121" "0311"  "011"   "011"   "011"   "03122" "03121" "0313"  "03121" "011"  
#>  [529] "011"   "0222"  "02123" "02123" "011"   "0222"  "011"   "011"   "011"   "02123" "011"  
#>  [540] "0311"  "011"   "0222"  "011"   "011"   "0222"  "011"   "011"   "011"   "0311"  "011"  
#>  [551] "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "0311"  "0311"  "0143"  "0311" 
#>  [562] "011"   "0324"  "0324"  "011"   "011"   "011"   "0222"  "0311"  "011"   "011"   "0222" 
#>  [573] "0324"  "0311"  "011"   "03121" "011"   "011"   "011"   "0222"  "011"   "011"   "011"  
#>  [584] "011"   "0311"  "011"   "0311"  "011"   "011"   "011"   "011"   "0313"  "011"   "03122"
#>  [595] "0313"  "0324"  "011"   "0313"  "0313"  "011"   "011"   "011"   "011"   "0313"  "011"  
#>  [606] "011"   "0222"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0234" 
#>  [617] "0311"  "0311"  "011"   "0311"  "0311"  "0313"  "011"   "0311"  "011"   "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "011"   "011"   "0313"  "011"   "0311"  "02113" "0311"  "011"  
#>  [639] "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "03121" "011"   "011"   "0222" 
#>  [650] "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311" 
#>  [661] "0311"  "011"   "0234"  "011"   "011"   "03122" "0311"  "0311"  "0311"  "0311"  "0222" 
#>  [672] "011"   "0222"  "0311"  "0313"  "0234"  "0311"  "0311"  "0222"  "011"   "0311"  "0311" 
#>  [683] "03122" "03122" "0311"  "03122" "03122" "03122" "0311"  "0311"  "0311"  "011"   "03122"
#>  [694] "0311"  "0222"  "0311"  "03122" "011"   "03122" "0143"  "03122" "011"   "011"   "0311" 
#>  [705] "0311"  "0222"  "0222"  "011"   "0324"  "011"   "0324"  "02123" "011"   "011"   "011"  
#>  [716] "011"   "011"   "011"   "0222"  "0311"  "0311"  "0222"  "0234"  "011"   "0222"  "0311" 
#>  [727] "0311"  "0311"  "011"   "011"   "0311"  "011"   "011"   "0311"  "011"   "011"   "011"  
#>  [738] "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "03122"
#>  [749] "03122" "03122" "0311"  "011"   "0311"  "011"   "011"   "011"   "0311"  "011"   "0324" 
#>  [760] "0311"  "02123" "0222"  "011"   "011"   "0311"  "011"   "011"   "011"   "011"   "011"  
#>  [771] "03122" "011"   "011"   "0311"  "011"   "0222"  "011"   "011"   "02113" "011"   "0311" 
#>  [782] "011"   "011"   "011"   "011"   "011"   "03122" "011"   "0311"  "0311"  "011"   "011"  
#>  [793] "03122" "0222"  "011"   "03122" "011"   "011"   "0234"  "0311"  "03122" "0222"  "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0324"  "0324" 
#>  [815] "012"   "0143"  "011"   "011"   "011"   "02123" "011"   "011"   "011"   "011"   "011"  
#>  [826] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "012"   "011"   "011"  
#>  [837] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [848] "011"   "0324"  "012"   "011"   "0234"  "0324"  "0222"  "011"   "0143"  "0143"  "0143" 
#>  [859] "0324"  "011"   "011"   "0324"  "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [870] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "011"   "011"  
#>  [881] "011"   "011"   "011"   "011"   "012"   "02123" "011"   "0324"  "011"   "0324"  "011"  
#>  [892] "0311"  "011"   "011"   "011"   "0222"  "0222"  "011"   "011"   "011"   "011"   "011"  
#>  [903] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [914] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [925] "011"   "011"   "011"   "011"   "0222"  "011"   "0143"  "011"   "011"   "011"   "0222" 
#>  [936] "0324"  "011"   "0222"  "011"   "011"   "011"   "0143"  "011"   "011"   "011"   "011"  
#>  [947] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "02123" "0143" 
#>  [958] "0143"  "011"   "02123" "0222"  "011"   "011"   "02123" "0311"  "011"   "011"   "011"  
#>  [969] "011"   "0311"  "011"   "011"   "0222"  "011"   "012"   "011"   "011"   "011"   "011"  
#>  [980] "011"   "0324"  "0324"  "0222"  "0222"  "0311"  "011"   "011"   "011"   "011"   "0311" 
#>  [991] "0311"  "011"   "011"   "011"   "0311"  "011"   "011"   "0324"  "0324"  "011"   "0222" 
#> [1002] "013"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1013] "012"   "0222"  "012"   "0222"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1024] "012"   "012"   "0323"  "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1035] "012"   "0311"  "012"   "03121" "012"   "02113" "012"   "011"   "0322"  "012"   "012"  
#> [1046] "012"   "03121" "012"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"  
#> [1057] "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1068] "012"   "012"   "012"   "012"   "012"   "013"   "012"   "0322"  "012"   "012"   "012"  
#> [1079] "013"   "012"   "012"   "012"   "03121" "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1090] "012"   "012"   "012"   "011"   "013"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1101] "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1112] "012"   "012"   "012"   "012"   "013"   "012"   "0313"  "012"   "0141"  "012"   "0313" 
#> [1123] "012"   "012"   "012"   "012"   "012"   "03122" "012"   "012"   "012"   "011"   "011"  
#> [1134] "012"   "0322"  "012"   "012"   "012"   "012"   "012"   "0221"  "012"   "012"   "011"  
#> [1145] "0322"  "012"   "012"   "011"   "012"   "0142"  "012"   "012"   "012"   "012"   "012"  
#> [1156] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "011"   "012"   "012"   "012"  
#> [1167] "012"   "011"   "011"   "011"   "012"   "0311"  "011"   "012"   "011"   "011"   "012"  
#> [1178] "012"   "012"   "012"   "0223"  "012"   "0141"  "012"   "0221"  "011"   "012"   "012"  
#> [1189] "011"   "012"   "012"   "012"   "012"   "012"   "012"   "0141"  "012"   "012"   "013"  
#> [1200] "012"   "012"   "0141"  "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"  
#> [1211] "013"   "012"   "012"   "0141"  "0222"  "012"   "0321"  "0313"  "012"   "012"   "011"  
#> [1222] "012"   "012"   "0221"  "012"   "0223"  "012"   "012"   "012"   "0141"  "012"   "012"  
#> [1233] "012"   "011"   "012"   "011"   "011"   "0313"  "0141"  "012"   "0333"  "0321"  "0311" 
#> [1244] "012"   "012"   "012"   "011"   "011"   "012"   "012"   "011"   "012"   "011"   "011"  
#> [1255] "011"   "0221"  "0221"  "0221"  "0223"  "012"   "012"   "012"   "012"   "012"   "0311" 
#> [1266] "0141"  "011"   "011"   "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "02122" "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "0223"  "0331"  "0221"  "013"   "0333"  "02122" "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "012"   "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "0222"  "013"   "013"   "0223"  "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "0223"  "013"   "013"   "013"   "013"   "013"   "013"   "02122" "02122" "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "012"   "012"   "012"   "012"   "0321"  "013"   "013"   "0231"  "0141"  "02113"
#> [1398] "0233"  "0233"  "012"   "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "011"   "013"   "0311"  "012"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "012"   "013"   "013"   "0233"  "013"   "0333"  "0221" 
#> [1453] "013"   "013"   "0221"  "013"   "013"   "013"   "0223"  "013"   "013"   "013"   "013"  
#> [1464] "013"   "012"   "013"   "011"   "011"   "011"   "013"   "013"   "0333"  "012"   "0313" 
#> [1475] "0333"  "0313"  "011"   "02121" "013"   "0221"  "012"   "013"   "013"   "011"   "013"  
#> [1486] "013"   "013"   "0321"  "0141"  "013"   "0141"  "013"   "013"   "011"   "0231"  "0141" 
#> [1497] "013"   "011"   "013"   "0233"  "012"   "0141"  "013"   "011"   "012"   "0321"  "013"  
#> [1508] "0222"  "013"   "0223"  "012"   "013"   "012"   "013"   "013"   "012"   "013"   "0221" 
#> [1519] "0331"  "0221"  "0233"  "0233"  "0142"  "0221"  "0142"  "013"   "0333"  "013"   "013"  
#> [1530] "013"   "0142"  "013"   "013"   "02113" "012"   "0223"  "011"   "011"   "013"   "013"  
#> [1541] "012"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "011"   "013"   "013"   "013"   "0142"  "02121" "0233"  "013"   "012"   "012"  
#> [1563] "0143"  "03121" "0223"  "011"   "013"   "0333"  "013"   "012"   "013"   "0223"  "02121"
#> [1574] "0142"  "02121" "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "0222"  "0331" 
#> [1596] "02113" "02121" "0233"  "013"   "02113" "013"   "0332"  "013"   "02123" "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "0222"  "02113" "0233"  "013"   "0331"  "011"   "02122" "012"   "013"  
#> [1629] "012"   "013"   "0141"  "012"   "0323"  "012"   "02122" "012"   "012"   "012"   "0221" 
#> [1640] "012"   "012"   "013"   "012"   "0233"  "0141"  "012"   "0141"  "012"   "012"   "012"  
#> [1651] "0142"  "012"   "012"   "0321"  "012"   "011"   "012"   "011"   "011"   "012"   "012"  
#> [1662] "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1673] "012"   "012"   "012"   "0231"  "012"   "011"   "011"   "0233"  "012"   "012"   "012"  
#> [1684] "0141"  "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "0322"  "012"  
#> [1695] "012"   "012"   "012"   "011"   "012"   "012"   "011"   "012"   "0311"  "012"   "012"  
#> [1706] "012"   "0323"  "012"   "012"   "012"   "013"   "0311"  "012"   "012"   "012"   "013"  
#> [1717] "012"   "012"   "0323"  "0323"  "013"   "012"   "0141"  "012"   "012"   "012"   "012"  
#> [1728] "0313"  "012"   "0311"  "0311"  "012"   "012"   "02121" "012"   "011"   "012"   "011"  
#> [1739] "011"   "011"   "012"   "012"   "013"   "012"   "013"   "012"   "012"   "012"   "0323" 
#> [1750] "012"   "03121" "012"   "0221"  "012"   "0221"  "012"   "011"   "012"   "0142"  "03122"
#> [1761] "0223"  "012"   "011"   "012"   "011"   "0221"  "0311"  "011"   "013"   "0221"  "012"  
#> [1772] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"   "012"   "0322"  "011"  
#> [1783] "012"   "012"   "011"   "012"   "0313"  "011"   "012"   "0323"  "012"   "0313"  "0313" 
#> [1794] "0323"  "0223"  "011"   "012"   "0313"  "0223"  "012"   "012"   "012"   "012"   "0323" 
#> [1805] "012"   "012"   "0233"  "02121" "0223"  "0311"  "0221"  "012"   "012"   "011"   "012"  
#> [1816] "012"   "012"   "012"   "012"   "012"   "0313"  "012"   "012"   "012"   "012"   "012"  
#> [1827] "012"   "012"   "012"   "0223"  "012"   "012"   "0323"  "012"   "012"   "02122" "0223" 
#> [1838] "012"   "011"   "012"   "012"   "012"   "02121" "012"   "012"   "0143"  "012"   "012"  
#> [1849] "012"   "012"   "012"   "0323"  "012"   "012"   "011"   "012"   "012"   "011"   "0322" 
#> [1860] "012"   "03122" "012"   "012"   "0332"  "0223"  "03122" "0321"  "0323"  "02122" "012"  
#> [1871] "012"   "0323"  "0323"  "012"   "012"   "012"   "0231"  "012"   "012"   "012"   "02112"
#> [1882] "012"   "012"   "012"   "012"   "0323"  "012"   "03122" "012"   "012"   "011"   "0221" 
#> [1893] "012"   "012"   "012"   "0311"  "012"   "012"   "012"   "03121" "013"   "0323"  "012"  
#> [1904] "0311"  "012"   "012"   "0332"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1915] "0323"  "012"   "012"   "011"   "012"   "03122" "0223"  "012"   "0323"  "0323"  "012"  
#> [1926] "0311"  "012"   "012"   "012"   "0233"  "0323"  "012"   "02112" "012"   "0323"  "0233" 
#> [1937] "0333"  "012"   "012"   "0323"  "0323"  "012"   "0323"  "012"   "0332"  "0222"  "03122"
#> [1948] "0323"  "012"   "03121" "0323"  "012"   "012"   "02123" "012"   "012"   "0233"  "0323" 
#> [1959] "02113" "0323"  "0221"  "0323"  "0323"  "0222"  "012"   "0323"  "02112" "0331"  "0323" 
#> [1970] "03122" "012"   "0233"  "03122" "0323"  "02122" "0311"  "012"   "02122" "0323"  "02121"
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "02121" "02122" "02122" "02112" "0221" 
#> [1992] "02122" "0231"  "0232"  "0223"  "02123" "0231"  "0231"  "02112" "0231"  "0223"  "02113"
#> [2003] "02112" "0232"  "02112" "0222"  "0221"  "02121" "0232"  "0232"  "02123" "0231"  "02121"
#> [2014] "0231"  "0142"  "0221"  "0231"  "0321"  "0223"  "02112" "02122" "0222"  "0223"  "0221" 
#> [2025] "0222"  "0321"  "0223"  "02122" "02122" "0223"  "0222"  "02122" "0223"  "0232"  "0221" 
#> [2036] "02113" "0221"  "02112" "0223"  "0223"  "0221"  "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "02122" "02121" "02121" "0142"  "0221"  "02113" "0231"  "02113" "02112" "02121" "0223" 
#> [2058] "02122" "0321"  "0223"  "02112" "0223"  "0223"  "02122" "0221"  "0223"  "02122" "02122"
#> [2069] "02122" "02112" "02112" "0223"  "0232"  "0222"  "02113" "0233"  "02112" "0222"  "02112"
#> [2080] "02112" "02112" "02123" "02122" "0231"  "02121" "02122" "02121" "0232"  "02121" "0221" 
#> [2091] "02121" "0223"  "0223"  "02122" "0223"  "0223"  "0223"  "02121" "0223"  "0231"  "02121"
#> [2102] "02121" "02121" "02122" "02112" "02112" "02121" "02112" "0231"  "02112" "0231"  "0223" 
#> [2113] "02112" "02112" "02112" "02112" "0223"  "02123" "0231"  "0232"  "02121" "02121" "0233" 
#> [2124] "0232"  "0142"  "0223"  "02121" "0142"  "02112" "02112" "02122" "02121" "02112" "02112"
#> [2135] "02112" "02121" "02122" "02121" "0221"  "02121" "0222"  "0223"  "02122" "0221"  "0221" 
#> [2146] "0222"  "0223"  "02121" "0223"  "02121" "02112" "02122" "0223"  "0223"  "02122" "02112"
#> [2157] "02121" "0223"  "0223"  "02112" "0221"  "0223"  "0221"  "02122" "0223"  "0223"  "0221" 
#> [2168] "02121" "0223"  "0223"  "0223"  "0221"  "02121" "0321"  "0221"  "0221"  "0221"  "02111"
#> [2179] "02122" "02122" "02122" "0223"  "0234"  "0222"  "0223"  "0221"  "0221"  "0221"  "0221" 
#> [2190] "0143"  "0221"  "0142"  "0221"  "03121" "0221"  "0321"  "0221"  "02113" "02112" "0221" 
#> [2201] "0232"  "0231"  "0223"  "0232"  "0232"  "0222"  "02121" "02121" "02121" "0231"  "0232" 
#> [2212] "0221"  "0232"  "0223"  "02121" "02123" "02112" "02112" "02121" "02121" "0223"  "02123"
#> [2223] "02121" "02121" "0221"  "02112" "02112" "02121" "0223"  "02121" "0223"  "0223"  "0223" 
#> [2234] "0223"  "02121" "0221"  "0321"  "0222"  "0221"  "0321"  "0221"  "0321"  "0223"  "0221" 
#> [2245] "0223"  "0223"  "0223"  "0231"  "0231"  "0221"  "0222"  "0321"  "0222"  "0221"  "0231" 
#> [2256] "0231"  "0221"  "0221"  "0141"  "0321"  "02112" "0221"  "0221"  "0221"  "0223"  "0321" 
#> [2267] "0231"  "0221"  "0321"  "0223"  "0223"  "0223"  "0142"  "0223"  "0142"  "0222"  "0223" 
#> [2278] "0321"  "0221"  "0231"  "0222"  "0221"  "0141"  "0222"  "0221"  "0221"  "0142"  "0321" 
#> [2289] "0321"  "0221"  "0221"  "0321"  "0221"  "0221"  "0142"  "0221"  "0221"  "0221"  "0141" 
#> [2300] "0321"  "0142"  "0142"  "0141"  "0223"  "0142"  "0222"  "0142"  "0142"  "0142"  "0223" 
#> [2311] "0142"  "0321"  "0221"  "0142"  "0141"  "0141"  "012"   "02122" "0231"  "0221"  "0142" 
#> [2322] "0221"  "0223"  "0321"  "0221"  "0221"  "0221"  "0221"  "0221"  "0221"  "0223"  "0221" 
#> [2333] "0221"  "0223"  "0321"  "0142"  "0141"  "0321"  "0221"  "0141"  "0321"  "0321"  "0221" 
#> [2344] "02122" "0232"  "0223"  "0223"  "0223"  "0221"  "0221"  "0321"  "0222"  "0223"  "0223" 
#> [2355] "0221"  "0221"  "0321"  "02121" "02112" "0221"  "02121" "0221"  "02121" "0234"  "02121"
#> [2366] "02122" "0221"  "02112" "02112" "0221"  "0223"  "0223"  "02121" "0223"  "02121" "0223" 
#> [2377] "0221"  "0221"  "02123" "02121" "0232"  "0223"  "02112" "02122" "0232"  "0221"  "0223" 
#> [2388] "0223"  "0223"  "0231"  "02113" "0223"  "0221"  "0221"  "02111" "02121" "02122" "0223" 
#> [2399] "0321"  "0221"  "0141"  "0141"  "0141"  "02122" "0221"  "0231"  "02111" "0223"  "02122"
#> [2410] "0222"  "02122" "0221"  "02122" "0142"  "0221"  "0223"  "0221"  "0223"  "0231"  "012"  
#> [2421] "0223"  "0221"  "0321"  "02121" "02121" "0231"  "0223"  "0221"  "0223"  "0223"  "0221" 
#> [2432] "0221"  "0141"  "0321"  "0141"  "0221"  "0321"  "0321"  "0321"  "0141"  "0141"  "012"  
#> [2443] "0321"  "0321"  "0321"  "0223"  "0223"  "0221"  "02122" "0223"  "02122" "02122" "02122"
#> [2454] "02112" "02122" "02122" "02112" "02122" "02122" "0231"  "02122" "02122" "02122" "02123"
#> [2465] "02122" "02123" "02122" "02122" "0222"  "0221"  "0321"  "0221"  "0221"  "0221"  "02122"
#> [2476] "02122" "0223"  "02122" "0223"  "0221"  "0223"  "02122" "0223"  "0223"  "02112" "0223" 
#> [2487] "02122" "02122" "02122" "02112" "02123" "02122" "02122" "02112" "0223"  "02122" "0223" 
#> [2498] "02122" "02122" "0221"  "02122" "0223"  "02121" "0223"  "0223"  "0221"  "0223"  "0321" 
#> [2509] "0321"  "0221"  "0324"  "02122" "02122" "02112" "02122" "02122" "02112" "02122" "0221" 
#> [2520] "02122" "02121" "02112" "0221"  "0222"  "0221"  "02122" "02112" "0221"  "02122" "02113"
#> [2531] "0223"  "02122" "02112" "0141"  "02121" "0321"  "0221"  "0221"  "0221"  "0231"  "0221" 
#> [2542] "0221"  "0221"  "0221"  "0232"  "0221"  "0221"  "0223"  "0142"  "0221"  "0321"  "0321" 
#> [2553] "0142"  "0141"  "02121" "0321"  "0221"  "0141"  "02112" "02121" "0321"  "02122" "0321" 
#> [2564] "0223"  "0221"  "0321"  "0221"  "0221"  "0221"  "0221"  "0223"  "0142"  "0141"  "0141" 
#> [2575] "0321"  "0321"  "0221"  "0221"  "02112" "02122" "02122" "0223"  "0223"  "0221"  "0221" 
#> [2586] "0222"  "0221"  "0142"  "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "0142"  "0232"  "02112" "0231"  "0221"  "0223"  "0321"  "0221"  "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "0142"  "02112" "0222"  "0231"  "0142"  "0142"  "0141" 
#> [2630] "0231"  "02112" "02112" "02121" "02112" "02112" "0223"  "02122" "0223"  "0223"  "0221" 
#> [2641] "0221"  "0321"  "0221"  "0221"  "02121" "0221"  "0221"  "0223"  "0321"  "0221"  "012"  
#> [2652] "0221"  "0221"  "0221"  "0221"  "0221"  "0231"  "0221"  "0222"  "0221"  "0221"  "0221" 
#> [2663] "0221"  "0321"  "0321"  "0221"  "0321"  "0221"  "0221"  "0321"  "0221"  "0141"  "0321" 
#> [2674] "0221"  "0321"  "0221"  "0221"  "0324"  "012"   "0141"  "012"   "0221"  "0141"  "012"  
#> [2685] "012"   "0232"  "0232"  "02112" "02112" "0321"  "02121" "02121" "0234"  "0231"  "0143" 
#> [2696] "0221"  "0324"  "02121" "0221"  "0321"  "0221"  "02121" "0141"  "0222"  "0222"  "0321" 
#> [2707] "0142"  "0222"  "0141"  "0142"  "0222"  "0141"  "0141"  "0231"  "0222"  "0231"  "0141" 
#> [2718] "0142"  "0231"  "0141"  "0223"  "0222"  "0141"  "02112" "0321"  "0141"  "0321"  "0141" 
#> [2729] "012"   "0321"  "02121" "0221"  "0321"  "0221"  "0321"  "0141"  "0141"  "0321"  "0141" 
#> [2740] "0321"  "0141"  "0141"  "02121" "0221"  "0221"  "0141"  "0141"  "0141"  "0142"  "0321" 
#> [2751] "0141"  "0141"  "0221"  "0221"  "0321"  "0323"  "0142"  "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "0142"  "0142"  "0221"  "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "0142"  "0142"  "0223"  "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "0221"  "0142"  "0142"  "0142"  "0221"  "02121" "0231"  "02111" "02111" "02121" "02111"
#> [2828] "02121" "02111" "0223"  "02121" "02121" "02111" "02121" "0231"  "0223"  "02121" "02121"
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "02121" "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "0142"  "0221"  "02123" "0141"  "0221"  "02112"
#> [2861] "0231"  "0232"  "0223"  "0223"  "02121" "02121" "0231"  "0221"  "02121" "0221"  "02111"
#> [2872] "02121" "02123" "02111" "02111" "02121" "0223"  "02121" "0142"  "02121" "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1000))
#>    [1] "012"   "012"   "0231"  "0322"  "012"   "012"   "0322"  "011"   "012"   "012"   "012"  
#>   [12] "011"   "0322"  "012"   "012"   "012"   "012"   "012"   "0313"  "011"   "0322"  "012"  
#>   [23] "011"   "0322"  "012"   "0322"  "0322"  "0322"  "012"   "0312"  "0322"  "012"   "0322" 
#>   [34] "0322"  "0322"  "012"   "012"   "012"   "0312"  "0311"  "011"   "0222"  "011"   "0311" 
#>   [45] "012"   "012"   "0311"  "0312"  "0322"  "011"   "0312"  "011"   "011"   "012"   "012"  
#>   [56] "02123" "02123" "0143"  "011"   "0313"  "0322"  "011"   "011"   "0222"  "0311"  "011"  
#>   [67] "012"   "012"   "0322"  "012"   "0322"  "0311"  "0322"  "011"   "011"   "0143"  "011"  
#>   [78] "011"   "0222"  "011"   "0143"  "0322"  "011"   "0143"  "011"   "0222"  "011"   "011"  
#>   [89] "011"   "012"   "0322"  "011"   "02113" "011"   "011"   "011"   "011"   "011"   "0143" 
#>  [100] "0313"  "011"   "011"   "011"   "011"   "011"   "0322"  "0222"  "0141"  "0142"  "011"  
#>  [111] "011"   "011"   "011"   "0143"  "011"   "0222"  "0222"  "0322"  "011"   "0321"  "0313" 
#>  [122] "0322"  "0222"  "0222"  "0222"  "0234"  "012"   "011"   "011"   "011"   "012"   "011"  
#>  [133] "011"   "0324"  "011"   "0222"  "011"   "011"   "0322"  "011"   "011"   "011"   "012"  
#>  [144] "012"   "012"   "0222"  "011"   "02123" "011"   "0324"  "0313"  "0313"  "011"   "0313" 
#>  [155] "0322"  "011"   "0313"  "0234"  "0322"  "0322"  "0322"  "011"   "0313"  "0313"  "0222" 
#>  [166] "011"   "0322"  "0313"  "011"   "011"   "0322"  "0313"  "0313"  "0222"  "0222"  "0313" 
#>  [177] "0313"  "011"   "0313"  "0313"  "0312"  "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "0312"  "0222"  "0322"  "011"   "0313"  "0312"  "0313"  "0322"  "0312"  "0312" 
#>  [199] "0312"  "0312"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "0322"  "0313"  "0322" 
#>  [210] "0222"  "0313"  "0234"  "0313"  "0312"  "0313"  "0313"  "0322"  "0222"  "0312"  "011"  
#>  [221] "0312"  "0313"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "011"   "02113" "0313" 
#>  [232] "0313"  "0312"  "0313"  "02113" "0312"  "0312"  "0313"  "0312"  "0313"  "0313"  "0313" 
#>  [243] "0312"  "011"   "0312"  "0312"  "0312"  "0222"  "0312"  "0313"  "011"   "0313"  "0312" 
#>  [254] "0312"  "0313"  "0313"  "011"   "0312"  "0313"  "0313"  "011"   "0313"  "011"   "011"  
#>  [265] "011"   "0313"  "011"   "011"   "011"   "0313"  "011"   "011"   "0313"  "0313"  "011"  
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "02123" "011"   "0313"  "0313"  "0313"  "0222" 
#>  [287] "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312" 
#>  [298] "0312"  "02113" "0312"  "02113" "0313"  "0313"  "0234"  "0313"  "02113" "0222"  "0312" 
#>  [309] "0222"  "0312"  "0312"  "0313"  "0222"  "0313"  "0313"  "0312"  "011"   "0313"  "0313" 
#>  [320] "011"   "0313"  "011"   "0312"  "0313"  "0311"  "011"   "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "011"   "011"   "011"   "011"   "0222"  "0222"  "011"   "0313"  "011"   "0313" 
#>  [342] "0313"  "0222"  "0313"  "0313"  "0313"  "0222"  "0311"  "0311"  "0222"  "0313"  "011"  
#>  [353] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0313"  "0312"  "0312"  "0312" 
#>  [375] "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "011"   "011"   "0222"  "0311"  "011"  
#>  [386] "011"   "011"   "0311"  "0324"  "0311"  "011"   "0311"  "011"   "0311"  "0222"  "0311" 
#>  [397] "0313"  "0311"  "011"   "011"   "0311"  "011"   "0143"  "0311"  "011"   "0222"  "011"  
#>  [408] "0311"  "011"   "011"   "0311"  "0311"  "02123" "011"   "011"   "011"   "011"   "011"  
#>  [419] "0311"  "011"   "011"   "011"   "011"   "0313"  "0234"  "011"   "011"   "011"   "011"  
#>  [430] "011"   "011"   "0234"  "011"   "0234"  "011"   "0222"  "011"   "02123" "011"   "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "011"   "011"   "0312"  "0312"  "0312"  "0311" 
#>  [452] "011"   "0311"  "011"   "011"   "0312"  "011"   "011"   "0312"  "0312"  "0311"  "0312" 
#>  [463] "0311"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312" 
#>  [474] "0312"  "0312"  "0311"  "0311"  "0312"  "0311"  "0311"  "0311"  "0311"  "0311"  "011"  
#>  [485] "02123" "0312"  "0311"  "0311"  "0222"  "0222"  "02123" "0312"  "0312"  "0222"  "0312" 
#>  [496] "011"   "02123" "02113" "011"   "0312"  "02113" "011"   "0311"  "0312"  "0311"  "02113"
#>  [507] "011"   "0311"  "0311"  "0311"  "0311"  "0222"  "0311"  "0311"  "011"   "011"   "0222" 
#>  [518] "0311"  "0312"  "0311"  "011"   "011"   "011"   "0312"  "0312"  "0313"  "0312"  "011"  
#>  [529] "011"   "0222"  "02123" "02123" "011"   "0222"  "011"   "011"   "011"   "02123" "011"  
#>  [540] "0311"  "011"   "0222"  "011"   "011"   "0222"  "011"   "011"   "011"   "0311"  "011"  
#>  [551] "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "0311"  "0311"  "0143"  "0311" 
#>  [562] "011"   "0324"  "0324"  "011"   "011"   "011"   "0222"  "0311"  "011"   "011"   "0222" 
#>  [573] "0324"  "0311"  "011"   "0312"  "011"   "011"   "011"   "0222"  "011"   "011"   "011"  
#>  [584] "011"   "0311"  "011"   "0311"  "011"   "011"   "011"   "011"   "0313"  "011"   "0312" 
#>  [595] "0313"  "0324"  "011"   "0313"  "0313"  "011"   "011"   "011"   "011"   "0313"  "011"  
#>  [606] "011"   "0222"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0234" 
#>  [617] "0311"  "0311"  "011"   "0311"  "0311"  "0313"  "011"   "0311"  "011"   "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "011"   "011"   "0313"  "011"   "0311"  "02113" "0311"  "011"  
#>  [639] "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312"  "011"   "011"   "0222" 
#>  [650] "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311" 
#>  [661] "0311"  "011"   "0234"  "011"   "011"   "0312"  "0311"  "0311"  "0311"  "0311"  "0222" 
#>  [672] "011"   "0222"  "0311"  "0313"  "0234"  "0311"  "0311"  "0222"  "011"   "0311"  "0311" 
#>  [683] "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0311"  "0311"  "011"   "0312" 
#>  [694] "0311"  "0222"  "0311"  "0312"  "011"   "0312"  "0143"  "0312"  "011"   "011"   "0311" 
#>  [705] "0311"  "0222"  "0222"  "011"   "0324"  "011"   "0324"  "02123" "011"   "011"   "011"  
#>  [716] "011"   "011"   "011"   "0222"  "0311"  "0311"  "0222"  "0234"  "011"   "0222"  "0311" 
#>  [727] "0311"  "0311"  "011"   "011"   "0311"  "011"   "011"   "0311"  "011"   "011"   "011"  
#>  [738] "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312" 
#>  [749] "0312"  "0312"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0311"  "011"   "0324" 
#>  [760] "0311"  "02123" "0222"  "011"   "011"   "0311"  "011"   "011"   "011"   "011"   "011"  
#>  [771] "0312"  "011"   "011"   "0311"  "011"   "0222"  "011"   "011"   "02113" "011"   "0311" 
#>  [782] "011"   "011"   "011"   "011"   "011"   "0312"  "011"   "0311"  "0311"  "011"   "011"  
#>  [793] "0312"  "0222"  "011"   "0312"  "011"   "011"   "0234"  "0311"  "0312"  "0222"  "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0324"  "0324" 
#>  [815] "012"   "0143"  "011"   "011"   "011"   "02123" "011"   "011"   "011"   "011"   "011"  
#>  [826] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "012"   "011"   "011"  
#>  [837] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [848] "011"   "0324"  "012"   "011"   "0234"  "0324"  "0222"  "011"   "0143"  "0143"  "0143" 
#>  [859] "0324"  "011"   "011"   "0324"  "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [870] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "011"   "011"  
#>  [881] "011"   "011"   "011"   "011"   "012"   "02123" "011"   "0324"  "011"   "0324"  "011"  
#>  [892] "0311"  "011"   "011"   "011"   "0222"  "0222"  "011"   "011"   "011"   "011"   "011"  
#>  [903] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [914] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [925] "011"   "011"   "011"   "011"   "0222"  "011"   "0143"  "011"   "011"   "011"   "0222" 
#>  [936] "0324"  "011"   "0222"  "011"   "011"   "011"   "0143"  "011"   "011"   "011"   "011"  
#>  [947] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "02123" "0143" 
#>  [958] "0143"  "011"   "02123" "0222"  "011"   "011"   "02123" "0311"  "011"   "011"   "011"  
#>  [969] "011"   "0311"  "011"   "011"   "0222"  "011"   "012"   "011"   "011"   "011"   "011"  
#>  [980] "011"   "0324"  "0324"  "0222"  "0222"  "0311"  "011"   "011"   "011"   "011"   "0311" 
#>  [991] "0311"  "011"   "011"   "011"   "0311"  "011"   "011"   "0324"  "0324"  "011"   "0222" 
#> [1002] "013"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1013] "012"   "0222"  "012"   "0222"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1024] "012"   "012"   "0323"  "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1035] "012"   "0311"  "012"   "0312"  "012"   "02113" "012"   "011"   "0322"  "012"   "012"  
#> [1046] "012"   "0312"  "012"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"  
#> [1057] "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1068] "012"   "012"   "012"   "012"   "012"   "013"   "012"   "0322"  "012"   "012"   "012"  
#> [1079] "013"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1090] "012"   "012"   "012"   "011"   "013"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1101] "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1112] "012"   "012"   "012"   "012"   "013"   "012"   "0313"  "012"   "0141"  "012"   "0313" 
#> [1123] "012"   "012"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "011"   "011"  
#> [1134] "012"   "0322"  "012"   "012"   "012"   "012"   "012"   "0221"  "012"   "012"   "011"  
#> [1145] "0322"  "012"   "012"   "011"   "012"   "0142"  "012"   "012"   "012"   "012"   "012"  
#> [1156] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "011"   "012"   "012"   "012"  
#> [1167] "012"   "011"   "011"   "011"   "012"   "0311"  "011"   "012"   "011"   "011"   "012"  
#> [1178] "012"   "012"   "012"   "0223"  "012"   "0141"  "012"   "0221"  "011"   "012"   "012"  
#> [1189] "011"   "012"   "012"   "012"   "012"   "012"   "012"   "0141"  "012"   "012"   "013"  
#> [1200] "012"   "012"   "0141"  "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"  
#> [1211] "013"   "012"   "012"   "0141"  "0222"  "012"   "0321"  "0313"  "012"   "012"   "011"  
#> [1222] "012"   "012"   "0221"  "012"   "0223"  "012"   "012"   "012"   "0141"  "012"   "012"  
#> [1233] "012"   "011"   "012"   "011"   "011"   "0313"  "0141"  "012"   "0333"  "0321"  "0311" 
#> [1244] "012"   "012"   "012"   "011"   "011"   "012"   "012"   "011"   "012"   "011"   "011"  
#> [1255] "011"   "0221"  "0221"  "0221"  "0223"  "012"   "012"   "012"   "012"   "012"   "0311" 
#> [1266] "0141"  "011"   "011"   "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "02122" "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "0223"  "0331"  "0221"  "013"   "0333"  "02122" "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "012"   "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "0222"  "013"   "013"   "0223"  "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "0223"  "013"   "013"   "013"   "013"   "013"   "013"   "02122" "02122" "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "012"   "012"   "012"   "012"   "0321"  "013"   "013"   "0231"  "0141"  "02113"
#> [1398] "0233"  "0233"  "012"   "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "011"   "013"   "0311"  "012"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "012"   "013"   "013"   "0233"  "013"   "0333"  "0221" 
#> [1453] "013"   "013"   "0221"  "013"   "013"   "013"   "0223"  "013"   "013"   "013"   "013"  
#> [1464] "013"   "012"   "013"   "011"   "011"   "011"   "013"   "013"   "0333"  "012"   "0313" 
#> [1475] "0333"  "0313"  "011"   "02121" "013"   "0221"  "012"   "013"   "013"   "011"   "013"  
#> [1486] "013"   "013"   "0321"  "0141"  "013"   "0141"  "013"   "013"   "011"   "0231"  "0141" 
#> [1497] "013"   "011"   "013"   "0233"  "012"   "0141"  "013"   "011"   "012"   "0321"  "013"  
#> [1508] "0222"  "013"   "0223"  "012"   "013"   "012"   "013"   "013"   "012"   "013"   "0221" 
#> [1519] "0331"  "0221"  "0233"  "0233"  "0142"  "0221"  "0142"  "013"   "0333"  "013"   "013"  
#> [1530] "013"   "0142"  "013"   "013"   "02113" "012"   "0223"  "011"   "011"   "013"   "013"  
#> [1541] "012"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "011"   "013"   "013"   "013"   "0142"  "02121" "0233"  "013"   "012"   "012"  
#> [1563] "0143"  "0312"  "0223"  "011"   "013"   "0333"  "013"   "012"   "013"   "0223"  "02121"
#> [1574] "0142"  "02121" "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "0222"  "0331" 
#> [1596] "02113" "02121" "0233"  "013"   "02113" "013"   "0332"  "013"   "02123" "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "0222"  "02113" "0233"  "013"   "0331"  "011"   "02122" "012"   "013"  
#> [1629] "012"   "013"   "0141"  "012"   "0323"  "012"   "02122" "012"   "012"   "012"   "0221" 
#> [1640] "012"   "012"   "013"   "012"   "0233"  "0141"  "012"   "0141"  "012"   "012"   "012"  
#> [1651] "0142"  "012"   "012"   "0321"  "012"   "011"   "012"   "011"   "011"   "012"   "012"  
#> [1662] "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1673] "012"   "012"   "012"   "0231"  "012"   "011"   "011"   "0233"  "012"   "012"   "012"  
#> [1684] "0141"  "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "0322"  "012"  
#> [1695] "012"   "012"   "012"   "011"   "012"   "012"   "011"   "012"   "0311"  "012"   "012"  
#> [1706] "012"   "0323"  "012"   "012"   "012"   "013"   "0311"  "012"   "012"   "012"   "013"  
#> [1717] "012"   "012"   "0323"  "0323"  "013"   "012"   "0141"  "012"   "012"   "012"   "012"  
#> [1728] "0313"  "012"   "0311"  "0311"  "012"   "012"   "02121" "012"   "011"   "012"   "011"  
#> [1739] "011"   "011"   "012"   "012"   "013"   "012"   "013"   "012"   "012"   "012"   "0323" 
#> [1750] "012"   "0312"  "012"   "0221"  "012"   "0221"  "012"   "011"   "012"   "0142"  "0312" 
#> [1761] "0223"  "012"   "011"   "012"   "011"   "0221"  "0311"  "011"   "013"   "0221"  "012"  
#> [1772] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"   "012"   "0322"  "011"  
#> [1783] "012"   "012"   "011"   "012"   "0313"  "011"   "012"   "0323"  "012"   "0313"  "0313" 
#> [1794] "0323"  "0223"  "011"   "012"   "0313"  "0223"  "012"   "012"   "012"   "012"   "0323" 
#> [1805] "012"   "012"   "0233"  "02121" "0223"  "0311"  "0221"  "012"   "012"   "011"   "012"  
#> [1816] "012"   "012"   "012"   "012"   "012"   "0313"  "012"   "012"   "012"   "012"   "012"  
#> [1827] "012"   "012"   "012"   "0223"  "012"   "012"   "0323"  "012"   "012"   "02122" "0223" 
#> [1838] "012"   "011"   "012"   "012"   "012"   "02121" "012"   "012"   "0143"  "012"   "012"  
#> [1849] "012"   "012"   "012"   "0323"  "012"   "012"   "011"   "012"   "012"   "011"   "0322" 
#> [1860] "012"   "0312"  "012"   "012"   "0332"  "0223"  "0312"  "0321"  "0323"  "02122" "012"  
#> [1871] "012"   "0323"  "0323"  "012"   "012"   "012"   "0231"  "012"   "012"   "012"   "02112"
#> [1882] "012"   "012"   "012"   "012"   "0323"  "012"   "0312"  "012"   "012"   "011"   "0221" 
#> [1893] "012"   "012"   "012"   "0311"  "012"   "012"   "012"   "0312"  "013"   "0323"  "012"  
#> [1904] "0311"  "012"   "012"   "0332"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1915] "0323"  "012"   "012"   "011"   "012"   "0312"  "0223"  "012"   "0323"  "0323"  "012"  
#> [1926] "0311"  "012"   "012"   "012"   "0233"  "0323"  "012"   "02112" "012"   "0323"  "0233" 
#> [1937] "0333"  "012"   "012"   "0323"  "0323"  "012"   "0323"  "012"   "0332"  "0222"  "0312" 
#> [1948] "0323"  "012"   "0312"  "0323"  "012"   "012"   "02123" "012"   "012"   "0233"  "0323" 
#> [1959] "02113" "0323"  "0221"  "0323"  "0323"  "0222"  "012"   "0323"  "02112" "0331"  "0323" 
#> [1970] "0312"  "012"   "0233"  "0312"  "0323"  "02122" "0311"  "012"   "02122" "0323"  "02121"
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "02121" "02122" "02122" "02112" "0221" 
#> [1992] "02122" "0231"  "0232"  "0223"  "02123" "0231"  "0231"  "02112" "0231"  "0223"  "02113"
#> [2003] "02112" "0232"  "02112" "0222"  "0221"  "02121" "0232"  "0232"  "02123" "0231"  "02121"
#> [2014] "0231"  "0142"  "0221"  "0231"  "0321"  "0223"  "02112" "02122" "0222"  "0223"  "0221" 
#> [2025] "0222"  "0321"  "0223"  "02122" "02122" "0223"  "0222"  "02122" "0223"  "0232"  "0221" 
#> [2036] "02113" "0221"  "02112" "0223"  "0223"  "0221"  "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "02122" "02121" "02121" "0142"  "0221"  "02113" "0231"  "02113" "02112" "02121" "0223" 
#> [2058] "02122" "0321"  "0223"  "02112" "0223"  "0223"  "02122" "0221"  "0223"  "02122" "02122"
#> [2069] "02122" "02112" "02112" "0223"  "0232"  "0222"  "02113" "0233"  "02112" "0222"  "02112"
#> [2080] "02112" "02112" "02123" "02122" "0231"  "02121" "02122" "02121" "0232"  "02121" "0221" 
#> [2091] "02121" "0223"  "0223"  "02122" "0223"  "0223"  "0223"  "02121" "0223"  "0231"  "02121"
#> [2102] "02121" "02121" "02122" "02112" "02112" "02121" "02112" "0231"  "02112" "0231"  "0223" 
#> [2113] "02112" "02112" "02112" "02112" "0223"  "02123" "0231"  "0232"  "02121" "02121" "0233" 
#> [2124] "0232"  "0142"  "0223"  "02121" "0142"  "02112" "02112" "02122" "02121" "02112" "02112"
#> [2135] "02112" "02121" "02122" "02121" "0221"  "02121" "0222"  "0223"  "02122" "0221"  "0221" 
#> [2146] "0222"  "0223"  "02121" "0223"  "02121" "02112" "02122" "0223"  "0223"  "02122" "02112"
#> [2157] "02121" "0223"  "0223"  "02112" "0221"  "0223"  "0221"  "02122" "0223"  "0223"  "0221" 
#> [2168] "02121" "0223"  "0223"  "0223"  "0221"  "02121" "0321"  "0221"  "0221"  "0221"  "02111"
#> [2179] "02122" "02122" "02122" "0223"  "0234"  "0222"  "0223"  "0221"  "0221"  "0221"  "0221" 
#> [2190] "0143"  "0221"  "0142"  "0221"  "0312"  "0221"  "0321"  "0221"  "02113" "02112" "0221" 
#> [2201] "0232"  "0231"  "0223"  "0232"  "0232"  "0222"  "02121" "02121" "02121" "0231"  "0232" 
#> [2212] "0221"  "0232"  "0223"  "02121" "02123" "02112" "02112" "02121" "02121" "0223"  "02123"
#> [2223] "02121" "02121" "0221"  "02112" "02112" "02121" "0223"  "02121" "0223"  "0223"  "0223" 
#> [2234] "0223"  "02121" "0221"  "0321"  "0222"  "0221"  "0321"  "0221"  "0321"  "0223"  "0221" 
#> [2245] "0223"  "0223"  "0223"  "0231"  "0231"  "0221"  "0222"  "0321"  "0222"  "0221"  "0231" 
#> [2256] "0231"  "0221"  "0221"  "0141"  "0321"  "02112" "0221"  "0221"  "0221"  "0223"  "0321" 
#> [2267] "0231"  "0221"  "0321"  "0223"  "0223"  "0223"  "0142"  "0223"  "0142"  "0222"  "0223" 
#> [2278] "0321"  "0221"  "0231"  "0222"  "0221"  "0141"  "0222"  "0221"  "0221"  "0142"  "0321" 
#> [2289] "0321"  "0221"  "0221"  "0321"  "0221"  "0221"  "0142"  "0221"  "0221"  "0221"  "0141" 
#> [2300] "0321"  "0142"  "0142"  "0141"  "0223"  "0142"  "0222"  "0142"  "0142"  "0142"  "0223" 
#> [2311] "0142"  "0321"  "0221"  "0142"  "0141"  "0141"  "012"   "02122" "0231"  "0221"  "0142" 
#> [2322] "0221"  "0223"  "0321"  "0221"  "0221"  "0221"  "0221"  "0221"  "0221"  "0223"  "0221" 
#> [2333] "0221"  "0223"  "0321"  "0142"  "0141"  "0321"  "0221"  "0141"  "0321"  "0321"  "0221" 
#> [2344] "02122" "0232"  "0223"  "0223"  "0223"  "0221"  "0221"  "0321"  "0222"  "0223"  "0223" 
#> [2355] "0221"  "0221"  "0321"  "02121" "02112" "0221"  "02121" "0221"  "02121" "0234"  "02121"
#> [2366] "02122" "0221"  "02112" "02112" "0221"  "0223"  "0223"  "02121" "0223"  "02121" "0223" 
#> [2377] "0221"  "0221"  "02123" "02121" "0232"  "0223"  "02112" "02122" "0232"  "0221"  "0223" 
#> [2388] "0223"  "0223"  "0231"  "02113" "0223"  "0221"  "0221"  "02111" "02121" "02122" "0223" 
#> [2399] "0321"  "0221"  "0141"  "0141"  "0141"  "02122" "0221"  "0231"  "02111" "0223"  "02122"
#> [2410] "0222"  "02122" "0221"  "02122" "0142"  "0221"  "0223"  "0221"  "0223"  "0231"  "012"  
#> [2421] "0223"  "0221"  "0321"  "02121" "02121" "0231"  "0223"  "0221"  "0223"  "0223"  "0221" 
#> [2432] "0221"  "0141"  "0321"  "0141"  "0221"  "0321"  "0321"  "0321"  "0141"  "0141"  "012"  
#> [2443] "0321"  "0321"  "0321"  "0223"  "0223"  "0221"  "02122" "0223"  "02122" "02122" "02122"
#> [2454] "02112" "02122" "02122" "02112" "02122" "02122" "0231"  "02122" "02122" "02122" "02123"
#> [2465] "02122" "02123" "02122" "02122" "0222"  "0221"  "0321"  "0221"  "0221"  "0221"  "02122"
#> [2476] "02122" "0223"  "02122" "0223"  "0221"  "0223"  "02122" "0223"  "0223"  "02112" "0223" 
#> [2487] "02122" "02122" "02122" "02112" "02123" "02122" "02122" "02112" "0223"  "02122" "0223" 
#> [2498] "02122" "02122" "0221"  "02122" "0223"  "02121" "0223"  "0223"  "0221"  "0223"  "0321" 
#> [2509] "0321"  "0221"  "0324"  "02122" "02122" "02112" "02122" "02122" "02112" "02122" "0221" 
#> [2520] "02122" "02121" "02112" "0221"  "0222"  "0221"  "02122" "02112" "0221"  "02122" "02113"
#> [2531] "0223"  "02122" "02112" "0141"  "02121" "0321"  "0221"  "0221"  "0221"  "0231"  "0221" 
#> [2542] "0221"  "0221"  "0221"  "0232"  "0221"  "0221"  "0223"  "0142"  "0221"  "0321"  "0321" 
#> [2553] "0142"  "0141"  "02121" "0321"  "0221"  "0141"  "02112" "02121" "0321"  "02122" "0321" 
#> [2564] "0223"  "0221"  "0321"  "0221"  "0221"  "0221"  "0221"  "0223"  "0142"  "0141"  "0141" 
#> [2575] "0321"  "0321"  "0221"  "0221"  "02112" "02122" "02122" "0223"  "0223"  "0221"  "0221" 
#> [2586] "0222"  "0221"  "0142"  "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "0142"  "0232"  "02112" "0231"  "0221"  "0223"  "0321"  "0221"  "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "0142"  "02112" "0222"  "0231"  "0142"  "0142"  "0141" 
#> [2630] "0231"  "02112" "02112" "02121" "02112" "02112" "0223"  "02122" "0223"  "0223"  "0221" 
#> [2641] "0221"  "0321"  "0221"  "0221"  "02121" "0221"  "0221"  "0223"  "0321"  "0221"  "012"  
#> [2652] "0221"  "0221"  "0221"  "0221"  "0221"  "0231"  "0221"  "0222"  "0221"  "0221"  "0221" 
#> [2663] "0221"  "0321"  "0321"  "0221"  "0321"  "0221"  "0221"  "0321"  "0221"  "0141"  "0321" 
#> [2674] "0221"  "0321"  "0221"  "0221"  "0324"  "012"   "0141"  "012"   "0221"  "0141"  "012"  
#> [2685] "012"   "0232"  "0232"  "02112" "02112" "0321"  "02121" "02121" "0234"  "0231"  "0143" 
#> [2696] "0221"  "0324"  "02121" "0221"  "0321"  "0221"  "02121" "0141"  "0222"  "0222"  "0321" 
#> [2707] "0142"  "0222"  "0141"  "0142"  "0222"  "0141"  "0141"  "0231"  "0222"  "0231"  "0141" 
#> [2718] "0142"  "0231"  "0141"  "0223"  "0222"  "0141"  "02112" "0321"  "0141"  "0321"  "0141" 
#> [2729] "012"   "0321"  "02121" "0221"  "0321"  "0221"  "0321"  "0141"  "0141"  "0321"  "0141" 
#> [2740] "0321"  "0141"  "0141"  "02121" "0221"  "0221"  "0141"  "0141"  "0141"  "0142"  "0321" 
#> [2751] "0141"  "0141"  "0221"  "0221"  "0321"  "0323"  "0142"  "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "0142"  "0142"  "0221"  "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "0142"  "0142"  "0223"  "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "0221"  "0142"  "0142"  "0142"  "0221"  "02121" "0231"  "02111" "02111" "02121" "02111"
#> [2828] "02121" "02111" "0223"  "02121" "02121" "02111" "02121" "0231"  "0223"  "02121" "02121"
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "02121" "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "0142"  "0221"  "02123" "0141"  "0221"  "02112"
#> [2861] "0231"  "0232"  "0223"  "0223"  "02121" "02121" "0231"  "0221"  "02121" "0221"  "02111"
#> [2872] "02121" "02123" "02111" "02111" "02121" "0223"  "02121" "0142"  "02121" "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1348))
#>    [1] "012"   "012"   "0231"  "0322"  "012"   "012"   "0322"  "011"   "012"   "012"   "012"  
#>   [12] "011"   "0322"  "012"   "012"   "012"   "012"   "012"   "0313"  "011"   "0322"  "012"  
#>   [23] "011"   "0322"  "012"   "0322"  "0322"  "0322"  "012"   "0312"  "0322"  "012"   "0322" 
#>   [34] "0322"  "0322"  "012"   "012"   "012"   "0312"  "0311"  "011"   "0222"  "011"   "0311" 
#>   [45] "012"   "012"   "0311"  "0312"  "0322"  "011"   "0312"  "011"   "011"   "012"   "012"  
#>   [56] "02123" "02123" "0143"  "011"   "0313"  "0322"  "011"   "011"   "0222"  "0311"  "011"  
#>   [67] "012"   "012"   "0322"  "012"   "0322"  "0311"  "0322"  "011"   "011"   "0143"  "011"  
#>   [78] "011"   "0222"  "011"   "0143"  "0322"  "011"   "0143"  "011"   "0222"  "011"   "011"  
#>   [89] "011"   "012"   "0322"  "011"   "02113" "011"   "011"   "011"   "011"   "011"   "0143" 
#>  [100] "0313"  "011"   "011"   "011"   "011"   "011"   "0322"  "0222"  "0141"  "0142"  "011"  
#>  [111] "011"   "011"   "011"   "0143"  "011"   "0222"  "0222"  "0322"  "011"   "0321"  "0313" 
#>  [122] "0322"  "0222"  "0222"  "0222"  "0234"  "012"   "011"   "011"   "011"   "012"   "011"  
#>  [133] "011"   "0324"  "011"   "0222"  "011"   "011"   "0322"  "011"   "011"   "011"   "012"  
#>  [144] "012"   "012"   "0222"  "011"   "02123" "011"   "0324"  "0313"  "0313"  "011"   "0313" 
#>  [155] "0322"  "011"   "0313"  "0234"  "0322"  "0322"  "0322"  "011"   "0313"  "0313"  "0222" 
#>  [166] "011"   "0322"  "0313"  "011"   "011"   "0322"  "0313"  "0313"  "0222"  "0222"  "0313" 
#>  [177] "0313"  "011"   "0313"  "0313"  "0312"  "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "0312"  "0222"  "0322"  "011"   "0313"  "0312"  "0313"  "0322"  "0312"  "0312" 
#>  [199] "0312"  "0312"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "0322"  "0313"  "0322" 
#>  [210] "0222"  "0313"  "0234"  "0313"  "0312"  "0313"  "0313"  "0322"  "0222"  "0312"  "011"  
#>  [221] "0312"  "0313"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "011"   "02113" "0313" 
#>  [232] "0313"  "0312"  "0313"  "02113" "0312"  "0312"  "0313"  "0312"  "0313"  "0313"  "0313" 
#>  [243] "0312"  "011"   "0312"  "0312"  "0312"  "0222"  "0312"  "0313"  "011"   "0313"  "0312" 
#>  [254] "0312"  "0313"  "0313"  "011"   "0312"  "0313"  "0313"  "011"   "0313"  "011"   "011"  
#>  [265] "011"   "0313"  "011"   "011"   "011"   "0313"  "011"   "011"   "0313"  "0313"  "011"  
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "02123" "011"   "0313"  "0313"  "0313"  "0222" 
#>  [287] "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312" 
#>  [298] "0312"  "02113" "0312"  "02113" "0313"  "0313"  "0234"  "0313"  "02113" "0222"  "0312" 
#>  [309] "0222"  "0312"  "0312"  "0313"  "0222"  "0313"  "0313"  "0312"  "011"   "0313"  "0313" 
#>  [320] "011"   "0313"  "011"   "0312"  "0313"  "0311"  "011"   "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "011"   "011"   "011"   "011"   "0222"  "0222"  "011"   "0313"  "011"   "0313" 
#>  [342] "0313"  "0222"  "0313"  "0313"  "0313"  "0222"  "0311"  "0311"  "0222"  "0313"  "011"  
#>  [353] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0313"  "0312"  "0312"  "0312" 
#>  [375] "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "011"   "011"   "0222"  "0311"  "011"  
#>  [386] "011"   "011"   "0311"  "0324"  "0311"  "011"   "0311"  "011"   "0311"  "0222"  "0311" 
#>  [397] "0313"  "0311"  "011"   "011"   "0311"  "011"   "0143"  "0311"  "011"   "0222"  "011"  
#>  [408] "0311"  "011"   "011"   "0311"  "0311"  "02123" "011"   "011"   "011"   "011"   "011"  
#>  [419] "0311"  "011"   "011"   "011"   "011"   "0313"  "0234"  "011"   "011"   "011"   "011"  
#>  [430] "011"   "011"   "0234"  "011"   "0234"  "011"   "0222"  "011"   "02123" "011"   "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "011"   "011"   "0312"  "0312"  "0312"  "0311" 
#>  [452] "011"   "0311"  "011"   "011"   "0312"  "011"   "011"   "0312"  "0312"  "0311"  "0312" 
#>  [463] "0311"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312" 
#>  [474] "0312"  "0312"  "0311"  "0311"  "0312"  "0311"  "0311"  "0311"  "0311"  "0311"  "011"  
#>  [485] "02123" "0312"  "0311"  "0311"  "0222"  "0222"  "02123" "0312"  "0312"  "0222"  "0312" 
#>  [496] "011"   "02123" "02113" "011"   "0312"  "02113" "011"   "0311"  "0312"  "0311"  "02113"
#>  [507] "011"   "0311"  "0311"  "0311"  "0311"  "0222"  "0311"  "0311"  "011"   "011"   "0222" 
#>  [518] "0311"  "0312"  "0311"  "011"   "011"   "011"   "0312"  "0312"  "0313"  "0312"  "011"  
#>  [529] "011"   "0222"  "02123" "02123" "011"   "0222"  "011"   "011"   "011"   "02123" "011"  
#>  [540] "0311"  "011"   "0222"  "011"   "011"   "0222"  "011"   "011"   "011"   "0311"  "011"  
#>  [551] "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "0311"  "0311"  "0143"  "0311" 
#>  [562] "011"   "0324"  "0324"  "011"   "011"   "011"   "0222"  "0311"  "011"   "011"   "0222" 
#>  [573] "0324"  "0311"  "011"   "0312"  "011"   "011"   "011"   "0222"  "011"   "011"   "011"  
#>  [584] "011"   "0311"  "011"   "0311"  "011"   "011"   "011"   "011"   "0313"  "011"   "0312" 
#>  [595] "0313"  "0324"  "011"   "0313"  "0313"  "011"   "011"   "011"   "011"   "0313"  "011"  
#>  [606] "011"   "0222"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0234" 
#>  [617] "0311"  "0311"  "011"   "0311"  "0311"  "0313"  "011"   "0311"  "011"   "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "011"   "011"   "0313"  "011"   "0311"  "02113" "0311"  "011"  
#>  [639] "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312"  "011"   "011"   "0222" 
#>  [650] "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311" 
#>  [661] "0311"  "011"   "0234"  "011"   "011"   "0312"  "0311"  "0311"  "0311"  "0311"  "0222" 
#>  [672] "011"   "0222"  "0311"  "0313"  "0234"  "0311"  "0311"  "0222"  "011"   "0311"  "0311" 
#>  [683] "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0311"  "0311"  "011"   "0312" 
#>  [694] "0311"  "0222"  "0311"  "0312"  "011"   "0312"  "0143"  "0312"  "011"   "011"   "0311" 
#>  [705] "0311"  "0222"  "0222"  "011"   "0324"  "011"   "0324"  "02123" "011"   "011"   "011"  
#>  [716] "011"   "011"   "011"   "0222"  "0311"  "0311"  "0222"  "0234"  "011"   "0222"  "0311" 
#>  [727] "0311"  "0311"  "011"   "011"   "0311"  "011"   "011"   "0311"  "011"   "011"   "011"  
#>  [738] "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312" 
#>  [749] "0312"  "0312"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0311"  "011"   "0324" 
#>  [760] "0311"  "02123" "0222"  "011"   "011"   "0311"  "011"   "011"   "011"   "011"   "011"  
#>  [771] "0312"  "011"   "011"   "0311"  "011"   "0222"  "011"   "011"   "02113" "011"   "0311" 
#>  [782] "011"   "011"   "011"   "011"   "011"   "0312"  "011"   "0311"  "0311"  "011"   "011"  
#>  [793] "0312"  "0222"  "011"   "0312"  "011"   "011"   "0234"  "0311"  "0312"  "0222"  "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0324"  "0324" 
#>  [815] "012"   "0143"  "011"   "011"   "011"   "02123" "011"   "011"   "011"   "011"   "011"  
#>  [826] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "012"   "011"   "011"  
#>  [837] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [848] "011"   "0324"  "012"   "011"   "0234"  "0324"  "0222"  "011"   "0143"  "0143"  "0143" 
#>  [859] "0324"  "011"   "011"   "0324"  "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [870] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "011"   "011"  
#>  [881] "011"   "011"   "011"   "011"   "012"   "02123" "011"   "0324"  "011"   "0324"  "011"  
#>  [892] "0311"  "011"   "011"   "011"   "0222"  "0222"  "011"   "011"   "011"   "011"   "011"  
#>  [903] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [914] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [925] "011"   "011"   "011"   "011"   "0222"  "011"   "0143"  "011"   "011"   "011"   "0222" 
#>  [936] "0324"  "011"   "0222"  "011"   "011"   "011"   "0143"  "011"   "011"   "011"   "011"  
#>  [947] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "02123" "0143" 
#>  [958] "0143"  "011"   "02123" "0222"  "011"   "011"   "02123" "0311"  "011"   "011"   "011"  
#>  [969] "011"   "0311"  "011"   "011"   "0222"  "011"   "012"   "011"   "011"   "011"   "011"  
#>  [980] "011"   "0324"  "0324"  "0222"  "0222"  "0311"  "011"   "011"   "011"   "011"   "0311" 
#>  [991] "0311"  "011"   "011"   "011"   "0311"  "011"   "011"   "0324"  "0324"  "011"   "0222" 
#> [1002] "013"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1013] "012"   "0222"  "012"   "0222"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1024] "012"   "012"   "0323"  "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1035] "012"   "0311"  "012"   "0312"  "012"   "02113" "012"   "011"   "0322"  "012"   "012"  
#> [1046] "012"   "0312"  "012"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"  
#> [1057] "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1068] "012"   "012"   "012"   "012"   "012"   "013"   "012"   "0322"  "012"   "012"   "012"  
#> [1079] "013"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1090] "012"   "012"   "012"   "011"   "013"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1101] "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1112] "012"   "012"   "012"   "012"   "013"   "012"   "0313"  "012"   "0141"  "012"   "0313" 
#> [1123] "012"   "012"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "011"   "011"  
#> [1134] "012"   "0322"  "012"   "012"   "012"   "012"   "012"   "0221"  "012"   "012"   "011"  
#> [1145] "0322"  "012"   "012"   "011"   "012"   "0142"  "012"   "012"   "012"   "012"   "012"  
#> [1156] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "011"   "012"   "012"   "012"  
#> [1167] "012"   "011"   "011"   "011"   "012"   "0311"  "011"   "012"   "011"   "011"   "012"  
#> [1178] "012"   "012"   "012"   "0223"  "012"   "0141"  "012"   "0221"  "011"   "012"   "012"  
#> [1189] "011"   "012"   "012"   "012"   "012"   "012"   "012"   "0141"  "012"   "012"   "013"  
#> [1200] "012"   "012"   "0141"  "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"  
#> [1211] "013"   "012"   "012"   "0141"  "0222"  "012"   "0321"  "0313"  "012"   "012"   "011"  
#> [1222] "012"   "012"   "0221"  "012"   "0223"  "012"   "012"   "012"   "0141"  "012"   "012"  
#> [1233] "012"   "011"   "012"   "011"   "011"   "0313"  "0141"  "012"   "0333"  "0321"  "0311" 
#> [1244] "012"   "012"   "012"   "011"   "011"   "012"   "012"   "011"   "012"   "011"   "011"  
#> [1255] "011"   "0221"  "0221"  "0221"  "0223"  "012"   "012"   "012"   "012"   "012"   "0311" 
#> [1266] "0141"  "011"   "011"   "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "02122" "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "0223"  "0331"  "0221"  "013"   "0333"  "02122" "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "012"   "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "0222"  "013"   "013"   "0223"  "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "0223"  "013"   "013"   "013"   "013"   "013"   "013"   "02122" "02122" "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "012"   "012"   "012"   "012"   "0321"  "013"   "013"   "0231"  "0141"  "02113"
#> [1398] "0233"  "0233"  "012"   "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "011"   "013"   "0311"  "012"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "012"   "013"   "013"   "0233"  "013"   "0333"  "0221" 
#> [1453] "013"   "013"   "0221"  "013"   "013"   "013"   "0223"  "013"   "013"   "013"   "013"  
#> [1464] "013"   "012"   "013"   "011"   "011"   "011"   "013"   "013"   "0333"  "012"   "0313" 
#> [1475] "0333"  "0313"  "011"   "02121" "013"   "0221"  "012"   "013"   "013"   "011"   "013"  
#> [1486] "013"   "013"   "0321"  "0141"  "013"   "0141"  "013"   "013"   "011"   "0231"  "0141" 
#> [1497] "013"   "011"   "013"   "0233"  "012"   "0141"  "013"   "011"   "012"   "0321"  "013"  
#> [1508] "0222"  "013"   "0223"  "012"   "013"   "012"   "013"   "013"   "012"   "013"   "0221" 
#> [1519] "0331"  "0221"  "0233"  "0233"  "0142"  "0221"  "0142"  "013"   "0333"  "013"   "013"  
#> [1530] "013"   "0142"  "013"   "013"   "02113" "012"   "0223"  "011"   "011"   "013"   "013"  
#> [1541] "012"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "011"   "013"   "013"   "013"   "0142"  "02121" "0233"  "013"   "012"   "012"  
#> [1563] "0143"  "0312"  "0223"  "011"   "013"   "0333"  "013"   "012"   "013"   "0223"  "02121"
#> [1574] "0142"  "02121" "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "0222"  "0331" 
#> [1596] "02113" "02121" "0233"  "013"   "02113" "013"   "0332"  "013"   "02123" "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "0222"  "02113" "0233"  "013"   "0331"  "011"   "02122" "012"   "013"  
#> [1629] "012"   "013"   "0141"  "012"   "0323"  "012"   "02122" "012"   "012"   "012"   "0221" 
#> [1640] "012"   "012"   "013"   "012"   "0233"  "0141"  "012"   "0141"  "012"   "012"   "012"  
#> [1651] "0142"  "012"   "012"   "0321"  "012"   "011"   "012"   "011"   "011"   "012"   "012"  
#> [1662] "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1673] "012"   "012"   "012"   "0231"  "012"   "011"   "011"   "0233"  "012"   "012"   "012"  
#> [1684] "0141"  "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "0322"  "012"  
#> [1695] "012"   "012"   "012"   "011"   "012"   "012"   "011"   "012"   "0311"  "012"   "012"  
#> [1706] "012"   "0323"  "012"   "012"   "012"   "013"   "0311"  "012"   "012"   "012"   "013"  
#> [1717] "012"   "012"   "0323"  "0323"  "013"   "012"   "0141"  "012"   "012"   "012"   "012"  
#> [1728] "0313"  "012"   "0311"  "0311"  "012"   "012"   "02121" "012"   "011"   "012"   "011"  
#> [1739] "011"   "011"   "012"   "012"   "013"   "012"   "013"   "012"   "012"   "012"   "0323" 
#> [1750] "012"   "0312"  "012"   "0221"  "012"   "0221"  "012"   "011"   "012"   "0142"  "0312" 
#> [1761] "0223"  "012"   "011"   "012"   "011"   "0221"  "0311"  "011"   "013"   "0221"  "012"  
#> [1772] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"   "012"   "0322"  "011"  
#> [1783] "012"   "012"   "011"   "012"   "0313"  "011"   "012"   "0323"  "012"   "0313"  "0313" 
#> [1794] "0323"  "0223"  "011"   "012"   "0313"  "0223"  "012"   "012"   "012"   "012"   "0323" 
#> [1805] "012"   "012"   "0233"  "02121" "0223"  "0311"  "0221"  "012"   "012"   "011"   "012"  
#> [1816] "012"   "012"   "012"   "012"   "012"   "0313"  "012"   "012"   "012"   "012"   "012"  
#> [1827] "012"   "012"   "012"   "0223"  "012"   "012"   "0323"  "012"   "012"   "02122" "0223" 
#> [1838] "012"   "011"   "012"   "012"   "012"   "02121" "012"   "012"   "0143"  "012"   "012"  
#> [1849] "012"   "012"   "012"   "0323"  "012"   "012"   "011"   "012"   "012"   "011"   "0322" 
#> [1860] "012"   "0312"  "012"   "012"   "0332"  "0223"  "0312"  "0321"  "0323"  "02122" "012"  
#> [1871] "012"   "0323"  "0323"  "012"   "012"   "012"   "0231"  "012"   "012"   "012"   "02112"
#> [1882] "012"   "012"   "012"   "012"   "0323"  "012"   "0312"  "012"   "012"   "011"   "0221" 
#> [1893] "012"   "012"   "012"   "0311"  "012"   "012"   "012"   "0312"  "013"   "0323"  "012"  
#> [1904] "0311"  "012"   "012"   "0332"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1915] "0323"  "012"   "012"   "011"   "012"   "0312"  "0223"  "012"   "0323"  "0323"  "012"  
#> [1926] "0311"  "012"   "012"   "012"   "0233"  "0323"  "012"   "02112" "012"   "0323"  "0233" 
#> [1937] "0333"  "012"   "012"   "0323"  "0323"  "012"   "0323"  "012"   "0332"  "0222"  "0312" 
#> [1948] "0323"  "012"   "0312"  "0323"  "012"   "012"   "02123" "012"   "012"   "0233"  "0323" 
#> [1959] "02113" "0323"  "0221"  "0323"  "0323"  "0222"  "012"   "0323"  "02112" "0331"  "0323" 
#> [1970] "0312"  "012"   "0233"  "0312"  "0323"  "02122" "0311"  "012"   "02122" "0323"  "02121"
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "02121" "02122" "02122" "02112" "0221" 
#> [1992] "02122" "0231"  "0232"  "0223"  "02123" "0231"  "0231"  "02112" "0231"  "0223"  "02113"
#> [2003] "02112" "0232"  "02112" "0222"  "0221"  "02121" "0232"  "0232"  "02123" "0231"  "02121"
#> [2014] "0231"  "0142"  "0221"  "0231"  "0321"  "0223"  "02112" "02122" "0222"  "0223"  "0221" 
#> [2025] "0222"  "0321"  "0223"  "02122" "02122" "0223"  "0222"  "02122" "0223"  "0232"  "0221" 
#> [2036] "02113" "0221"  "02112" "0223"  "0223"  "0221"  "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "02122" "02121" "02121" "0142"  "0221"  "02113" "0231"  "02113" "02112" "02121" "0223" 
#> [2058] "02122" "0321"  "0223"  "02112" "0223"  "0223"  "02122" "0221"  "0223"  "02122" "02122"
#> [2069] "02122" "02112" "02112" "0223"  "0232"  "0222"  "02113" "0233"  "02112" "0222"  "02112"
#> [2080] "02112" "02112" "02123" "02122" "0231"  "02121" "02122" "02121" "0232"  "02121" "0221" 
#> [2091] "02121" "0223"  "0223"  "02122" "0223"  "0223"  "0223"  "02121" "0223"  "0231"  "02121"
#> [2102] "02121" "02121" "02122" "02112" "02112" "02121" "02112" "0231"  "02112" "0231"  "0223" 
#> [2113] "02112" "02112" "02112" "02112" "0223"  "02123" "0231"  "0232"  "02121" "02121" "0233" 
#> [2124] "0232"  "0142"  "0223"  "02121" "0142"  "02112" "02112" "02122" "02121" "02112" "02112"
#> [2135] "02112" "02121" "02122" "02121" "0221"  "02121" "0222"  "0223"  "02122" "0221"  "0221" 
#> [2146] "0222"  "0223"  "02121" "0223"  "02121" "02112" "02122" "0223"  "0223"  "02122" "02112"
#> [2157] "02121" "0223"  "0223"  "02112" "0221"  "0223"  "0221"  "02122" "0223"  "0223"  "0221" 
#> [2168] "02121" "0223"  "0223"  "0223"  "0221"  "02121" "0321"  "0221"  "0221"  "0221"  "02111"
#> [2179] "02122" "02122" "02122" "0223"  "0234"  "0222"  "0223"  "0221"  "0221"  "0221"  "0221" 
#> [2190] "0143"  "0221"  "0142"  "0221"  "0312"  "0221"  "0321"  "0221"  "02113" "02112" "0221" 
#> [2201] "0232"  "0231"  "0223"  "0232"  "0232"  "0222"  "02121" "02121" "02121" "0231"  "0232" 
#> [2212] "0221"  "0232"  "0223"  "02121" "02123" "02112" "02112" "02121" "02121" "0223"  "02123"
#> [2223] "02121" "02121" "0221"  "02112" "02112" "02121" "0223"  "02121" "0223"  "0223"  "0223" 
#> [2234] "0223"  "02121" "0221"  "0321"  "0222"  "0221"  "0321"  "0221"  "0321"  "0223"  "0221" 
#> [2245] "0223"  "0223"  "0223"  "0231"  "0231"  "0221"  "0222"  "0321"  "0222"  "0221"  "0231" 
#> [2256] "0231"  "0221"  "0221"  "0141"  "0321"  "02112" "0221"  "0221"  "0221"  "0223"  "0321" 
#> [2267] "0231"  "0221"  "0321"  "0223"  "0223"  "0223"  "0142"  "0223"  "0142"  "0222"  "0223" 
#> [2278] "0321"  "0221"  "0231"  "0222"  "0221"  "0141"  "0222"  "0221"  "0221"  "0142"  "0321" 
#> [2289] "0321"  "0221"  "0221"  "0321"  "0221"  "0221"  "0142"  "0221"  "0221"  "0221"  "0141" 
#> [2300] "0321"  "0142"  "0142"  "0141"  "0223"  "0142"  "0222"  "0142"  "0142"  "0142"  "0223" 
#> [2311] "0142"  "0321"  "0221"  "0142"  "0141"  "0141"  "012"   "02122" "0231"  "0221"  "0142" 
#> [2322] "0221"  "0223"  "0321"  "0221"  "0221"  "0221"  "0221"  "0221"  "0221"  "0223"  "0221" 
#> [2333] "0221"  "0223"  "0321"  "0142"  "0141"  "0321"  "0221"  "0141"  "0321"  "0321"  "0221" 
#> [2344] "02122" "0232"  "0223"  "0223"  "0223"  "0221"  "0221"  "0321"  "0222"  "0223"  "0223" 
#> [2355] "0221"  "0221"  "0321"  "02121" "02112" "0221"  "02121" "0221"  "02121" "0234"  "02121"
#> [2366] "02122" "0221"  "02112" "02112" "0221"  "0223"  "0223"  "02121" "0223"  "02121" "0223" 
#> [2377] "0221"  "0221"  "02123" "02121" "0232"  "0223"  "02112" "02122" "0232"  "0221"  "0223" 
#> [2388] "0223"  "0223"  "0231"  "02113" "0223"  "0221"  "0221"  "02111" "02121" "02122" "0223" 
#> [2399] "0321"  "0221"  "0141"  "0141"  "0141"  "02122" "0221"  "0231"  "02111" "0223"  "02122"
#> [2410] "0222"  "02122" "0221"  "02122" "0142"  "0221"  "0223"  "0221"  "0223"  "0231"  "012"  
#> [2421] "0223"  "0221"  "0321"  "02121" "02121" "0231"  "0223"  "0221"  "0223"  "0223"  "0221" 
#> [2432] "0221"  "0141"  "0321"  "0141"  "0221"  "0321"  "0321"  "0321"  "0141"  "0141"  "012"  
#> [2443] "0321"  "0321"  "0321"  "0223"  "0223"  "0221"  "02122" "0223"  "02122" "02122" "02122"
#> [2454] "02112" "02122" "02122" "02112" "02122" "02122" "0231"  "02122" "02122" "02122" "02123"
#> [2465] "02122" "02123" "02122" "02122" "0222"  "0221"  "0321"  "0221"  "0221"  "0221"  "02122"
#> [2476] "02122" "0223"  "02122" "0223"  "0221"  "0223"  "02122" "0223"  "0223"  "02112" "0223" 
#> [2487] "02122" "02122" "02122" "02112" "02123" "02122" "02122" "02112" "0223"  "02122" "0223" 
#> [2498] "02122" "02122" "0221"  "02122" "0223"  "02121" "0223"  "0223"  "0221"  "0223"  "0321" 
#> [2509] "0321"  "0221"  "0324"  "02122" "02122" "02112" "02122" "02122" "02112" "02122" "0221" 
#> [2520] "02122" "02121" "02112" "0221"  "0222"  "0221"  "02122" "02112" "0221"  "02122" "02113"
#> [2531] "0223"  "02122" "02112" "0141"  "02121" "0321"  "0221"  "0221"  "0221"  "0231"  "0221" 
#> [2542] "0221"  "0221"  "0221"  "0232"  "0221"  "0221"  "0223"  "0142"  "0221"  "0321"  "0321" 
#> [2553] "0142"  "0141"  "02121" "0321"  "0221"  "0141"  "02112" "02121" "0321"  "02122" "0321" 
#> [2564] "0223"  "0221"  "0321"  "0221"  "0221"  "0221"  "0221"  "0223"  "0142"  "0141"  "0141" 
#> [2575] "0321"  "0321"  "0221"  "0221"  "02112" "02122" "02122" "0223"  "0223"  "0221"  "0221" 
#> [2586] "0222"  "0221"  "0142"  "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "0142"  "0232"  "02112" "0231"  "0221"  "0223"  "0321"  "0221"  "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "0142"  "02112" "0222"  "0231"  "0142"  "0142"  "0141" 
#> [2630] "0231"  "02112" "02112" "02121" "02112" "02112" "0223"  "02122" "0223"  "0223"  "0221" 
#> [2641] "0221"  "0321"  "0221"  "0221"  "02121" "0221"  "0221"  "0223"  "0321"  "0221"  "012"  
#> [2652] "0221"  "0221"  "0221"  "0221"  "0221"  "0231"  "0221"  "0222"  "0221"  "0221"  "0221" 
#> [2663] "0221"  "0321"  "0321"  "0221"  "0321"  "0221"  "0221"  "0321"  "0221"  "0141"  "0321" 
#> [2674] "0221"  "0321"  "0221"  "0221"  "0324"  "012"   "0141"  "012"   "0221"  "0141"  "012"  
#> [2685] "012"   "0232"  "0232"  "02112" "02112" "0321"  "02121" "02121" "0234"  "0231"  "0143" 
#> [2696] "0221"  "0324"  "02121" "0221"  "0321"  "0221"  "02121" "0141"  "0222"  "0222"  "0321" 
#> [2707] "0142"  "0222"  "0141"  "0142"  "0222"  "0141"  "0141"  "0231"  "0222"  "0231"  "0141" 
#> [2718] "0142"  "0231"  "0141"  "0223"  "0222"  "0141"  "02112" "0321"  "0141"  "0321"  "0141" 
#> [2729] "012"   "0321"  "02121" "0221"  "0321"  "0221"  "0321"  "0141"  "0141"  "0321"  "0141" 
#> [2740] "0321"  "0141"  "0141"  "02121" "0221"  "0221"  "0141"  "0141"  "0141"  "0142"  "0321" 
#> [2751] "0141"  "0141"  "0221"  "0221"  "0321"  "0323"  "0142"  "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "0142"  "0142"  "0221"  "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "0142"  "0142"  "0223"  "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "0221"  "0142"  "0142"  "0142"  "0221"  "02121" "0231"  "02111" "02111" "02121" "02111"
#> [2828] "02121" "02111" "0223"  "02121" "02121" "02111" "02121" "0231"  "0223"  "02121" "02121"
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "02121" "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "0142"  "0221"  "02123" "0141"  "0221"  "02112"
#> [2861] "0231"  "0232"  "0223"  "0223"  "02121" "02121" "0231"  "0221"  "02121" "0221"  "02111"
#> [2872] "02121" "02123" "02111" "02111" "02121" "0223"  "02121" "0142"  "02121" "02121"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1387))
#>    [1] "012"   "012"   "0231"  "0322"  "012"   "012"   "0322"  "011"   "012"   "012"   "012"  
#>   [12] "011"   "0322"  "012"   "012"   "012"   "012"   "012"   "0313"  "011"   "0322"  "012"  
#>   [23] "011"   "0322"  "012"   "0322"  "0322"  "0322"  "012"   "0312"  "0322"  "012"   "0322" 
#>   [34] "0322"  "0322"  "012"   "012"   "012"   "0312"  "0311"  "011"   "0222"  "011"   "0311" 
#>   [45] "012"   "012"   "0311"  "0312"  "0322"  "011"   "0312"  "011"   "011"   "012"   "012"  
#>   [56] "0212"  "0212"  "0143"  "011"   "0313"  "0322"  "011"   "011"   "0222"  "0311"  "011"  
#>   [67] "012"   "012"   "0322"  "012"   "0322"  "0311"  "0322"  "011"   "011"   "0143"  "011"  
#>   [78] "011"   "0222"  "011"   "0143"  "0322"  "011"   "0143"  "011"   "0222"  "011"   "011"  
#>   [89] "011"   "012"   "0322"  "011"   "02113" "011"   "011"   "011"   "011"   "011"   "0143" 
#>  [100] "0313"  "011"   "011"   "011"   "011"   "011"   "0322"  "0222"  "0141"  "0142"  "011"  
#>  [111] "011"   "011"   "011"   "0143"  "011"   "0222"  "0222"  "0322"  "011"   "0321"  "0313" 
#>  [122] "0322"  "0222"  "0222"  "0222"  "0234"  "012"   "011"   "011"   "011"   "012"   "011"  
#>  [133] "011"   "0324"  "011"   "0222"  "011"   "011"   "0322"  "011"   "011"   "011"   "012"  
#>  [144] "012"   "012"   "0222"  "011"   "0212"  "011"   "0324"  "0313"  "0313"  "011"   "0313" 
#>  [155] "0322"  "011"   "0313"  "0234"  "0322"  "0322"  "0322"  "011"   "0313"  "0313"  "0222" 
#>  [166] "011"   "0322"  "0313"  "011"   "011"   "0322"  "0313"  "0313"  "0222"  "0222"  "0313" 
#>  [177] "0313"  "011"   "0313"  "0313"  "0312"  "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "0312"  "0222"  "0322"  "011"   "0313"  "0312"  "0313"  "0322"  "0312"  "0312" 
#>  [199] "0312"  "0312"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "0322"  "0313"  "0322" 
#>  [210] "0222"  "0313"  "0234"  "0313"  "0312"  "0313"  "0313"  "0322"  "0222"  "0312"  "011"  
#>  [221] "0312"  "0313"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "011"   "02113" "0313" 
#>  [232] "0313"  "0312"  "0313"  "02113" "0312"  "0312"  "0313"  "0312"  "0313"  "0313"  "0313" 
#>  [243] "0312"  "011"   "0312"  "0312"  "0312"  "0222"  "0312"  "0313"  "011"   "0313"  "0312" 
#>  [254] "0312"  "0313"  "0313"  "011"   "0312"  "0313"  "0313"  "011"   "0313"  "011"   "011"  
#>  [265] "011"   "0313"  "011"   "011"   "011"   "0313"  "011"   "011"   "0313"  "0313"  "011"  
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "0212"  "011"   "0313"  "0313"  "0313"  "0222" 
#>  [287] "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312" 
#>  [298] "0312"  "02113" "0312"  "02113" "0313"  "0313"  "0234"  "0313"  "02113" "0222"  "0312" 
#>  [309] "0222"  "0312"  "0312"  "0313"  "0222"  "0313"  "0313"  "0312"  "011"   "0313"  "0313" 
#>  [320] "011"   "0313"  "011"   "0312"  "0313"  "0311"  "011"   "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "011"   "011"   "011"   "011"   "0222"  "0222"  "011"   "0313"  "011"   "0313" 
#>  [342] "0313"  "0222"  "0313"  "0313"  "0313"  "0222"  "0311"  "0311"  "0222"  "0313"  "011"  
#>  [353] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0313"  "0312"  "0312"  "0312" 
#>  [375] "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "011"   "011"   "0222"  "0311"  "011"  
#>  [386] "011"   "011"   "0311"  "0324"  "0311"  "011"   "0311"  "011"   "0311"  "0222"  "0311" 
#>  [397] "0313"  "0311"  "011"   "011"   "0311"  "011"   "0143"  "0311"  "011"   "0222"  "011"  
#>  [408] "0311"  "011"   "011"   "0311"  "0311"  "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [419] "0311"  "011"   "011"   "011"   "011"   "0313"  "0234"  "011"   "011"   "011"   "011"  
#>  [430] "011"   "011"   "0234"  "011"   "0234"  "011"   "0222"  "011"   "0212"  "011"   "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "011"   "011"   "0312"  "0312"  "0312"  "0311" 
#>  [452] "011"   "0311"  "011"   "011"   "0312"  "011"   "011"   "0312"  "0312"  "0311"  "0312" 
#>  [463] "0311"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312" 
#>  [474] "0312"  "0312"  "0311"  "0311"  "0312"  "0311"  "0311"  "0311"  "0311"  "0311"  "011"  
#>  [485] "0212"  "0312"  "0311"  "0311"  "0222"  "0222"  "0212"  "0312"  "0312"  "0222"  "0312" 
#>  [496] "011"   "0212"  "02113" "011"   "0312"  "02113" "011"   "0311"  "0312"  "0311"  "02113"
#>  [507] "011"   "0311"  "0311"  "0311"  "0311"  "0222"  "0311"  "0311"  "011"   "011"   "0222" 
#>  [518] "0311"  "0312"  "0311"  "011"   "011"   "011"   "0312"  "0312"  "0313"  "0312"  "011"  
#>  [529] "011"   "0222"  "0212"  "0212"  "011"   "0222"  "011"   "011"   "011"   "0212"  "011"  
#>  [540] "0311"  "011"   "0222"  "011"   "011"   "0222"  "011"   "011"   "011"   "0311"  "011"  
#>  [551] "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "0311"  "0311"  "0143"  "0311" 
#>  [562] "011"   "0324"  "0324"  "011"   "011"   "011"   "0222"  "0311"  "011"   "011"   "0222" 
#>  [573] "0324"  "0311"  "011"   "0312"  "011"   "011"   "011"   "0222"  "011"   "011"   "011"  
#>  [584] "011"   "0311"  "011"   "0311"  "011"   "011"   "011"   "011"   "0313"  "011"   "0312" 
#>  [595] "0313"  "0324"  "011"   "0313"  "0313"  "011"   "011"   "011"   "011"   "0313"  "011"  
#>  [606] "011"   "0222"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0234" 
#>  [617] "0311"  "0311"  "011"   "0311"  "0311"  "0313"  "011"   "0311"  "011"   "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "011"   "011"   "0313"  "011"   "0311"  "02113" "0311"  "011"  
#>  [639] "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312"  "011"   "011"   "0222" 
#>  [650] "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311" 
#>  [661] "0311"  "011"   "0234"  "011"   "011"   "0312"  "0311"  "0311"  "0311"  "0311"  "0222" 
#>  [672] "011"   "0222"  "0311"  "0313"  "0234"  "0311"  "0311"  "0222"  "011"   "0311"  "0311" 
#>  [683] "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0311"  "0311"  "011"   "0312" 
#>  [694] "0311"  "0222"  "0311"  "0312"  "011"   "0312"  "0143"  "0312"  "011"   "011"   "0311" 
#>  [705] "0311"  "0222"  "0222"  "011"   "0324"  "011"   "0324"  "0212"  "011"   "011"   "011"  
#>  [716] "011"   "011"   "011"   "0222"  "0311"  "0311"  "0222"  "0234"  "011"   "0222"  "0311" 
#>  [727] "0311"  "0311"  "011"   "011"   "0311"  "011"   "011"   "0311"  "011"   "011"   "011"  
#>  [738] "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312" 
#>  [749] "0312"  "0312"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0311"  "011"   "0324" 
#>  [760] "0311"  "0212"  "0222"  "011"   "011"   "0311"  "011"   "011"   "011"   "011"   "011"  
#>  [771] "0312"  "011"   "011"   "0311"  "011"   "0222"  "011"   "011"   "02113" "011"   "0311" 
#>  [782] "011"   "011"   "011"   "011"   "011"   "0312"  "011"   "0311"  "0311"  "011"   "011"  
#>  [793] "0312"  "0222"  "011"   "0312"  "011"   "011"   "0234"  "0311"  "0312"  "0222"  "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0324"  "0324" 
#>  [815] "012"   "0143"  "011"   "011"   "011"   "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [826] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "012"   "011"   "011"  
#>  [837] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [848] "011"   "0324"  "012"   "011"   "0234"  "0324"  "0222"  "011"   "0143"  "0143"  "0143" 
#>  [859] "0324"  "011"   "011"   "0324"  "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [870] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "011"   "011"  
#>  [881] "011"   "011"   "011"   "011"   "012"   "0212"  "011"   "0324"  "011"   "0324"  "011"  
#>  [892] "0311"  "011"   "011"   "011"   "0222"  "0222"  "011"   "011"   "011"   "011"   "011"  
#>  [903] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [914] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [925] "011"   "011"   "011"   "011"   "0222"  "011"   "0143"  "011"   "011"   "011"   "0222" 
#>  [936] "0324"  "011"   "0222"  "011"   "011"   "011"   "0143"  "011"   "011"   "011"   "011"  
#>  [947] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "0212"  "0143" 
#>  [958] "0143"  "011"   "0212"  "0222"  "011"   "011"   "0212"  "0311"  "011"   "011"   "011"  
#>  [969] "011"   "0311"  "011"   "011"   "0222"  "011"   "012"   "011"   "011"   "011"   "011"  
#>  [980] "011"   "0324"  "0324"  "0222"  "0222"  "0311"  "011"   "011"   "011"   "011"   "0311" 
#>  [991] "0311"  "011"   "011"   "011"   "0311"  "011"   "011"   "0324"  "0324"  "011"   "0222" 
#> [1002] "013"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1013] "012"   "0222"  "012"   "0222"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1024] "012"   "012"   "0323"  "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1035] "012"   "0311"  "012"   "0312"  "012"   "02113" "012"   "011"   "0322"  "012"   "012"  
#> [1046] "012"   "0312"  "012"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"  
#> [1057] "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1068] "012"   "012"   "012"   "012"   "012"   "013"   "012"   "0322"  "012"   "012"   "012"  
#> [1079] "013"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1090] "012"   "012"   "012"   "011"   "013"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1101] "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1112] "012"   "012"   "012"   "012"   "013"   "012"   "0313"  "012"   "0141"  "012"   "0313" 
#> [1123] "012"   "012"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "011"   "011"  
#> [1134] "012"   "0322"  "012"   "012"   "012"   "012"   "012"   "0221"  "012"   "012"   "011"  
#> [1145] "0322"  "012"   "012"   "011"   "012"   "0142"  "012"   "012"   "012"   "012"   "012"  
#> [1156] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "011"   "012"   "012"   "012"  
#> [1167] "012"   "011"   "011"   "011"   "012"   "0311"  "011"   "012"   "011"   "011"   "012"  
#> [1178] "012"   "012"   "012"   "0223"  "012"   "0141"  "012"   "0221"  "011"   "012"   "012"  
#> [1189] "011"   "012"   "012"   "012"   "012"   "012"   "012"   "0141"  "012"   "012"   "013"  
#> [1200] "012"   "012"   "0141"  "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"  
#> [1211] "013"   "012"   "012"   "0141"  "0222"  "012"   "0321"  "0313"  "012"   "012"   "011"  
#> [1222] "012"   "012"   "0221"  "012"   "0223"  "012"   "012"   "012"   "0141"  "012"   "012"  
#> [1233] "012"   "011"   "012"   "011"   "011"   "0313"  "0141"  "012"   "0333"  "0321"  "0311" 
#> [1244] "012"   "012"   "012"   "011"   "011"   "012"   "012"   "011"   "012"   "011"   "011"  
#> [1255] "011"   "0221"  "0221"  "0221"  "0223"  "012"   "012"   "012"   "012"   "012"   "0311" 
#> [1266] "0141"  "011"   "011"   "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "0212"  "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "0223"  "0331"  "0221"  "013"   "0333"  "0212"  "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "012"   "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "0222"  "013"   "013"   "0223"  "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "0223"  "013"   "013"   "013"   "013"   "013"   "013"   "0212"  "0212"  "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "012"   "012"   "012"   "012"   "0321"  "013"   "013"   "0231"  "0141"  "02113"
#> [1398] "0233"  "0233"  "012"   "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "011"   "013"   "0311"  "012"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "012"   "013"   "013"   "0233"  "013"   "0333"  "0221" 
#> [1453] "013"   "013"   "0221"  "013"   "013"   "013"   "0223"  "013"   "013"   "013"   "013"  
#> [1464] "013"   "012"   "013"   "011"   "011"   "011"   "013"   "013"   "0333"  "012"   "0313" 
#> [1475] "0333"  "0313"  "011"   "0212"  "013"   "0221"  "012"   "013"   "013"   "011"   "013"  
#> [1486] "013"   "013"   "0321"  "0141"  "013"   "0141"  "013"   "013"   "011"   "0231"  "0141" 
#> [1497] "013"   "011"   "013"   "0233"  "012"   "0141"  "013"   "011"   "012"   "0321"  "013"  
#> [1508] "0222"  "013"   "0223"  "012"   "013"   "012"   "013"   "013"   "012"   "013"   "0221" 
#> [1519] "0331"  "0221"  "0233"  "0233"  "0142"  "0221"  "0142"  "013"   "0333"  "013"   "013"  
#> [1530] "013"   "0142"  "013"   "013"   "02113" "012"   "0223"  "011"   "011"   "013"   "013"  
#> [1541] "012"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "011"   "013"   "013"   "013"   "0142"  "0212"  "0233"  "013"   "012"   "012"  
#> [1563] "0143"  "0312"  "0223"  "011"   "013"   "0333"  "013"   "012"   "013"   "0223"  "0212" 
#> [1574] "0142"  "0212"  "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "0222"  "0331" 
#> [1596] "02113" "0212"  "0233"  "013"   "02113" "013"   "0332"  "013"   "0212"  "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "0222"  "02113" "0233"  "013"   "0331"  "011"   "0212"  "012"   "013"  
#> [1629] "012"   "013"   "0141"  "012"   "0323"  "012"   "0212"  "012"   "012"   "012"   "0221" 
#> [1640] "012"   "012"   "013"   "012"   "0233"  "0141"  "012"   "0141"  "012"   "012"   "012"  
#> [1651] "0142"  "012"   "012"   "0321"  "012"   "011"   "012"   "011"   "011"   "012"   "012"  
#> [1662] "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1673] "012"   "012"   "012"   "0231"  "012"   "011"   "011"   "0233"  "012"   "012"   "012"  
#> [1684] "0141"  "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "0322"  "012"  
#> [1695] "012"   "012"   "012"   "011"   "012"   "012"   "011"   "012"   "0311"  "012"   "012"  
#> [1706] "012"   "0323"  "012"   "012"   "012"   "013"   "0311"  "012"   "012"   "012"   "013"  
#> [1717] "012"   "012"   "0323"  "0323"  "013"   "012"   "0141"  "012"   "012"   "012"   "012"  
#> [1728] "0313"  "012"   "0311"  "0311"  "012"   "012"   "0212"  "012"   "011"   "012"   "011"  
#> [1739] "011"   "011"   "012"   "012"   "013"   "012"   "013"   "012"   "012"   "012"   "0323" 
#> [1750] "012"   "0312"  "012"   "0221"  "012"   "0221"  "012"   "011"   "012"   "0142"  "0312" 
#> [1761] "0223"  "012"   "011"   "012"   "011"   "0221"  "0311"  "011"   "013"   "0221"  "012"  
#> [1772] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"   "012"   "0322"  "011"  
#> [1783] "012"   "012"   "011"   "012"   "0313"  "011"   "012"   "0323"  "012"   "0313"  "0313" 
#> [1794] "0323"  "0223"  "011"   "012"   "0313"  "0223"  "012"   "012"   "012"   "012"   "0323" 
#> [1805] "012"   "012"   "0233"  "0212"  "0223"  "0311"  "0221"  "012"   "012"   "011"   "012"  
#> [1816] "012"   "012"   "012"   "012"   "012"   "0313"  "012"   "012"   "012"   "012"   "012"  
#> [1827] "012"   "012"   "012"   "0223"  "012"   "012"   "0323"  "012"   "012"   "0212"  "0223" 
#> [1838] "012"   "011"   "012"   "012"   "012"   "0212"  "012"   "012"   "0143"  "012"   "012"  
#> [1849] "012"   "012"   "012"   "0323"  "012"   "012"   "011"   "012"   "012"   "011"   "0322" 
#> [1860] "012"   "0312"  "012"   "012"   "0332"  "0223"  "0312"  "0321"  "0323"  "0212"  "012"  
#> [1871] "012"   "0323"  "0323"  "012"   "012"   "012"   "0231"  "012"   "012"   "012"   "02112"
#> [1882] "012"   "012"   "012"   "012"   "0323"  "012"   "0312"  "012"   "012"   "011"   "0221" 
#> [1893] "012"   "012"   "012"   "0311"  "012"   "012"   "012"   "0312"  "013"   "0323"  "012"  
#> [1904] "0311"  "012"   "012"   "0332"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1915] "0323"  "012"   "012"   "011"   "012"   "0312"  "0223"  "012"   "0323"  "0323"  "012"  
#> [1926] "0311"  "012"   "012"   "012"   "0233"  "0323"  "012"   "02112" "012"   "0323"  "0233" 
#> [1937] "0333"  "012"   "012"   "0323"  "0323"  "012"   "0323"  "012"   "0332"  "0222"  "0312" 
#> [1948] "0323"  "012"   "0312"  "0323"  "012"   "012"   "0212"  "012"   "012"   "0233"  "0323" 
#> [1959] "02113" "0323"  "0221"  "0323"  "0323"  "0222"  "012"   "0323"  "02112" "0331"  "0323" 
#> [1970] "0312"  "012"   "0233"  "0312"  "0323"  "0212"  "0311"  "012"   "0212"  "0323"  "0212" 
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "0212"  "0212"  "0212"  "02112" "0221" 
#> [1992] "0212"  "0231"  "0232"  "0223"  "0212"  "0231"  "0231"  "02112" "0231"  "0223"  "02113"
#> [2003] "02112" "0232"  "02112" "0222"  "0221"  "0212"  "0232"  "0232"  "0212"  "0231"  "0212" 
#> [2014] "0231"  "0142"  "0221"  "0231"  "0321"  "0223"  "02112" "0212"  "0222"  "0223"  "0221" 
#> [2025] "0222"  "0321"  "0223"  "0212"  "0212"  "0223"  "0222"  "0212"  "0223"  "0232"  "0221" 
#> [2036] "02113" "0221"  "02112" "0223"  "0223"  "0221"  "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "0212"  "0212"  "0212"  "0142"  "0221"  "02113" "0231"  "02113" "02112" "0212"  "0223" 
#> [2058] "0212"  "0321"  "0223"  "02112" "0223"  "0223"  "0212"  "0221"  "0223"  "0212"  "0212" 
#> [2069] "0212"  "02112" "02112" "0223"  "0232"  "0222"  "02113" "0233"  "02112" "0222"  "02112"
#> [2080] "02112" "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0232"  "0212"  "0221" 
#> [2091] "0212"  "0223"  "0223"  "0212"  "0223"  "0223"  "0223"  "0212"  "0223"  "0231"  "0212" 
#> [2102] "0212"  "0212"  "0212"  "02112" "02112" "0212"  "02112" "0231"  "02112" "0231"  "0223" 
#> [2113] "02112" "02112" "02112" "02112" "0223"  "0212"  "0231"  "0232"  "0212"  "0212"  "0233" 
#> [2124] "0232"  "0142"  "0223"  "0212"  "0142"  "02112" "02112" "0212"  "0212"  "02112" "02112"
#> [2135] "02112" "0212"  "0212"  "0212"  "0221"  "0212"  "0222"  "0223"  "0212"  "0221"  "0221" 
#> [2146] "0222"  "0223"  "0212"  "0223"  "0212"  "02112" "0212"  "0223"  "0223"  "0212"  "02112"
#> [2157] "0212"  "0223"  "0223"  "02112" "0221"  "0223"  "0221"  "0212"  "0223"  "0223"  "0221" 
#> [2168] "0212"  "0223"  "0223"  "0223"  "0221"  "0212"  "0321"  "0221"  "0221"  "0221"  "02111"
#> [2179] "0212"  "0212"  "0212"  "0223"  "0234"  "0222"  "0223"  "0221"  "0221"  "0221"  "0221" 
#> [2190] "0143"  "0221"  "0142"  "0221"  "0312"  "0221"  "0321"  "0221"  "02113" "02112" "0221" 
#> [2201] "0232"  "0231"  "0223"  "0232"  "0232"  "0222"  "0212"  "0212"  "0212"  "0231"  "0232" 
#> [2212] "0221"  "0232"  "0223"  "0212"  "0212"  "02112" "02112" "0212"  "0212"  "0223"  "0212" 
#> [2223] "0212"  "0212"  "0221"  "02112" "02112" "0212"  "0223"  "0212"  "0223"  "0223"  "0223" 
#> [2234] "0223"  "0212"  "0221"  "0321"  "0222"  "0221"  "0321"  "0221"  "0321"  "0223"  "0221" 
#> [2245] "0223"  "0223"  "0223"  "0231"  "0231"  "0221"  "0222"  "0321"  "0222"  "0221"  "0231" 
#> [2256] "0231"  "0221"  "0221"  "0141"  "0321"  "02112" "0221"  "0221"  "0221"  "0223"  "0321" 
#> [2267] "0231"  "0221"  "0321"  "0223"  "0223"  "0223"  "0142"  "0223"  "0142"  "0222"  "0223" 
#> [2278] "0321"  "0221"  "0231"  "0222"  "0221"  "0141"  "0222"  "0221"  "0221"  "0142"  "0321" 
#> [2289] "0321"  "0221"  "0221"  "0321"  "0221"  "0221"  "0142"  "0221"  "0221"  "0221"  "0141" 
#> [2300] "0321"  "0142"  "0142"  "0141"  "0223"  "0142"  "0222"  "0142"  "0142"  "0142"  "0223" 
#> [2311] "0142"  "0321"  "0221"  "0142"  "0141"  "0141"  "012"   "0212"  "0231"  "0221"  "0142" 
#> [2322] "0221"  "0223"  "0321"  "0221"  "0221"  "0221"  "0221"  "0221"  "0221"  "0223"  "0221" 
#> [2333] "0221"  "0223"  "0321"  "0142"  "0141"  "0321"  "0221"  "0141"  "0321"  "0321"  "0221" 
#> [2344] "0212"  "0232"  "0223"  "0223"  "0223"  "0221"  "0221"  "0321"  "0222"  "0223"  "0223" 
#> [2355] "0221"  "0221"  "0321"  "0212"  "02112" "0221"  "0212"  "0221"  "0212"  "0234"  "0212" 
#> [2366] "0212"  "0221"  "02112" "02112" "0221"  "0223"  "0223"  "0212"  "0223"  "0212"  "0223" 
#> [2377] "0221"  "0221"  "0212"  "0212"  "0232"  "0223"  "02112" "0212"  "0232"  "0221"  "0223" 
#> [2388] "0223"  "0223"  "0231"  "02113" "0223"  "0221"  "0221"  "02111" "0212"  "0212"  "0223" 
#> [2399] "0321"  "0221"  "0141"  "0141"  "0141"  "0212"  "0221"  "0231"  "02111" "0223"  "0212" 
#> [2410] "0222"  "0212"  "0221"  "0212"  "0142"  "0221"  "0223"  "0221"  "0223"  "0231"  "012"  
#> [2421] "0223"  "0221"  "0321"  "0212"  "0212"  "0231"  "0223"  "0221"  "0223"  "0223"  "0221" 
#> [2432] "0221"  "0141"  "0321"  "0141"  "0221"  "0321"  "0321"  "0321"  "0141"  "0141"  "012"  
#> [2443] "0321"  "0321"  "0321"  "0223"  "0223"  "0221"  "0212"  "0223"  "0212"  "0212"  "0212" 
#> [2454] "02112" "0212"  "0212"  "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0212" 
#> [2465] "0212"  "0212"  "0212"  "0212"  "0222"  "0221"  "0321"  "0221"  "0221"  "0221"  "0212" 
#> [2476] "0212"  "0223"  "0212"  "0223"  "0221"  "0223"  "0212"  "0223"  "0223"  "02112" "0223" 
#> [2487] "0212"  "0212"  "0212"  "02112" "0212"  "0212"  "0212"  "02112" "0223"  "0212"  "0223" 
#> [2498] "0212"  "0212"  "0221"  "0212"  "0223"  "0212"  "0223"  "0223"  "0221"  "0223"  "0321" 
#> [2509] "0321"  "0221"  "0324"  "0212"  "0212"  "02112" "0212"  "0212"  "02112" "0212"  "0221" 
#> [2520] "0212"  "0212"  "02112" "0221"  "0222"  "0221"  "0212"  "02112" "0221"  "0212"  "02113"
#> [2531] "0223"  "0212"  "02112" "0141"  "0212"  "0321"  "0221"  "0221"  "0221"  "0231"  "0221" 
#> [2542] "0221"  "0221"  "0221"  "0232"  "0221"  "0221"  "0223"  "0142"  "0221"  "0321"  "0321" 
#> [2553] "0142"  "0141"  "0212"  "0321"  "0221"  "0141"  "02112" "0212"  "0321"  "0212"  "0321" 
#> [2564] "0223"  "0221"  "0321"  "0221"  "0221"  "0221"  "0221"  "0223"  "0142"  "0141"  "0141" 
#> [2575] "0321"  "0321"  "0221"  "0221"  "02112" "0212"  "0212"  "0223"  "0223"  "0221"  "0221" 
#> [2586] "0222"  "0221"  "0142"  "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "0142"  "0232"  "02112" "0231"  "0221"  "0223"  "0321"  "0221"  "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "0142"  "02112" "0222"  "0231"  "0142"  "0142"  "0141" 
#> [2630] "0231"  "02112" "02112" "0212"  "02112" "02112" "0223"  "0212"  "0223"  "0223"  "0221" 
#> [2641] "0221"  "0321"  "0221"  "0221"  "0212"  "0221"  "0221"  "0223"  "0321"  "0221"  "012"  
#> [2652] "0221"  "0221"  "0221"  "0221"  "0221"  "0231"  "0221"  "0222"  "0221"  "0221"  "0221" 
#> [2663] "0221"  "0321"  "0321"  "0221"  "0321"  "0221"  "0221"  "0321"  "0221"  "0141"  "0321" 
#> [2674] "0221"  "0321"  "0221"  "0221"  "0324"  "012"   "0141"  "012"   "0221"  "0141"  "012"  
#> [2685] "012"   "0232"  "0232"  "02112" "02112" "0321"  "0212"  "0212"  "0234"  "0231"  "0143" 
#> [2696] "0221"  "0324"  "0212"  "0221"  "0321"  "0221"  "0212"  "0141"  "0222"  "0222"  "0321" 
#> [2707] "0142"  "0222"  "0141"  "0142"  "0222"  "0141"  "0141"  "0231"  "0222"  "0231"  "0141" 
#> [2718] "0142"  "0231"  "0141"  "0223"  "0222"  "0141"  "02112" "0321"  "0141"  "0321"  "0141" 
#> [2729] "012"   "0321"  "0212"  "0221"  "0321"  "0221"  "0321"  "0141"  "0141"  "0321"  "0141" 
#> [2740] "0321"  "0141"  "0141"  "0212"  "0221"  "0221"  "0141"  "0141"  "0141"  "0142"  "0321" 
#> [2751] "0141"  "0141"  "0221"  "0221"  "0321"  "0323"  "0142"  "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "0142"  "0142"  "0221"  "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "0142"  "0142"  "0223"  "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "0221"  "0142"  "0142"  "0142"  "0221"  "0212"  "0231"  "02111" "02111" "0212"  "02111"
#> [2828] "0212"  "02111" "0223"  "0212"  "0212"  "02111" "0212"  "0231"  "0223"  "0212"  "0212" 
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "0212"  "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "0142"  "0221"  "0212"  "0141"  "0221"  "02112"
#> [2861] "0231"  "0232"  "0223"  "0223"  "0212"  "0212"  "0231"  "0221"  "0212"  "0221"  "02111"
#> [2872] "0212"  "0212"  "02111" "02111" "0212"  "0223"  "0212"  "0142"  "0212"  "0212"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1390))
#>    [1] "012"   "012"   "0231"  "0322"  "012"   "012"   "0322"  "011"   "012"   "012"   "012"  
#>   [12] "011"   "0322"  "012"   "012"   "012"   "012"   "012"   "0313"  "011"   "0322"  "012"  
#>   [23] "011"   "0322"  "012"   "0322"  "0322"  "0322"  "012"   "0312"  "0322"  "012"   "0322" 
#>   [34] "0322"  "0322"  "012"   "012"   "012"   "0312"  "0311"  "011"   "0222"  "011"   "0311" 
#>   [45] "012"   "012"   "0311"  "0312"  "0322"  "011"   "0312"  "011"   "011"   "012"   "012"  
#>   [56] "0212"  "0212"  "0143"  "011"   "0313"  "0322"  "011"   "011"   "0222"  "0311"  "011"  
#>   [67] "012"   "012"   "0322"  "012"   "0322"  "0311"  "0322"  "011"   "011"   "0143"  "011"  
#>   [78] "011"   "0222"  "011"   "0143"  "0322"  "011"   "0143"  "011"   "0222"  "011"   "011"  
#>   [89] "011"   "012"   "0322"  "011"   "02113" "011"   "011"   "011"   "011"   "011"   "0143" 
#>  [100] "0313"  "011"   "011"   "011"   "011"   "011"   "0322"  "0222"  "0141"  "0142"  "011"  
#>  [111] "011"   "011"   "011"   "0143"  "011"   "0222"  "0222"  "0322"  "011"   "0321"  "0313" 
#>  [122] "0322"  "0222"  "0222"  "0222"  "0234"  "012"   "011"   "011"   "011"   "012"   "011"  
#>  [133] "011"   "0324"  "011"   "0222"  "011"   "011"   "0322"  "011"   "011"   "011"   "012"  
#>  [144] "012"   "012"   "0222"  "011"   "0212"  "011"   "0324"  "0313"  "0313"  "011"   "0313" 
#>  [155] "0322"  "011"   "0313"  "0234"  "0322"  "0322"  "0322"  "011"   "0313"  "0313"  "0222" 
#>  [166] "011"   "0322"  "0313"  "011"   "011"   "0322"  "0313"  "0313"  "0222"  "0222"  "0313" 
#>  [177] "0313"  "011"   "0313"  "0313"  "0312"  "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "0312"  "0222"  "0322"  "011"   "0313"  "0312"  "0313"  "0322"  "0312"  "0312" 
#>  [199] "0312"  "0312"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "0322"  "0313"  "0322" 
#>  [210] "0222"  "0313"  "0234"  "0313"  "0312"  "0313"  "0313"  "0322"  "0222"  "0312"  "011"  
#>  [221] "0312"  "0313"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "011"   "02113" "0313" 
#>  [232] "0313"  "0312"  "0313"  "02113" "0312"  "0312"  "0313"  "0312"  "0313"  "0313"  "0313" 
#>  [243] "0312"  "011"   "0312"  "0312"  "0312"  "0222"  "0312"  "0313"  "011"   "0313"  "0312" 
#>  [254] "0312"  "0313"  "0313"  "011"   "0312"  "0313"  "0313"  "011"   "0313"  "011"   "011"  
#>  [265] "011"   "0313"  "011"   "011"   "011"   "0313"  "011"   "011"   "0313"  "0313"  "011"  
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "0212"  "011"   "0313"  "0313"  "0313"  "0222" 
#>  [287] "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312" 
#>  [298] "0312"  "02113" "0312"  "02113" "0313"  "0313"  "0234"  "0313"  "02113" "0222"  "0312" 
#>  [309] "0222"  "0312"  "0312"  "0313"  "0222"  "0313"  "0313"  "0312"  "011"   "0313"  "0313" 
#>  [320] "011"   "0313"  "011"   "0312"  "0313"  "0311"  "011"   "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "011"   "011"   "011"   "011"   "0222"  "0222"  "011"   "0313"  "011"   "0313" 
#>  [342] "0313"  "0222"  "0313"  "0313"  "0313"  "0222"  "0311"  "0311"  "0222"  "0313"  "011"  
#>  [353] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0313"  "0312"  "0312"  "0312" 
#>  [375] "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "011"   "011"   "0222"  "0311"  "011"  
#>  [386] "011"   "011"   "0311"  "0324"  "0311"  "011"   "0311"  "011"   "0311"  "0222"  "0311" 
#>  [397] "0313"  "0311"  "011"   "011"   "0311"  "011"   "0143"  "0311"  "011"   "0222"  "011"  
#>  [408] "0311"  "011"   "011"   "0311"  "0311"  "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [419] "0311"  "011"   "011"   "011"   "011"   "0313"  "0234"  "011"   "011"   "011"   "011"  
#>  [430] "011"   "011"   "0234"  "011"   "0234"  "011"   "0222"  "011"   "0212"  "011"   "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "011"   "011"   "0312"  "0312"  "0312"  "0311" 
#>  [452] "011"   "0311"  "011"   "011"   "0312"  "011"   "011"   "0312"  "0312"  "0311"  "0312" 
#>  [463] "0311"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312" 
#>  [474] "0312"  "0312"  "0311"  "0311"  "0312"  "0311"  "0311"  "0311"  "0311"  "0311"  "011"  
#>  [485] "0212"  "0312"  "0311"  "0311"  "0222"  "0222"  "0212"  "0312"  "0312"  "0222"  "0312" 
#>  [496] "011"   "0212"  "02113" "011"   "0312"  "02113" "011"   "0311"  "0312"  "0311"  "02113"
#>  [507] "011"   "0311"  "0311"  "0311"  "0311"  "0222"  "0311"  "0311"  "011"   "011"   "0222" 
#>  [518] "0311"  "0312"  "0311"  "011"   "011"   "011"   "0312"  "0312"  "0313"  "0312"  "011"  
#>  [529] "011"   "0222"  "0212"  "0212"  "011"   "0222"  "011"   "011"   "011"   "0212"  "011"  
#>  [540] "0311"  "011"   "0222"  "011"   "011"   "0222"  "011"   "011"   "011"   "0311"  "011"  
#>  [551] "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "0311"  "0311"  "0143"  "0311" 
#>  [562] "011"   "0324"  "0324"  "011"   "011"   "011"   "0222"  "0311"  "011"   "011"   "0222" 
#>  [573] "0324"  "0311"  "011"   "0312"  "011"   "011"   "011"   "0222"  "011"   "011"   "011"  
#>  [584] "011"   "0311"  "011"   "0311"  "011"   "011"   "011"   "011"   "0313"  "011"   "0312" 
#>  [595] "0313"  "0324"  "011"   "0313"  "0313"  "011"   "011"   "011"   "011"   "0313"  "011"  
#>  [606] "011"   "0222"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0234" 
#>  [617] "0311"  "0311"  "011"   "0311"  "0311"  "0313"  "011"   "0311"  "011"   "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "011"   "011"   "0313"  "011"   "0311"  "02113" "0311"  "011"  
#>  [639] "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312"  "011"   "011"   "0222" 
#>  [650] "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311" 
#>  [661] "0311"  "011"   "0234"  "011"   "011"   "0312"  "0311"  "0311"  "0311"  "0311"  "0222" 
#>  [672] "011"   "0222"  "0311"  "0313"  "0234"  "0311"  "0311"  "0222"  "011"   "0311"  "0311" 
#>  [683] "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0311"  "0311"  "011"   "0312" 
#>  [694] "0311"  "0222"  "0311"  "0312"  "011"   "0312"  "0143"  "0312"  "011"   "011"   "0311" 
#>  [705] "0311"  "0222"  "0222"  "011"   "0324"  "011"   "0324"  "0212"  "011"   "011"   "011"  
#>  [716] "011"   "011"   "011"   "0222"  "0311"  "0311"  "0222"  "0234"  "011"   "0222"  "0311" 
#>  [727] "0311"  "0311"  "011"   "011"   "0311"  "011"   "011"   "0311"  "011"   "011"   "011"  
#>  [738] "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312" 
#>  [749] "0312"  "0312"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0311"  "011"   "0324" 
#>  [760] "0311"  "0212"  "0222"  "011"   "011"   "0311"  "011"   "011"   "011"   "011"   "011"  
#>  [771] "0312"  "011"   "011"   "0311"  "011"   "0222"  "011"   "011"   "02113" "011"   "0311" 
#>  [782] "011"   "011"   "011"   "011"   "011"   "0312"  "011"   "0311"  "0311"  "011"   "011"  
#>  [793] "0312"  "0222"  "011"   "0312"  "011"   "011"   "0234"  "0311"  "0312"  "0222"  "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0324"  "0324" 
#>  [815] "012"   "0143"  "011"   "011"   "011"   "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [826] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "012"   "011"   "011"  
#>  [837] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [848] "011"   "0324"  "012"   "011"   "0234"  "0324"  "0222"  "011"   "0143"  "0143"  "0143" 
#>  [859] "0324"  "011"   "011"   "0324"  "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [870] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "011"   "011"  
#>  [881] "011"   "011"   "011"   "011"   "012"   "0212"  "011"   "0324"  "011"   "0324"  "011"  
#>  [892] "0311"  "011"   "011"   "011"   "0222"  "0222"  "011"   "011"   "011"   "011"   "011"  
#>  [903] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [914] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [925] "011"   "011"   "011"   "011"   "0222"  "011"   "0143"  "011"   "011"   "011"   "0222" 
#>  [936] "0324"  "011"   "0222"  "011"   "011"   "011"   "0143"  "011"   "011"   "011"   "011"  
#>  [947] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "0212"  "0143" 
#>  [958] "0143"  "011"   "0212"  "0222"  "011"   "011"   "0212"  "0311"  "011"   "011"   "011"  
#>  [969] "011"   "0311"  "011"   "011"   "0222"  "011"   "012"   "011"   "011"   "011"   "011"  
#>  [980] "011"   "0324"  "0324"  "0222"  "0222"  "0311"  "011"   "011"   "011"   "011"   "0311" 
#>  [991] "0311"  "011"   "011"   "011"   "0311"  "011"   "011"   "0324"  "0324"  "011"   "0222" 
#> [1002] "013"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1013] "012"   "0222"  "012"   "0222"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1024] "012"   "012"   "0323"  "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1035] "012"   "0311"  "012"   "0312"  "012"   "02113" "012"   "011"   "0322"  "012"   "012"  
#> [1046] "012"   "0312"  "012"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"  
#> [1057] "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1068] "012"   "012"   "012"   "012"   "012"   "013"   "012"   "0322"  "012"   "012"   "012"  
#> [1079] "013"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1090] "012"   "012"   "012"   "011"   "013"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1101] "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1112] "012"   "012"   "012"   "012"   "013"   "012"   "0313"  "012"   "0141"  "012"   "0313" 
#> [1123] "012"   "012"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "011"   "011"  
#> [1134] "012"   "0322"  "012"   "012"   "012"   "012"   "012"   "0221"  "012"   "012"   "011"  
#> [1145] "0322"  "012"   "012"   "011"   "012"   "0142"  "012"   "012"   "012"   "012"   "012"  
#> [1156] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "011"   "012"   "012"   "012"  
#> [1167] "012"   "011"   "011"   "011"   "012"   "0311"  "011"   "012"   "011"   "011"   "012"  
#> [1178] "012"   "012"   "012"   "0223"  "012"   "0141"  "012"   "0221"  "011"   "012"   "012"  
#> [1189] "011"   "012"   "012"   "012"   "012"   "012"   "012"   "0141"  "012"   "012"   "013"  
#> [1200] "012"   "012"   "0141"  "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"  
#> [1211] "013"   "012"   "012"   "0141"  "0222"  "012"   "0321"  "0313"  "012"   "012"   "011"  
#> [1222] "012"   "012"   "0221"  "012"   "0223"  "012"   "012"   "012"   "0141"  "012"   "012"  
#> [1233] "012"   "011"   "012"   "011"   "011"   "0313"  "0141"  "012"   "0333"  "0321"  "0311" 
#> [1244] "012"   "012"   "012"   "011"   "011"   "012"   "012"   "011"   "012"   "011"   "011"  
#> [1255] "011"   "0221"  "0221"  "0221"  "0223"  "012"   "012"   "012"   "012"   "012"   "0311" 
#> [1266] "0141"  "011"   "011"   "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "0212"  "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "0223"  "0331"  "0221"  "013"   "0333"  "0212"  "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "012"   "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "0222"  "013"   "013"   "0223"  "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "0223"  "013"   "013"   "013"   "013"   "013"   "013"   "0212"  "0212"  "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "012"   "012"   "012"   "012"   "0321"  "013"   "013"   "0231"  "0141"  "02113"
#> [1398] "0233"  "0233"  "012"   "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "011"   "013"   "0311"  "012"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "012"   "013"   "013"   "0233"  "013"   "0333"  "0221" 
#> [1453] "013"   "013"   "0221"  "013"   "013"   "013"   "0223"  "013"   "013"   "013"   "013"  
#> [1464] "013"   "012"   "013"   "011"   "011"   "011"   "013"   "013"   "0333"  "012"   "0313" 
#> [1475] "0333"  "0313"  "011"   "0212"  "013"   "0221"  "012"   "013"   "013"   "011"   "013"  
#> [1486] "013"   "013"   "0321"  "0141"  "013"   "0141"  "013"   "013"   "011"   "0231"  "0141" 
#> [1497] "013"   "011"   "013"   "0233"  "012"   "0141"  "013"   "011"   "012"   "0321"  "013"  
#> [1508] "0222"  "013"   "0223"  "012"   "013"   "012"   "013"   "013"   "012"   "013"   "0221" 
#> [1519] "0331"  "0221"  "0233"  "0233"  "0142"  "0221"  "0142"  "013"   "0333"  "013"   "013"  
#> [1530] "013"   "0142"  "013"   "013"   "02113" "012"   "0223"  "011"   "011"   "013"   "013"  
#> [1541] "012"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "011"   "013"   "013"   "013"   "0142"  "0212"  "0233"  "013"   "012"   "012"  
#> [1563] "0143"  "0312"  "0223"  "011"   "013"   "0333"  "013"   "012"   "013"   "0223"  "0212" 
#> [1574] "0142"  "0212"  "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "0222"  "0331" 
#> [1596] "02113" "0212"  "0233"  "013"   "02113" "013"   "0332"  "013"   "0212"  "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "0222"  "02113" "0233"  "013"   "0331"  "011"   "0212"  "012"   "013"  
#> [1629] "012"   "013"   "0141"  "012"   "0323"  "012"   "0212"  "012"   "012"   "012"   "0221" 
#> [1640] "012"   "012"   "013"   "012"   "0233"  "0141"  "012"   "0141"  "012"   "012"   "012"  
#> [1651] "0142"  "012"   "012"   "0321"  "012"   "011"   "012"   "011"   "011"   "012"   "012"  
#> [1662] "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1673] "012"   "012"   "012"   "0231"  "012"   "011"   "011"   "0233"  "012"   "012"   "012"  
#> [1684] "0141"  "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "0322"  "012"  
#> [1695] "012"   "012"   "012"   "011"   "012"   "012"   "011"   "012"   "0311"  "012"   "012"  
#> [1706] "012"   "0323"  "012"   "012"   "012"   "013"   "0311"  "012"   "012"   "012"   "013"  
#> [1717] "012"   "012"   "0323"  "0323"  "013"   "012"   "0141"  "012"   "012"   "012"   "012"  
#> [1728] "0313"  "012"   "0311"  "0311"  "012"   "012"   "0212"  "012"   "011"   "012"   "011"  
#> [1739] "011"   "011"   "012"   "012"   "013"   "012"   "013"   "012"   "012"   "012"   "0323" 
#> [1750] "012"   "0312"  "012"   "0221"  "012"   "0221"  "012"   "011"   "012"   "0142"  "0312" 
#> [1761] "0223"  "012"   "011"   "012"   "011"   "0221"  "0311"  "011"   "013"   "0221"  "012"  
#> [1772] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"   "012"   "0322"  "011"  
#> [1783] "012"   "012"   "011"   "012"   "0313"  "011"   "012"   "0323"  "012"   "0313"  "0313" 
#> [1794] "0323"  "0223"  "011"   "012"   "0313"  "0223"  "012"   "012"   "012"   "012"   "0323" 
#> [1805] "012"   "012"   "0233"  "0212"  "0223"  "0311"  "0221"  "012"   "012"   "011"   "012"  
#> [1816] "012"   "012"   "012"   "012"   "012"   "0313"  "012"   "012"   "012"   "012"   "012"  
#> [1827] "012"   "012"   "012"   "0223"  "012"   "012"   "0323"  "012"   "012"   "0212"  "0223" 
#> [1838] "012"   "011"   "012"   "012"   "012"   "0212"  "012"   "012"   "0143"  "012"   "012"  
#> [1849] "012"   "012"   "012"   "0323"  "012"   "012"   "011"   "012"   "012"   "011"   "0322" 
#> [1860] "012"   "0312"  "012"   "012"   "0332"  "0223"  "0312"  "0321"  "0323"  "0212"  "012"  
#> [1871] "012"   "0323"  "0323"  "012"   "012"   "012"   "0231"  "012"   "012"   "012"   "02112"
#> [1882] "012"   "012"   "012"   "012"   "0323"  "012"   "0312"  "012"   "012"   "011"   "0221" 
#> [1893] "012"   "012"   "012"   "0311"  "012"   "012"   "012"   "0312"  "013"   "0323"  "012"  
#> [1904] "0311"  "012"   "012"   "0332"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1915] "0323"  "012"   "012"   "011"   "012"   "0312"  "0223"  "012"   "0323"  "0323"  "012"  
#> [1926] "0311"  "012"   "012"   "012"   "0233"  "0323"  "012"   "02112" "012"   "0323"  "0233" 
#> [1937] "0333"  "012"   "012"   "0323"  "0323"  "012"   "0323"  "012"   "0332"  "0222"  "0312" 
#> [1948] "0323"  "012"   "0312"  "0323"  "012"   "012"   "0212"  "012"   "012"   "0233"  "0323" 
#> [1959] "02113" "0323"  "0221"  "0323"  "0323"  "0222"  "012"   "0323"  "02112" "0331"  "0323" 
#> [1970] "0312"  "012"   "0233"  "0312"  "0323"  "0212"  "0311"  "012"   "0212"  "0323"  "0212" 
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "0212"  "0212"  "0212"  "02112" "0221" 
#> [1992] "0212"  "0231"  "0232"  "0223"  "0212"  "0231"  "0231"  "02112" "0231"  "0223"  "02113"
#> [2003] "02112" "0232"  "02112" "0222"  "0221"  "0212"  "0232"  "0232"  "0212"  "0231"  "0212" 
#> [2014] "0231"  "0142"  "0221"  "0231"  "0321"  "0223"  "02112" "0212"  "0222"  "0223"  "0221" 
#> [2025] "0222"  "0321"  "0223"  "0212"  "0212"  "0223"  "0222"  "0212"  "0223"  "0232"  "0221" 
#> [2036] "02113" "0221"  "02112" "0223"  "0223"  "0221"  "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "0212"  "0212"  "0212"  "0142"  "0221"  "02113" "0231"  "02113" "02112" "0212"  "0223" 
#> [2058] "0212"  "0321"  "0223"  "02112" "0223"  "0223"  "0212"  "0221"  "0223"  "0212"  "0212" 
#> [2069] "0212"  "02112" "02112" "0223"  "0232"  "0222"  "02113" "0233"  "02112" "0222"  "02112"
#> [2080] "02112" "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0232"  "0212"  "0221" 
#> [2091] "0212"  "0223"  "0223"  "0212"  "0223"  "0223"  "0223"  "0212"  "0223"  "0231"  "0212" 
#> [2102] "0212"  "0212"  "0212"  "02112" "02112" "0212"  "02112" "0231"  "02112" "0231"  "0223" 
#> [2113] "02112" "02112" "02112" "02112" "0223"  "0212"  "0231"  "0232"  "0212"  "0212"  "0233" 
#> [2124] "0232"  "0142"  "0223"  "0212"  "0142"  "02112" "02112" "0212"  "0212"  "02112" "02112"
#> [2135] "02112" "0212"  "0212"  "0212"  "0221"  "0212"  "0222"  "0223"  "0212"  "0221"  "0221" 
#> [2146] "0222"  "0223"  "0212"  "0223"  "0212"  "02112" "0212"  "0223"  "0223"  "0212"  "02112"
#> [2157] "0212"  "0223"  "0223"  "02112" "0221"  "0223"  "0221"  "0212"  "0223"  "0223"  "0221" 
#> [2168] "0212"  "0223"  "0223"  "0223"  "0221"  "0212"  "0321"  "0221"  "0221"  "0221"  "02111"
#> [2179] "0212"  "0212"  "0212"  "0223"  "0234"  "0222"  "0223"  "0221"  "0221"  "0221"  "0221" 
#> [2190] "0143"  "0221"  "0142"  "0221"  "0312"  "0221"  "0321"  "0221"  "02113" "02112" "0221" 
#> [2201] "0232"  "0231"  "0223"  "0232"  "0232"  "0222"  "0212"  "0212"  "0212"  "0231"  "0232" 
#> [2212] "0221"  "0232"  "0223"  "0212"  "0212"  "02112" "02112" "0212"  "0212"  "0223"  "0212" 
#> [2223] "0212"  "0212"  "0221"  "02112" "02112" "0212"  "0223"  "0212"  "0223"  "0223"  "0223" 
#> [2234] "0223"  "0212"  "0221"  "0321"  "0222"  "0221"  "0321"  "0221"  "0321"  "0223"  "0221" 
#> [2245] "0223"  "0223"  "0223"  "0231"  "0231"  "0221"  "0222"  "0321"  "0222"  "0221"  "0231" 
#> [2256] "0231"  "0221"  "0221"  "0141"  "0321"  "02112" "0221"  "0221"  "0221"  "0223"  "0321" 
#> [2267] "0231"  "0221"  "0321"  "0223"  "0223"  "0223"  "0142"  "0223"  "0142"  "0222"  "0223" 
#> [2278] "0321"  "0221"  "0231"  "0222"  "0221"  "0141"  "0222"  "0221"  "0221"  "0142"  "0321" 
#> [2289] "0321"  "0221"  "0221"  "0321"  "0221"  "0221"  "0142"  "0221"  "0221"  "0221"  "0141" 
#> [2300] "0321"  "0142"  "0142"  "0141"  "0223"  "0142"  "0222"  "0142"  "0142"  "0142"  "0223" 
#> [2311] "0142"  "0321"  "0221"  "0142"  "0141"  "0141"  "012"   "0212"  "0231"  "0221"  "0142" 
#> [2322] "0221"  "0223"  "0321"  "0221"  "0221"  "0221"  "0221"  "0221"  "0221"  "0223"  "0221" 
#> [2333] "0221"  "0223"  "0321"  "0142"  "0141"  "0321"  "0221"  "0141"  "0321"  "0321"  "0221" 
#> [2344] "0212"  "0232"  "0223"  "0223"  "0223"  "0221"  "0221"  "0321"  "0222"  "0223"  "0223" 
#> [2355] "0221"  "0221"  "0321"  "0212"  "02112" "0221"  "0212"  "0221"  "0212"  "0234"  "0212" 
#> [2366] "0212"  "0221"  "02112" "02112" "0221"  "0223"  "0223"  "0212"  "0223"  "0212"  "0223" 
#> [2377] "0221"  "0221"  "0212"  "0212"  "0232"  "0223"  "02112" "0212"  "0232"  "0221"  "0223" 
#> [2388] "0223"  "0223"  "0231"  "02113" "0223"  "0221"  "0221"  "02111" "0212"  "0212"  "0223" 
#> [2399] "0321"  "0221"  "0141"  "0141"  "0141"  "0212"  "0221"  "0231"  "02111" "0223"  "0212" 
#> [2410] "0222"  "0212"  "0221"  "0212"  "0142"  "0221"  "0223"  "0221"  "0223"  "0231"  "012"  
#> [2421] "0223"  "0221"  "0321"  "0212"  "0212"  "0231"  "0223"  "0221"  "0223"  "0223"  "0221" 
#> [2432] "0221"  "0141"  "0321"  "0141"  "0221"  "0321"  "0321"  "0321"  "0141"  "0141"  "012"  
#> [2443] "0321"  "0321"  "0321"  "0223"  "0223"  "0221"  "0212"  "0223"  "0212"  "0212"  "0212" 
#> [2454] "02112" "0212"  "0212"  "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0212" 
#> [2465] "0212"  "0212"  "0212"  "0212"  "0222"  "0221"  "0321"  "0221"  "0221"  "0221"  "0212" 
#> [2476] "0212"  "0223"  "0212"  "0223"  "0221"  "0223"  "0212"  "0223"  "0223"  "02112" "0223" 
#> [2487] "0212"  "0212"  "0212"  "02112" "0212"  "0212"  "0212"  "02112" "0223"  "0212"  "0223" 
#> [2498] "0212"  "0212"  "0221"  "0212"  "0223"  "0212"  "0223"  "0223"  "0221"  "0223"  "0321" 
#> [2509] "0321"  "0221"  "0324"  "0212"  "0212"  "02112" "0212"  "0212"  "02112" "0212"  "0221" 
#> [2520] "0212"  "0212"  "02112" "0221"  "0222"  "0221"  "0212"  "02112" "0221"  "0212"  "02113"
#> [2531] "0223"  "0212"  "02112" "0141"  "0212"  "0321"  "0221"  "0221"  "0221"  "0231"  "0221" 
#> [2542] "0221"  "0221"  "0221"  "0232"  "0221"  "0221"  "0223"  "0142"  "0221"  "0321"  "0321" 
#> [2553] "0142"  "0141"  "0212"  "0321"  "0221"  "0141"  "02112" "0212"  "0321"  "0212"  "0321" 
#> [2564] "0223"  "0221"  "0321"  "0221"  "0221"  "0221"  "0221"  "0223"  "0142"  "0141"  "0141" 
#> [2575] "0321"  "0321"  "0221"  "0221"  "02112" "0212"  "0212"  "0223"  "0223"  "0221"  "0221" 
#> [2586] "0222"  "0221"  "0142"  "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "0142"  "0232"  "02112" "0231"  "0221"  "0223"  "0321"  "0221"  "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "0142"  "02112" "0222"  "0231"  "0142"  "0142"  "0141" 
#> [2630] "0231"  "02112" "02112" "0212"  "02112" "02112" "0223"  "0212"  "0223"  "0223"  "0221" 
#> [2641] "0221"  "0321"  "0221"  "0221"  "0212"  "0221"  "0221"  "0223"  "0321"  "0221"  "012"  
#> [2652] "0221"  "0221"  "0221"  "0221"  "0221"  "0231"  "0221"  "0222"  "0221"  "0221"  "0221" 
#> [2663] "0221"  "0321"  "0321"  "0221"  "0321"  "0221"  "0221"  "0321"  "0221"  "0141"  "0321" 
#> [2674] "0221"  "0321"  "0221"  "0221"  "0324"  "012"   "0141"  "012"   "0221"  "0141"  "012"  
#> [2685] "012"   "0232"  "0232"  "02112" "02112" "0321"  "0212"  "0212"  "0234"  "0231"  "0143" 
#> [2696] "0221"  "0324"  "0212"  "0221"  "0321"  "0221"  "0212"  "0141"  "0222"  "0222"  "0321" 
#> [2707] "0142"  "0222"  "0141"  "0142"  "0222"  "0141"  "0141"  "0231"  "0222"  "0231"  "0141" 
#> [2718] "0142"  "0231"  "0141"  "0223"  "0222"  "0141"  "02112" "0321"  "0141"  "0321"  "0141" 
#> [2729] "012"   "0321"  "0212"  "0221"  "0321"  "0221"  "0321"  "0141"  "0141"  "0321"  "0141" 
#> [2740] "0321"  "0141"  "0141"  "0212"  "0221"  "0221"  "0141"  "0141"  "0141"  "0142"  "0321" 
#> [2751] "0141"  "0141"  "0221"  "0221"  "0321"  "0323"  "0142"  "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "0142"  "0142"  "0221"  "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "0142"  "0142"  "0223"  "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "0221"  "0142"  "0142"  "0142"  "0221"  "0212"  "0231"  "02111" "02111" "0212"  "02111"
#> [2828] "0212"  "02111" "0223"  "0212"  "0212"  "02111" "0212"  "0231"  "0223"  "0212"  "0212" 
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "0212"  "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "0142"  "0221"  "0212"  "0141"  "0221"  "02112"
#> [2861] "0231"  "0232"  "0223"  "0223"  "0212"  "0212"  "0231"  "0221"  "0212"  "0221"  "02111"
#> [2872] "0212"  "0212"  "02111" "02111" "0212"  "0223"  "0212"  "0142"  "0212"  "0212"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1908))
#>    [1] "012"   "012"   "0231"  "0322"  "012"   "012"   "0322"  "011"   "012"   "012"   "012"  
#>   [12] "011"   "0322"  "012"   "012"   "012"   "012"   "012"   "0313"  "011"   "0322"  "012"  
#>   [23] "011"   "0322"  "012"   "0322"  "0322"  "0322"  "012"   "0312"  "0322"  "012"   "0322" 
#>   [34] "0322"  "0322"  "012"   "012"   "012"   "0312"  "0311"  "011"   "022"   "011"   "0311" 
#>   [45] "012"   "012"   "0311"  "0312"  "0322"  "011"   "0312"  "011"   "011"   "012"   "012"  
#>   [56] "0212"  "0212"  "0143"  "011"   "0313"  "0322"  "011"   "011"   "022"   "0311"  "011"  
#>   [67] "012"   "012"   "0322"  "012"   "0322"  "0311"  "0322"  "011"   "011"   "0143"  "011"  
#>   [78] "011"   "022"   "011"   "0143"  "0322"  "011"   "0143"  "011"   "022"   "011"   "011"  
#>   [89] "011"   "012"   "0322"  "011"   "02113" "011"   "011"   "011"   "011"   "011"   "0143" 
#>  [100] "0313"  "011"   "011"   "011"   "011"   "011"   "0322"  "022"   "0141"  "0142"  "011"  
#>  [111] "011"   "011"   "011"   "0143"  "011"   "022"   "022"   "0322"  "011"   "0321"  "0313" 
#>  [122] "0322"  "022"   "022"   "022"   "0234"  "012"   "011"   "011"   "011"   "012"   "011"  
#>  [133] "011"   "0324"  "011"   "022"   "011"   "011"   "0322"  "011"   "011"   "011"   "012"  
#>  [144] "012"   "012"   "022"   "011"   "0212"  "011"   "0324"  "0313"  "0313"  "011"   "0313" 
#>  [155] "0322"  "011"   "0313"  "0234"  "0322"  "0322"  "0322"  "011"   "0313"  "0313"  "022"  
#>  [166] "011"   "0322"  "0313"  "011"   "011"   "0322"  "0313"  "0313"  "022"   "022"   "0313" 
#>  [177] "0313"  "011"   "0313"  "0313"  "0312"  "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "0312"  "022"   "0322"  "011"   "0313"  "0312"  "0313"  "0322"  "0312"  "0312" 
#>  [199] "0312"  "0312"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "0322"  "0313"  "0322" 
#>  [210] "022"   "0313"  "0234"  "0313"  "0312"  "0313"  "0313"  "0322"  "022"   "0312"  "011"  
#>  [221] "0312"  "0313"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "011"   "02113" "0313" 
#>  [232] "0313"  "0312"  "0313"  "02113" "0312"  "0312"  "0313"  "0312"  "0313"  "0313"  "0313" 
#>  [243] "0312"  "011"   "0312"  "0312"  "0312"  "022"   "0312"  "0313"  "011"   "0313"  "0312" 
#>  [254] "0312"  "0313"  "0313"  "011"   "0312"  "0313"  "0313"  "011"   "0313"  "011"   "011"  
#>  [265] "011"   "0313"  "011"   "011"   "011"   "0313"  "011"   "011"   "0313"  "0313"  "011"  
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "0212"  "011"   "0313"  "0313"  "0313"  "022"  
#>  [287] "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312" 
#>  [298] "0312"  "02113" "0312"  "02113" "0313"  "0313"  "0234"  "0313"  "02113" "022"   "0312" 
#>  [309] "022"   "0312"  "0312"  "0313"  "022"   "0313"  "0313"  "0312"  "011"   "0313"  "0313" 
#>  [320] "011"   "0313"  "011"   "0312"  "0313"  "0311"  "011"   "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "011"   "011"   "011"   "011"   "022"   "022"   "011"   "0313"  "011"   "0313" 
#>  [342] "0313"  "022"   "0313"  "0313"  "0313"  "022"   "0311"  "0311"  "022"   "0313"  "011"  
#>  [353] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0313"  "0312"  "0312"  "0312" 
#>  [375] "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "011"   "011"   "022"   "0311"  "011"  
#>  [386] "011"   "011"   "0311"  "0324"  "0311"  "011"   "0311"  "011"   "0311"  "022"   "0311" 
#>  [397] "0313"  "0311"  "011"   "011"   "0311"  "011"   "0143"  "0311"  "011"   "022"   "011"  
#>  [408] "0311"  "011"   "011"   "0311"  "0311"  "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [419] "0311"  "011"   "011"   "011"   "011"   "0313"  "0234"  "011"   "011"   "011"   "011"  
#>  [430] "011"   "011"   "0234"  "011"   "0234"  "011"   "022"   "011"   "0212"  "011"   "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "011"   "011"   "0312"  "0312"  "0312"  "0311" 
#>  [452] "011"   "0311"  "011"   "011"   "0312"  "011"   "011"   "0312"  "0312"  "0311"  "0312" 
#>  [463] "0311"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312" 
#>  [474] "0312"  "0312"  "0311"  "0311"  "0312"  "0311"  "0311"  "0311"  "0311"  "0311"  "011"  
#>  [485] "0212"  "0312"  "0311"  "0311"  "022"   "022"   "0212"  "0312"  "0312"  "022"   "0312" 
#>  [496] "011"   "0212"  "02113" "011"   "0312"  "02113" "011"   "0311"  "0312"  "0311"  "02113"
#>  [507] "011"   "0311"  "0311"  "0311"  "0311"  "022"   "0311"  "0311"  "011"   "011"   "022"  
#>  [518] "0311"  "0312"  "0311"  "011"   "011"   "011"   "0312"  "0312"  "0313"  "0312"  "011"  
#>  [529] "011"   "022"   "0212"  "0212"  "011"   "022"   "011"   "011"   "011"   "0212"  "011"  
#>  [540] "0311"  "011"   "022"   "011"   "011"   "022"   "011"   "011"   "011"   "0311"  "011"  
#>  [551] "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "0311"  "0311"  "0143"  "0311" 
#>  [562] "011"   "0324"  "0324"  "011"   "011"   "011"   "022"   "0311"  "011"   "011"   "022"  
#>  [573] "0324"  "0311"  "011"   "0312"  "011"   "011"   "011"   "022"   "011"   "011"   "011"  
#>  [584] "011"   "0311"  "011"   "0311"  "011"   "011"   "011"   "011"   "0313"  "011"   "0312" 
#>  [595] "0313"  "0324"  "011"   "0313"  "0313"  "011"   "011"   "011"   "011"   "0313"  "011"  
#>  [606] "011"   "022"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0234" 
#>  [617] "0311"  "0311"  "011"   "0311"  "0311"  "0313"  "011"   "0311"  "011"   "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "011"   "011"   "0313"  "011"   "0311"  "02113" "0311"  "011"  
#>  [639] "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312"  "011"   "011"   "022"  
#>  [650] "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311" 
#>  [661] "0311"  "011"   "0234"  "011"   "011"   "0312"  "0311"  "0311"  "0311"  "0311"  "022"  
#>  [672] "011"   "022"   "0311"  "0313"  "0234"  "0311"  "0311"  "022"   "011"   "0311"  "0311" 
#>  [683] "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0311"  "0311"  "011"   "0312" 
#>  [694] "0311"  "022"   "0311"  "0312"  "011"   "0312"  "0143"  "0312"  "011"   "011"   "0311" 
#>  [705] "0311"  "022"   "022"   "011"   "0324"  "011"   "0324"  "0212"  "011"   "011"   "011"  
#>  [716] "011"   "011"   "011"   "022"   "0311"  "0311"  "022"   "0234"  "011"   "022"   "0311" 
#>  [727] "0311"  "0311"  "011"   "011"   "0311"  "011"   "011"   "0311"  "011"   "011"   "011"  
#>  [738] "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312" 
#>  [749] "0312"  "0312"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0311"  "011"   "0324" 
#>  [760] "0311"  "0212"  "022"   "011"   "011"   "0311"  "011"   "011"   "011"   "011"   "011"  
#>  [771] "0312"  "011"   "011"   "0311"  "011"   "022"   "011"   "011"   "02113" "011"   "0311" 
#>  [782] "011"   "011"   "011"   "011"   "011"   "0312"  "011"   "0311"  "0311"  "011"   "011"  
#>  [793] "0312"  "022"   "011"   "0312"  "011"   "011"   "0234"  "0311"  "0312"  "022"   "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0324"  "0324" 
#>  [815] "012"   "0143"  "011"   "011"   "011"   "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [826] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "012"   "011"   "011"  
#>  [837] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [848] "011"   "0324"  "012"   "011"   "0234"  "0324"  "022"   "011"   "0143"  "0143"  "0143" 
#>  [859] "0324"  "011"   "011"   "0324"  "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [870] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "0143"  "011"   "011"   "011"  
#>  [881] "011"   "011"   "011"   "011"   "012"   "0212"  "011"   "0324"  "011"   "0324"  "011"  
#>  [892] "0311"  "011"   "011"   "011"   "022"   "022"   "011"   "011"   "011"   "011"   "011"  
#>  [903] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [914] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [925] "011"   "011"   "011"   "011"   "022"   "011"   "0143"  "011"   "011"   "011"   "022"  
#>  [936] "0324"  "011"   "022"   "011"   "011"   "011"   "0143"  "011"   "011"   "011"   "011"  
#>  [947] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "0212"  "0143" 
#>  [958] "0143"  "011"   "0212"  "022"   "011"   "011"   "0212"  "0311"  "011"   "011"   "011"  
#>  [969] "011"   "0311"  "011"   "011"   "022"   "011"   "012"   "011"   "011"   "011"   "011"  
#>  [980] "011"   "0324"  "0324"  "022"   "022"   "0311"  "011"   "011"   "011"   "011"   "0311" 
#>  [991] "0311"  "011"   "011"   "011"   "0311"  "011"   "011"   "0324"  "0324"  "011"   "022"  
#> [1002] "013"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1013] "012"   "022"   "012"   "022"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1024] "012"   "012"   "0323"  "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1035] "012"   "0311"  "012"   "0312"  "012"   "02113" "012"   "011"   "0322"  "012"   "012"  
#> [1046] "012"   "0312"  "012"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"  
#> [1057] "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1068] "012"   "012"   "012"   "012"   "012"   "013"   "012"   "0322"  "012"   "012"   "012"  
#> [1079] "013"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1090] "012"   "012"   "012"   "011"   "013"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1101] "0142"  "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1112] "012"   "012"   "012"   "012"   "013"   "012"   "0313"  "012"   "0141"  "012"   "0313" 
#> [1123] "012"   "012"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "011"   "011"  
#> [1134] "012"   "0322"  "012"   "012"   "012"   "012"   "012"   "022"   "012"   "012"   "011"  
#> [1145] "0322"  "012"   "012"   "011"   "012"   "0142"  "012"   "012"   "012"   "012"   "012"  
#> [1156] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "011"   "012"   "012"   "012"  
#> [1167] "012"   "011"   "011"   "011"   "012"   "0311"  "011"   "012"   "011"   "011"   "012"  
#> [1178] "012"   "012"   "012"   "022"   "012"   "0141"  "012"   "022"   "011"   "012"   "012"  
#> [1189] "011"   "012"   "012"   "012"   "012"   "012"   "012"   "0141"  "012"   "012"   "013"  
#> [1200] "012"   "012"   "0141"  "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"  
#> [1211] "013"   "012"   "012"   "0141"  "022"   "012"   "0321"  "0313"  "012"   "012"   "011"  
#> [1222] "012"   "012"   "022"   "012"   "022"   "012"   "012"   "012"   "0141"  "012"   "012"  
#> [1233] "012"   "011"   "012"   "011"   "011"   "0313"  "0141"  "012"   "0333"  "0321"  "0311" 
#> [1244] "012"   "012"   "012"   "011"   "011"   "012"   "012"   "011"   "012"   "011"   "011"  
#> [1255] "011"   "022"   "022"   "022"   "022"   "012"   "012"   "012"   "012"   "012"   "0311" 
#> [1266] "0141"  "011"   "011"   "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "0212"  "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "022"   "0331"  "022"   "013"   "0333"  "0212"  "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "012"   "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "022"   "013"   "013"   "022"   "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "022"   "013"   "013"   "013"   "013"   "013"   "013"   "0212"  "0212"  "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "012"   "012"   "012"   "012"   "0321"  "013"   "013"   "0231"  "0141"  "02113"
#> [1398] "0233"  "0233"  "012"   "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "011"   "013"   "0311"  "012"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "012"   "013"   "013"   "0233"  "013"   "0333"  "022"  
#> [1453] "013"   "013"   "022"   "013"   "013"   "013"   "022"   "013"   "013"   "013"   "013"  
#> [1464] "013"   "012"   "013"   "011"   "011"   "011"   "013"   "013"   "0333"  "012"   "0313" 
#> [1475] "0333"  "0313"  "011"   "0212"  "013"   "022"   "012"   "013"   "013"   "011"   "013"  
#> [1486] "013"   "013"   "0321"  "0141"  "013"   "0141"  "013"   "013"   "011"   "0231"  "0141" 
#> [1497] "013"   "011"   "013"   "0233"  "012"   "0141"  "013"   "011"   "012"   "0321"  "013"  
#> [1508] "022"   "013"   "022"   "012"   "013"   "012"   "013"   "013"   "012"   "013"   "022"  
#> [1519] "0331"  "022"   "0233"  "0233"  "0142"  "022"   "0142"  "013"   "0333"  "013"   "013"  
#> [1530] "013"   "0142"  "013"   "013"   "02113" "012"   "022"   "011"   "011"   "013"   "013"  
#> [1541] "012"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "011"   "013"   "013"   "013"   "0142"  "0212"  "0233"  "013"   "012"   "012"  
#> [1563] "0143"  "0312"  "022"   "011"   "013"   "0333"  "013"   "012"   "013"   "022"   "0212" 
#> [1574] "0142"  "0212"  "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "022"   "0331" 
#> [1596] "02113" "0212"  "0233"  "013"   "02113" "013"   "0332"  "013"   "0212"  "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "022"   "02113" "0233"  "013"   "0331"  "011"   "0212"  "012"   "013"  
#> [1629] "012"   "013"   "0141"  "012"   "0323"  "012"   "0212"  "012"   "012"   "012"   "022"  
#> [1640] "012"   "012"   "013"   "012"   "0233"  "0141"  "012"   "0141"  "012"   "012"   "012"  
#> [1651] "0142"  "012"   "012"   "0321"  "012"   "011"   "012"   "011"   "011"   "012"   "012"  
#> [1662] "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1673] "012"   "012"   "012"   "0231"  "012"   "011"   "011"   "0233"  "012"   "012"   "012"  
#> [1684] "0141"  "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "0322"  "012"  
#> [1695] "012"   "012"   "012"   "011"   "012"   "012"   "011"   "012"   "0311"  "012"   "012"  
#> [1706] "012"   "0323"  "012"   "012"   "012"   "013"   "0311"  "012"   "012"   "012"   "013"  
#> [1717] "012"   "012"   "0323"  "0323"  "013"   "012"   "0141"  "012"   "012"   "012"   "012"  
#> [1728] "0313"  "012"   "0311"  "0311"  "012"   "012"   "0212"  "012"   "011"   "012"   "011"  
#> [1739] "011"   "011"   "012"   "012"   "013"   "012"   "013"   "012"   "012"   "012"   "0323" 
#> [1750] "012"   "0312"  "012"   "022"   "012"   "022"   "012"   "011"   "012"   "0142"  "0312" 
#> [1761] "022"   "012"   "011"   "012"   "011"   "022"   "0311"  "011"   "013"   "022"   "012"  
#> [1772] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"   "012"   "0322"  "011"  
#> [1783] "012"   "012"   "011"   "012"   "0313"  "011"   "012"   "0323"  "012"   "0313"  "0313" 
#> [1794] "0323"  "022"   "011"   "012"   "0313"  "022"   "012"   "012"   "012"   "012"   "0323" 
#> [1805] "012"   "012"   "0233"  "0212"  "022"   "0311"  "022"   "012"   "012"   "011"   "012"  
#> [1816] "012"   "012"   "012"   "012"   "012"   "0313"  "012"   "012"   "012"   "012"   "012"  
#> [1827] "012"   "012"   "012"   "022"   "012"   "012"   "0323"  "012"   "012"   "0212"  "022"  
#> [1838] "012"   "011"   "012"   "012"   "012"   "0212"  "012"   "012"   "0143"  "012"   "012"  
#> [1849] "012"   "012"   "012"   "0323"  "012"   "012"   "011"   "012"   "012"   "011"   "0322" 
#> [1860] "012"   "0312"  "012"   "012"   "0332"  "022"   "0312"  "0321"  "0323"  "0212"  "012"  
#> [1871] "012"   "0323"  "0323"  "012"   "012"   "012"   "0231"  "012"   "012"   "012"   "02112"
#> [1882] "012"   "012"   "012"   "012"   "0323"  "012"   "0312"  "012"   "012"   "011"   "022"  
#> [1893] "012"   "012"   "012"   "0311"  "012"   "012"   "012"   "0312"  "013"   "0323"  "012"  
#> [1904] "0311"  "012"   "012"   "0332"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1915] "0323"  "012"   "012"   "011"   "012"   "0312"  "022"   "012"   "0323"  "0323"  "012"  
#> [1926] "0311"  "012"   "012"   "012"   "0233"  "0323"  "012"   "02112" "012"   "0323"  "0233" 
#> [1937] "0333"  "012"   "012"   "0323"  "0323"  "012"   "0323"  "012"   "0332"  "022"   "0312" 
#> [1948] "0323"  "012"   "0312"  "0323"  "012"   "012"   "0212"  "012"   "012"   "0233"  "0323" 
#> [1959] "02113" "0323"  "022"   "0323"  "0323"  "022"   "012"   "0323"  "02112" "0331"  "0323" 
#> [1970] "0312"  "012"   "0233"  "0312"  "0323"  "0212"  "0311"  "012"   "0212"  "0323"  "0212" 
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "0212"  "0212"  "0212"  "02112" "022"  
#> [1992] "0212"  "0231"  "0232"  "022"   "0212"  "0231"  "0231"  "02112" "0231"  "022"   "02113"
#> [2003] "02112" "0232"  "02112" "022"   "022"   "0212"  "0232"  "0232"  "0212"  "0231"  "0212" 
#> [2014] "0231"  "0142"  "022"   "0231"  "0321"  "022"   "02112" "0212"  "022"   "022"   "022"  
#> [2025] "022"   "0321"  "022"   "0212"  "0212"  "022"   "022"   "0212"  "022"   "0232"  "022"  
#> [2036] "02113" "022"   "02112" "022"   "022"   "022"   "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "0212"  "0212"  "0212"  "0142"  "022"   "02113" "0231"  "02113" "02112" "0212"  "022"  
#> [2058] "0212"  "0321"  "022"   "02112" "022"   "022"   "0212"  "022"   "022"   "0212"  "0212" 
#> [2069] "0212"  "02112" "02112" "022"   "0232"  "022"   "02113" "0233"  "02112" "022"   "02112"
#> [2080] "02112" "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0232"  "0212"  "022"  
#> [2091] "0212"  "022"   "022"   "0212"  "022"   "022"   "022"   "0212"  "022"   "0231"  "0212" 
#> [2102] "0212"  "0212"  "0212"  "02112" "02112" "0212"  "02112" "0231"  "02112" "0231"  "022"  
#> [2113] "02112" "02112" "02112" "02112" "022"   "0212"  "0231"  "0232"  "0212"  "0212"  "0233" 
#> [2124] "0232"  "0142"  "022"   "0212"  "0142"  "02112" "02112" "0212"  "0212"  "02112" "02112"
#> [2135] "02112" "0212"  "0212"  "0212"  "022"   "0212"  "022"   "022"   "0212"  "022"   "022"  
#> [2146] "022"   "022"   "0212"  "022"   "0212"  "02112" "0212"  "022"   "022"   "0212"  "02112"
#> [2157] "0212"  "022"   "022"   "02112" "022"   "022"   "022"   "0212"  "022"   "022"   "022"  
#> [2168] "0212"  "022"   "022"   "022"   "022"   "0212"  "0321"  "022"   "022"   "022"   "02111"
#> [2179] "0212"  "0212"  "0212"  "022"   "0234"  "022"   "022"   "022"   "022"   "022"   "022"  
#> [2190] "0143"  "022"   "0142"  "022"   "0312"  "022"   "0321"  "022"   "02113" "02112" "022"  
#> [2201] "0232"  "0231"  "022"   "0232"  "0232"  "022"   "0212"  "0212"  "0212"  "0231"  "0232" 
#> [2212] "022"   "0232"  "022"   "0212"  "0212"  "02112" "02112" "0212"  "0212"  "022"   "0212" 
#> [2223] "0212"  "0212"  "022"   "02112" "02112" "0212"  "022"   "0212"  "022"   "022"   "022"  
#> [2234] "022"   "0212"  "022"   "0321"  "022"   "022"   "0321"  "022"   "0321"  "022"   "022"  
#> [2245] "022"   "022"   "022"   "0231"  "0231"  "022"   "022"   "0321"  "022"   "022"   "0231" 
#> [2256] "0231"  "022"   "022"   "0141"  "0321"  "02112" "022"   "022"   "022"   "022"   "0321" 
#> [2267] "0231"  "022"   "0321"  "022"   "022"   "022"   "0142"  "022"   "0142"  "022"   "022"  
#> [2278] "0321"  "022"   "0231"  "022"   "022"   "0141"  "022"   "022"   "022"   "0142"  "0321" 
#> [2289] "0321"  "022"   "022"   "0321"  "022"   "022"   "0142"  "022"   "022"   "022"   "0141" 
#> [2300] "0321"  "0142"  "0142"  "0141"  "022"   "0142"  "022"   "0142"  "0142"  "0142"  "022"  
#> [2311] "0142"  "0321"  "022"   "0142"  "0141"  "0141"  "012"   "0212"  "0231"  "022"   "0142" 
#> [2322] "022"   "022"   "0321"  "022"   "022"   "022"   "022"   "022"   "022"   "022"   "022"  
#> [2333] "022"   "022"   "0321"  "0142"  "0141"  "0321"  "022"   "0141"  "0321"  "0321"  "022"  
#> [2344] "0212"  "0232"  "022"   "022"   "022"   "022"   "022"   "0321"  "022"   "022"   "022"  
#> [2355] "022"   "022"   "0321"  "0212"  "02112" "022"   "0212"  "022"   "0212"  "0234"  "0212" 
#> [2366] "0212"  "022"   "02112" "02112" "022"   "022"   "022"   "0212"  "022"   "0212"  "022"  
#> [2377] "022"   "022"   "0212"  "0212"  "0232"  "022"   "02112" "0212"  "0232"  "022"   "022"  
#> [2388] "022"   "022"   "0231"  "02113" "022"   "022"   "022"   "02111" "0212"  "0212"  "022"  
#> [2399] "0321"  "022"   "0141"  "0141"  "0141"  "0212"  "022"   "0231"  "02111" "022"   "0212" 
#> [2410] "022"   "0212"  "022"   "0212"  "0142"  "022"   "022"   "022"   "022"   "0231"  "012"  
#> [2421] "022"   "022"   "0321"  "0212"  "0212"  "0231"  "022"   "022"   "022"   "022"   "022"  
#> [2432] "022"   "0141"  "0321"  "0141"  "022"   "0321"  "0321"  "0321"  "0141"  "0141"  "012"  
#> [2443] "0321"  "0321"  "0321"  "022"   "022"   "022"   "0212"  "022"   "0212"  "0212"  "0212" 
#> [2454] "02112" "0212"  "0212"  "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0212" 
#> [2465] "0212"  "0212"  "0212"  "0212"  "022"   "022"   "0321"  "022"   "022"   "022"   "0212" 
#> [2476] "0212"  "022"   "0212"  "022"   "022"   "022"   "0212"  "022"   "022"   "02112" "022"  
#> [2487] "0212"  "0212"  "0212"  "02112" "0212"  "0212"  "0212"  "02112" "022"   "0212"  "022"  
#> [2498] "0212"  "0212"  "022"   "0212"  "022"   "0212"  "022"   "022"   "022"   "022"   "0321" 
#> [2509] "0321"  "022"   "0324"  "0212"  "0212"  "02112" "0212"  "0212"  "02112" "0212"  "022"  
#> [2520] "0212"  "0212"  "02112" "022"   "022"   "022"   "0212"  "02112" "022"   "0212"  "02113"
#> [2531] "022"   "0212"  "02112" "0141"  "0212"  "0321"  "022"   "022"   "022"   "0231"  "022"  
#> [2542] "022"   "022"   "022"   "0232"  "022"   "022"   "022"   "0142"  "022"   "0321"  "0321" 
#> [2553] "0142"  "0141"  "0212"  "0321"  "022"   "0141"  "02112" "0212"  "0321"  "0212"  "0321" 
#> [2564] "022"   "022"   "0321"  "022"   "022"   "022"   "022"   "022"   "0142"  "0141"  "0141" 
#> [2575] "0321"  "0321"  "022"   "022"   "02112" "0212"  "0212"  "022"   "022"   "022"   "022"  
#> [2586] "022"   "022"   "0142"  "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "0142"  "0232"  "02112" "0231"  "022"   "022"   "0321"  "022"   "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "0142"  "02112" "022"   "0231"  "0142"  "0142"  "0141" 
#> [2630] "0231"  "02112" "02112" "0212"  "02112" "02112" "022"   "0212"  "022"   "022"   "022"  
#> [2641] "022"   "0321"  "022"   "022"   "0212"  "022"   "022"   "022"   "0321"  "022"   "012"  
#> [2652] "022"   "022"   "022"   "022"   "022"   "0231"  "022"   "022"   "022"   "022"   "022"  
#> [2663] "022"   "0321"  "0321"  "022"   "0321"  "022"   "022"   "0321"  "022"   "0141"  "0321" 
#> [2674] "022"   "0321"  "022"   "022"   "0324"  "012"   "0141"  "012"   "022"   "0141"  "012"  
#> [2685] "012"   "0232"  "0232"  "02112" "02112" "0321"  "0212"  "0212"  "0234"  "0231"  "0143" 
#> [2696] "022"   "0324"  "0212"  "022"   "0321"  "022"   "0212"  "0141"  "022"   "022"   "0321" 
#> [2707] "0142"  "022"   "0141"  "0142"  "022"   "0141"  "0141"  "0231"  "022"   "0231"  "0141" 
#> [2718] "0142"  "0231"  "0141"  "022"   "022"   "0141"  "02112" "0321"  "0141"  "0321"  "0141" 
#> [2729] "012"   "0321"  "0212"  "022"   "0321"  "022"   "0321"  "0141"  "0141"  "0321"  "0141" 
#> [2740] "0321"  "0141"  "0141"  "0212"  "022"   "022"   "0141"  "0141"  "0141"  "0142"  "0321" 
#> [2751] "0141"  "0141"  "022"   "022"   "0321"  "0323"  "0142"  "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "0142"  "0142"  "022"   "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "0142"  "0142"  "022"   "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "022"   "0142"  "0142"  "0142"  "022"   "0212"  "0231"  "02111" "02111" "0212"  "02111"
#> [2828] "0212"  "02111" "022"   "0212"  "0212"  "02111" "0212"  "0231"  "022"   "0212"  "0212" 
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "0212"  "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "0142"  "022"   "0212"  "0141"  "022"   "02112"
#> [2861] "0231"  "0232"  "022"   "022"   "0212"  "0212"  "0231"  "022"   "0212"  "022"   "02111"
#> [2872] "0212"  "0212"  "02111" "02111" "0212"  "022"   "0212"  "0142"  "0212"  "0212"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 2292))
#>    [1] "012"   "012"   "0231"  "0322"  "012"   "012"   "0322"  "011"   "012"   "012"   "012"  
#>   [12] "011"   "0322"  "012"   "012"   "012"   "012"   "012"   "0313"  "011"   "0322"  "012"  
#>   [23] "011"   "0322"  "012"   "0322"  "0322"  "0322"  "012"   "0312"  "0322"  "012"   "0322" 
#>   [34] "0322"  "0322"  "012"   "012"   "012"   "0312"  "0311"  "011"   "022"   "011"   "0311" 
#>   [45] "012"   "012"   "0311"  "0312"  "0322"  "011"   "0312"  "011"   "011"   "012"   "012"  
#>   [56] "0212"  "0212"  "014"   "011"   "0313"  "0322"  "011"   "011"   "022"   "0311"  "011"  
#>   [67] "012"   "012"   "0322"  "012"   "0322"  "0311"  "0322"  "011"   "011"   "014"   "011"  
#>   [78] "011"   "022"   "011"   "014"   "0322"  "011"   "014"   "011"   "022"   "011"   "011"  
#>   [89] "011"   "012"   "0322"  "011"   "02113" "011"   "011"   "011"   "011"   "011"   "014"  
#>  [100] "0313"  "011"   "011"   "011"   "011"   "011"   "0322"  "022"   "014"   "014"   "011"  
#>  [111] "011"   "011"   "011"   "014"   "011"   "022"   "022"   "0322"  "011"   "0321"  "0313" 
#>  [122] "0322"  "022"   "022"   "022"   "0234"  "012"   "011"   "011"   "011"   "012"   "011"  
#>  [133] "011"   "0324"  "011"   "022"   "011"   "011"   "0322"  "011"   "011"   "011"   "012"  
#>  [144] "012"   "012"   "022"   "011"   "0212"  "011"   "0324"  "0313"  "0313"  "011"   "0313" 
#>  [155] "0322"  "011"   "0313"  "0234"  "0322"  "0322"  "0322"  "011"   "0313"  "0313"  "022"  
#>  [166] "011"   "0322"  "0313"  "011"   "011"   "0322"  "0313"  "0313"  "022"   "022"   "0313" 
#>  [177] "0313"  "011"   "0313"  "0313"  "0312"  "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "0312"  "022"   "0322"  "011"   "0313"  "0312"  "0313"  "0322"  "0312"  "0312" 
#>  [199] "0312"  "0312"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "0322"  "0313"  "0322" 
#>  [210] "022"   "0313"  "0234"  "0313"  "0312"  "0313"  "0313"  "0322"  "022"   "0312"  "011"  
#>  [221] "0312"  "0313"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "011"   "02113" "0313" 
#>  [232] "0313"  "0312"  "0313"  "02113" "0312"  "0312"  "0313"  "0312"  "0313"  "0313"  "0313" 
#>  [243] "0312"  "011"   "0312"  "0312"  "0312"  "022"   "0312"  "0313"  "011"   "0313"  "0312" 
#>  [254] "0312"  "0313"  "0313"  "011"   "0312"  "0313"  "0313"  "011"   "0313"  "011"   "011"  
#>  [265] "011"   "0313"  "011"   "011"   "011"   "0313"  "011"   "011"   "0313"  "0313"  "011"  
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "0212"  "011"   "0313"  "0313"  "0313"  "022"  
#>  [287] "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312" 
#>  [298] "0312"  "02113" "0312"  "02113" "0313"  "0313"  "0234"  "0313"  "02113" "022"   "0312" 
#>  [309] "022"   "0312"  "0312"  "0313"  "022"   "0313"  "0313"  "0312"  "011"   "0313"  "0313" 
#>  [320] "011"   "0313"  "011"   "0312"  "0313"  "0311"  "011"   "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "011"   "011"   "011"   "011"   "022"   "022"   "011"   "0313"  "011"   "0313" 
#>  [342] "0313"  "022"   "0313"  "0313"  "0313"  "022"   "0311"  "0311"  "022"   "0313"  "011"  
#>  [353] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0313"  "0312"  "0312"  "0312" 
#>  [375] "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "011"   "011"   "022"   "0311"  "011"  
#>  [386] "011"   "011"   "0311"  "0324"  "0311"  "011"   "0311"  "011"   "0311"  "022"   "0311" 
#>  [397] "0313"  "0311"  "011"   "011"   "0311"  "011"   "014"   "0311"  "011"   "022"   "011"  
#>  [408] "0311"  "011"   "011"   "0311"  "0311"  "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [419] "0311"  "011"   "011"   "011"   "011"   "0313"  "0234"  "011"   "011"   "011"   "011"  
#>  [430] "011"   "011"   "0234"  "011"   "0234"  "011"   "022"   "011"   "0212"  "011"   "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "011"   "011"   "0312"  "0312"  "0312"  "0311" 
#>  [452] "011"   "0311"  "011"   "011"   "0312"  "011"   "011"   "0312"  "0312"  "0311"  "0312" 
#>  [463] "0311"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312" 
#>  [474] "0312"  "0312"  "0311"  "0311"  "0312"  "0311"  "0311"  "0311"  "0311"  "0311"  "011"  
#>  [485] "0212"  "0312"  "0311"  "0311"  "022"   "022"   "0212"  "0312"  "0312"  "022"   "0312" 
#>  [496] "011"   "0212"  "02113" "011"   "0312"  "02113" "011"   "0311"  "0312"  "0311"  "02113"
#>  [507] "011"   "0311"  "0311"  "0311"  "0311"  "022"   "0311"  "0311"  "011"   "011"   "022"  
#>  [518] "0311"  "0312"  "0311"  "011"   "011"   "011"   "0312"  "0312"  "0313"  "0312"  "011"  
#>  [529] "011"   "022"   "0212"  "0212"  "011"   "022"   "011"   "011"   "011"   "0212"  "011"  
#>  [540] "0311"  "011"   "022"   "011"   "011"   "022"   "011"   "011"   "011"   "0311"  "011"  
#>  [551] "011"   "011"   "011"   "011"   "011"   "014"   "011"   "0311"  "0311"  "014"   "0311" 
#>  [562] "011"   "0324"  "0324"  "011"   "011"   "011"   "022"   "0311"  "011"   "011"   "022"  
#>  [573] "0324"  "0311"  "011"   "0312"  "011"   "011"   "011"   "022"   "011"   "011"   "011"  
#>  [584] "011"   "0311"  "011"   "0311"  "011"   "011"   "011"   "011"   "0313"  "011"   "0312" 
#>  [595] "0313"  "0324"  "011"   "0313"  "0313"  "011"   "011"   "011"   "011"   "0313"  "011"  
#>  [606] "011"   "022"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0234" 
#>  [617] "0311"  "0311"  "011"   "0311"  "0311"  "0313"  "011"   "0311"  "011"   "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "011"   "011"   "0313"  "011"   "0311"  "02113" "0311"  "011"  
#>  [639] "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312"  "011"   "011"   "022"  
#>  [650] "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311" 
#>  [661] "0311"  "011"   "0234"  "011"   "011"   "0312"  "0311"  "0311"  "0311"  "0311"  "022"  
#>  [672] "011"   "022"   "0311"  "0313"  "0234"  "0311"  "0311"  "022"   "011"   "0311"  "0311" 
#>  [683] "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0311"  "0311"  "011"   "0312" 
#>  [694] "0311"  "022"   "0311"  "0312"  "011"   "0312"  "014"   "0312"  "011"   "011"   "0311" 
#>  [705] "0311"  "022"   "022"   "011"   "0324"  "011"   "0324"  "0212"  "011"   "011"   "011"  
#>  [716] "011"   "011"   "011"   "022"   "0311"  "0311"  "022"   "0234"  "011"   "022"   "0311" 
#>  [727] "0311"  "0311"  "011"   "011"   "0311"  "011"   "011"   "0311"  "011"   "011"   "011"  
#>  [738] "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312" 
#>  [749] "0312"  "0312"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0311"  "011"   "0324" 
#>  [760] "0311"  "0212"  "022"   "011"   "011"   "0311"  "011"   "011"   "011"   "011"   "011"  
#>  [771] "0312"  "011"   "011"   "0311"  "011"   "022"   "011"   "011"   "02113" "011"   "0311" 
#>  [782] "011"   "011"   "011"   "011"   "011"   "0312"  "011"   "0311"  "0311"  "011"   "011"  
#>  [793] "0312"  "022"   "011"   "0312"  "011"   "011"   "0234"  "0311"  "0312"  "022"   "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0324"  "0324" 
#>  [815] "012"   "014"   "011"   "011"   "011"   "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [826] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "012"   "011"   "011"  
#>  [837] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [848] "011"   "0324"  "012"   "011"   "0234"  "0324"  "022"   "011"   "014"   "014"   "014"  
#>  [859] "0324"  "011"   "011"   "0324"  "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [870] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "014"   "011"   "011"   "011"  
#>  [881] "011"   "011"   "011"   "011"   "012"   "0212"  "011"   "0324"  "011"   "0324"  "011"  
#>  [892] "0311"  "011"   "011"   "011"   "022"   "022"   "011"   "011"   "011"   "011"   "011"  
#>  [903] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [914] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [925] "011"   "011"   "011"   "011"   "022"   "011"   "014"   "011"   "011"   "011"   "022"  
#>  [936] "0324"  "011"   "022"   "011"   "011"   "011"   "014"   "011"   "011"   "011"   "011"  
#>  [947] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "0212"  "014"  
#>  [958] "014"   "011"   "0212"  "022"   "011"   "011"   "0212"  "0311"  "011"   "011"   "011"  
#>  [969] "011"   "0311"  "011"   "011"   "022"   "011"   "012"   "011"   "011"   "011"   "011"  
#>  [980] "011"   "0324"  "0324"  "022"   "022"   "0311"  "011"   "011"   "011"   "011"   "0311" 
#>  [991] "0311"  "011"   "011"   "011"   "0311"  "011"   "011"   "0324"  "0324"  "011"   "022"  
#> [1002] "013"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1013] "012"   "022"   "012"   "022"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1024] "012"   "012"   "0323"  "014"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1035] "012"   "0311"  "012"   "0312"  "012"   "02113" "012"   "011"   "0322"  "012"   "012"  
#> [1046] "012"   "0312"  "012"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"  
#> [1057] "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1068] "012"   "012"   "012"   "012"   "012"   "013"   "012"   "0322"  "012"   "012"   "012"  
#> [1079] "013"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1090] "012"   "012"   "012"   "011"   "013"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1101] "014"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1112] "012"   "012"   "012"   "012"   "013"   "012"   "0313"  "012"   "014"   "012"   "0313" 
#> [1123] "012"   "012"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "011"   "011"  
#> [1134] "012"   "0322"  "012"   "012"   "012"   "012"   "012"   "022"   "012"   "012"   "011"  
#> [1145] "0322"  "012"   "012"   "011"   "012"   "014"   "012"   "012"   "012"   "012"   "012"  
#> [1156] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "011"   "012"   "012"   "012"  
#> [1167] "012"   "011"   "011"   "011"   "012"   "0311"  "011"   "012"   "011"   "011"   "012"  
#> [1178] "012"   "012"   "012"   "022"   "012"   "014"   "012"   "022"   "011"   "012"   "012"  
#> [1189] "011"   "012"   "012"   "012"   "012"   "012"   "012"   "014"   "012"   "012"   "013"  
#> [1200] "012"   "012"   "014"   "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"  
#> [1211] "013"   "012"   "012"   "014"   "022"   "012"   "0321"  "0313"  "012"   "012"   "011"  
#> [1222] "012"   "012"   "022"   "012"   "022"   "012"   "012"   "012"   "014"   "012"   "012"  
#> [1233] "012"   "011"   "012"   "011"   "011"   "0313"  "014"   "012"   "0333"  "0321"  "0311" 
#> [1244] "012"   "012"   "012"   "011"   "011"   "012"   "012"   "011"   "012"   "011"   "011"  
#> [1255] "011"   "022"   "022"   "022"   "022"   "012"   "012"   "012"   "012"   "012"   "0311" 
#> [1266] "014"   "011"   "011"   "013"   "013"   "013"   "013"   "0331"  "013"   "013"   "013"  
#> [1277] "0333"  "0212"  "0332"  "0332"  "0331"  "013"   "0332"  "013"   "013"   "013"   "013"  
#> [1288] "013"   "0332"  "0332"  "013"   "0331"  "013"   "013"   "0233"  "0333"  "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "022"   "0331"  "022"   "013"   "0333"  "0212"  "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "012"   "013"   "013"   "013"  
#> [1332] "02113" "013"   "0331"  "013"   "0333"  "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "022"   "013"   "013"   "022"   "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "022"   "013"   "013"   "013"   "013"   "013"   "013"   "0212"  "0212"  "013"   "013"  
#> [1365] "0331"  "0331"  "013"   "0331"  "013"   "0331"  "0331"  "0331"  "0332"  "013"   "0331" 
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "012"   "012"   "012"   "012"   "0321"  "013"   "013"   "0231"  "014"   "02113"
#> [1398] "0233"  "0233"  "012"   "0233"  "013"   "013"   "013"   "013"   "0333"  "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0333" 
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "0333"  "0311" 
#> [1431] "013"   "011"   "013"   "0311"  "012"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "012"   "013"   "013"   "0233"  "013"   "0333"  "022"  
#> [1453] "013"   "013"   "022"   "013"   "013"   "013"   "022"   "013"   "013"   "013"   "013"  
#> [1464] "013"   "012"   "013"   "011"   "011"   "011"   "013"   "013"   "0333"  "012"   "0313" 
#> [1475] "0333"  "0313"  "011"   "0212"  "013"   "022"   "012"   "013"   "013"   "011"   "013"  
#> [1486] "013"   "013"   "0321"  "014"   "013"   "014"   "013"   "013"   "011"   "0231"  "014"  
#> [1497] "013"   "011"   "013"   "0233"  "012"   "014"   "013"   "011"   "012"   "0321"  "013"  
#> [1508] "022"   "013"   "022"   "012"   "013"   "012"   "013"   "013"   "012"   "013"   "022"  
#> [1519] "0331"  "022"   "0233"  "0233"  "014"   "022"   "014"   "013"   "0333"  "013"   "013"  
#> [1530] "013"   "014"   "013"   "013"   "02113" "012"   "022"   "011"   "011"   "013"   "013"  
#> [1541] "012"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "011"   "013"   "013"   "013"   "014"   "0212"  "0233"  "013"   "012"   "012"  
#> [1563] "014"   "0312"  "022"   "011"   "013"   "0333"  "013"   "012"   "013"   "022"   "0212" 
#> [1574] "014"   "0212"  "0332"  "0332"  "02113" "0233"  "0233"  "0332"  "02113" "0332"  "0233" 
#> [1585] "0332"  "0332"  "0331"  "0332"  "0331"  "0332"  "013"   "0331"  "0332"  "022"   "0331" 
#> [1596] "02113" "0212"  "0233"  "013"   "02113" "013"   "0332"  "013"   "0212"  "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "0331"  "0331"  "0332"  "0331"  "0331"  "0331"  "0331" 
#> [1618] "02113" "013"   "022"   "02113" "0233"  "013"   "0331"  "011"   "0212"  "012"   "013"  
#> [1629] "012"   "013"   "014"   "012"   "0323"  "012"   "0212"  "012"   "012"   "012"   "022"  
#> [1640] "012"   "012"   "013"   "012"   "0233"  "014"   "012"   "014"   "012"   "012"   "012"  
#> [1651] "014"   "012"   "012"   "0321"  "012"   "011"   "012"   "011"   "011"   "012"   "012"  
#> [1662] "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1673] "012"   "012"   "012"   "0231"  "012"   "011"   "011"   "0233"  "012"   "012"   "012"  
#> [1684] "014"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "0322"  "012"  
#> [1695] "012"   "012"   "012"   "011"   "012"   "012"   "011"   "012"   "0311"  "012"   "012"  
#> [1706] "012"   "0323"  "012"   "012"   "012"   "013"   "0311"  "012"   "012"   "012"   "013"  
#> [1717] "012"   "012"   "0323"  "0323"  "013"   "012"   "014"   "012"   "012"   "012"   "012"  
#> [1728] "0313"  "012"   "0311"  "0311"  "012"   "012"   "0212"  "012"   "011"   "012"   "011"  
#> [1739] "011"   "011"   "012"   "012"   "013"   "012"   "013"   "012"   "012"   "012"   "0323" 
#> [1750] "012"   "0312"  "012"   "022"   "012"   "022"   "012"   "011"   "012"   "014"   "0312" 
#> [1761] "022"   "012"   "011"   "012"   "011"   "022"   "0311"  "011"   "013"   "022"   "012"  
#> [1772] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"   "012"   "0322"  "011"  
#> [1783] "012"   "012"   "011"   "012"   "0313"  "011"   "012"   "0323"  "012"   "0313"  "0313" 
#> [1794] "0323"  "022"   "011"   "012"   "0313"  "022"   "012"   "012"   "012"   "012"   "0323" 
#> [1805] "012"   "012"   "0233"  "0212"  "022"   "0311"  "022"   "012"   "012"   "011"   "012"  
#> [1816] "012"   "012"   "012"   "012"   "012"   "0313"  "012"   "012"   "012"   "012"   "012"  
#> [1827] "012"   "012"   "012"   "022"   "012"   "012"   "0323"  "012"   "012"   "0212"  "022"  
#> [1838] "012"   "011"   "012"   "012"   "012"   "0212"  "012"   "012"   "014"   "012"   "012"  
#> [1849] "012"   "012"   "012"   "0323"  "012"   "012"   "011"   "012"   "012"   "011"   "0322" 
#> [1860] "012"   "0312"  "012"   "012"   "0332"  "022"   "0312"  "0321"  "0323"  "0212"  "012"  
#> [1871] "012"   "0323"  "0323"  "012"   "012"   "012"   "0231"  "012"   "012"   "012"   "02112"
#> [1882] "012"   "012"   "012"   "012"   "0323"  "012"   "0312"  "012"   "012"   "011"   "022"  
#> [1893] "012"   "012"   "012"   "0311"  "012"   "012"   "012"   "0312"  "013"   "0323"  "012"  
#> [1904] "0311"  "012"   "012"   "0332"  "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1915] "0323"  "012"   "012"   "011"   "012"   "0312"  "022"   "012"   "0323"  "0323"  "012"  
#> [1926] "0311"  "012"   "012"   "012"   "0233"  "0323"  "012"   "02112" "012"   "0323"  "0233" 
#> [1937] "0333"  "012"   "012"   "0323"  "0323"  "012"   "0323"  "012"   "0332"  "022"   "0312" 
#> [1948] "0323"  "012"   "0312"  "0323"  "012"   "012"   "0212"  "012"   "012"   "0233"  "0323" 
#> [1959] "02113" "0323"  "022"   "0323"  "0323"  "022"   "012"   "0323"  "02112" "0331"  "0323" 
#> [1970] "0312"  "012"   "0233"  "0312"  "0323"  "0212"  "0311"  "012"   "0212"  "0323"  "0212" 
#> [1981] "0323"  "0323"  "0332"  "0232"  "02112" "0232"  "0212"  "0212"  "0212"  "02112" "022"  
#> [1992] "0212"  "0231"  "0232"  "022"   "0212"  "0231"  "0231"  "02112" "0231"  "022"   "02113"
#> [2003] "02112" "0232"  "02112" "022"   "022"   "0212"  "0232"  "0232"  "0212"  "0231"  "0212" 
#> [2014] "0231"  "014"   "022"   "0231"  "0321"  "022"   "02112" "0212"  "022"   "022"   "022"  
#> [2025] "022"   "0321"  "022"   "0212"  "0212"  "022"   "022"   "0212"  "022"   "0232"  "022"  
#> [2036] "02113" "022"   "02112" "022"   "022"   "022"   "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "0212"  "0212"  "0212"  "014"   "022"   "02113" "0231"  "02113" "02112" "0212"  "022"  
#> [2058] "0212"  "0321"  "022"   "02112" "022"   "022"   "0212"  "022"   "022"   "0212"  "0212" 
#> [2069] "0212"  "02112" "02112" "022"   "0232"  "022"   "02113" "0233"  "02112" "022"   "02112"
#> [2080] "02112" "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0232"  "0212"  "022"  
#> [2091] "0212"  "022"   "022"   "0212"  "022"   "022"   "022"   "0212"  "022"   "0231"  "0212" 
#> [2102] "0212"  "0212"  "0212"  "02112" "02112" "0212"  "02112" "0231"  "02112" "0231"  "022"  
#> [2113] "02112" "02112" "02112" "02112" "022"   "0212"  "0231"  "0232"  "0212"  "0212"  "0233" 
#> [2124] "0232"  "014"   "022"   "0212"  "014"   "02112" "02112" "0212"  "0212"  "02112" "02112"
#> [2135] "02112" "0212"  "0212"  "0212"  "022"   "0212"  "022"   "022"   "0212"  "022"   "022"  
#> [2146] "022"   "022"   "0212"  "022"   "0212"  "02112" "0212"  "022"   "022"   "0212"  "02112"
#> [2157] "0212"  "022"   "022"   "02112" "022"   "022"   "022"   "0212"  "022"   "022"   "022"  
#> [2168] "0212"  "022"   "022"   "022"   "022"   "0212"  "0321"  "022"   "022"   "022"   "02111"
#> [2179] "0212"  "0212"  "0212"  "022"   "0234"  "022"   "022"   "022"   "022"   "022"   "022"  
#> [2190] "014"   "022"   "014"   "022"   "0312"  "022"   "0321"  "022"   "02113" "02112" "022"  
#> [2201] "0232"  "0231"  "022"   "0232"  "0232"  "022"   "0212"  "0212"  "0212"  "0231"  "0232" 
#> [2212] "022"   "0232"  "022"   "0212"  "0212"  "02112" "02112" "0212"  "0212"  "022"   "0212" 
#> [2223] "0212"  "0212"  "022"   "02112" "02112" "0212"  "022"   "0212"  "022"   "022"   "022"  
#> [2234] "022"   "0212"  "022"   "0321"  "022"   "022"   "0321"  "022"   "0321"  "022"   "022"  
#> [2245] "022"   "022"   "022"   "0231"  "0231"  "022"   "022"   "0321"  "022"   "022"   "0231" 
#> [2256] "0231"  "022"   "022"   "014"   "0321"  "02112" "022"   "022"   "022"   "022"   "0321" 
#> [2267] "0231"  "022"   "0321"  "022"   "022"   "022"   "014"   "022"   "014"   "022"   "022"  
#> [2278] "0321"  "022"   "0231"  "022"   "022"   "014"   "022"   "022"   "022"   "014"   "0321" 
#> [2289] "0321"  "022"   "022"   "0321"  "022"   "022"   "014"   "022"   "022"   "022"   "014"  
#> [2300] "0321"  "014"   "014"   "014"   "022"   "014"   "022"   "014"   "014"   "014"   "022"  
#> [2311] "014"   "0321"  "022"   "014"   "014"   "014"   "012"   "0212"  "0231"  "022"   "014"  
#> [2322] "022"   "022"   "0321"  "022"   "022"   "022"   "022"   "022"   "022"   "022"   "022"  
#> [2333] "022"   "022"   "0321"  "014"   "014"   "0321"  "022"   "014"   "0321"  "0321"  "022"  
#> [2344] "0212"  "0232"  "022"   "022"   "022"   "022"   "022"   "0321"  "022"   "022"   "022"  
#> [2355] "022"   "022"   "0321"  "0212"  "02112" "022"   "0212"  "022"   "0212"  "0234"  "0212" 
#> [2366] "0212"  "022"   "02112" "02112" "022"   "022"   "022"   "0212"  "022"   "0212"  "022"  
#> [2377] "022"   "022"   "0212"  "0212"  "0232"  "022"   "02112" "0212"  "0232"  "022"   "022"  
#> [2388] "022"   "022"   "0231"  "02113" "022"   "022"   "022"   "02111" "0212"  "0212"  "022"  
#> [2399] "0321"  "022"   "014"   "014"   "014"   "0212"  "022"   "0231"  "02111" "022"   "0212" 
#> [2410] "022"   "0212"  "022"   "0212"  "014"   "022"   "022"   "022"   "022"   "0231"  "012"  
#> [2421] "022"   "022"   "0321"  "0212"  "0212"  "0231"  "022"   "022"   "022"   "022"   "022"  
#> [2432] "022"   "014"   "0321"  "014"   "022"   "0321"  "0321"  "0321"  "014"   "014"   "012"  
#> [2443] "0321"  "0321"  "0321"  "022"   "022"   "022"   "0212"  "022"   "0212"  "0212"  "0212" 
#> [2454] "02112" "0212"  "0212"  "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0212" 
#> [2465] "0212"  "0212"  "0212"  "0212"  "022"   "022"   "0321"  "022"   "022"   "022"   "0212" 
#> [2476] "0212"  "022"   "0212"  "022"   "022"   "022"   "0212"  "022"   "022"   "02112" "022"  
#> [2487] "0212"  "0212"  "0212"  "02112" "0212"  "0212"  "0212"  "02112" "022"   "0212"  "022"  
#> [2498] "0212"  "0212"  "022"   "0212"  "022"   "0212"  "022"   "022"   "022"   "022"   "0321" 
#> [2509] "0321"  "022"   "0324"  "0212"  "0212"  "02112" "0212"  "0212"  "02112" "0212"  "022"  
#> [2520] "0212"  "0212"  "02112" "022"   "022"   "022"   "0212"  "02112" "022"   "0212"  "02113"
#> [2531] "022"   "0212"  "02112" "014"   "0212"  "0321"  "022"   "022"   "022"   "0231"  "022"  
#> [2542] "022"   "022"   "022"   "0232"  "022"   "022"   "022"   "014"   "022"   "0321"  "0321" 
#> [2553] "014"   "014"   "0212"  "0321"  "022"   "014"   "02112" "0212"  "0321"  "0212"  "0321" 
#> [2564] "022"   "022"   "0321"  "022"   "022"   "022"   "022"   "022"   "014"   "014"   "014"  
#> [2575] "0321"  "0321"  "022"   "022"   "02112" "0212"  "0212"  "022"   "022"   "022"   "022"  
#> [2586] "022"   "022"   "014"   "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "014"   "0232"  "02112" "0231"  "022"   "022"   "0321"  "022"   "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "014"   "02112" "022"   "0231"  "014"   "014"   "014"  
#> [2630] "0231"  "02112" "02112" "0212"  "02112" "02112" "022"   "0212"  "022"   "022"   "022"  
#> [2641] "022"   "0321"  "022"   "022"   "0212"  "022"   "022"   "022"   "0321"  "022"   "012"  
#> [2652] "022"   "022"   "022"   "022"   "022"   "0231"  "022"   "022"   "022"   "022"   "022"  
#> [2663] "022"   "0321"  "0321"  "022"   "0321"  "022"   "022"   "0321"  "022"   "014"   "0321" 
#> [2674] "022"   "0321"  "022"   "022"   "0324"  "012"   "014"   "012"   "022"   "014"   "012"  
#> [2685] "012"   "0232"  "0232"  "02112" "02112" "0321"  "0212"  "0212"  "0234"  "0231"  "014"  
#> [2696] "022"   "0324"  "0212"  "022"   "0321"  "022"   "0212"  "014"   "022"   "022"   "0321" 
#> [2707] "014"   "022"   "014"   "014"   "022"   "014"   "014"   "0231"  "022"   "0231"  "014"  
#> [2718] "014"   "0231"  "014"   "022"   "022"   "014"   "02112" "0321"  "014"   "0321"  "014"  
#> [2729] "012"   "0321"  "0212"  "022"   "0321"  "022"   "0321"  "014"   "014"   "0321"  "014"  
#> [2740] "0321"  "014"   "014"   "0212"  "022"   "022"   "014"   "014"   "014"   "014"   "0321" 
#> [2751] "014"   "014"   "022"   "022"   "0321"  "0323"  "014"   "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "014"   "014"   "022"   "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "014"   "014"   "022"   "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "022"   "014"   "014"   "014"   "022"   "0212"  "0231"  "02111" "02111" "0212"  "02111"
#> [2828] "0212"  "02111" "022"   "0212"  "0212"  "02111" "0212"  "0231"  "022"   "0212"  "0212" 
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "0212"  "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "014"   "022"   "0212"  "014"   "022"   "02112"
#> [2861] "0231"  "0232"  "022"   "022"   "0212"  "0212"  "0231"  "022"   "0212"  "022"   "02111"
#> [2872] "0212"  "0212"  "02111" "02111" "0212"  "022"   "0212"  "014"   "0212"  "0212"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 2797))
#>    [1] "012"   "012"   "0231"  "0322"  "012"   "012"   "0322"  "011"   "012"   "012"   "012"  
#>   [12] "011"   "0322"  "012"   "012"   "012"   "012"   "012"   "0313"  "011"   "0322"  "012"  
#>   [23] "011"   "0322"  "012"   "0322"  "0322"  "0322"  "012"   "0312"  "0322"  "012"   "0322" 
#>   [34] "0322"  "0322"  "012"   "012"   "012"   "0312"  "0311"  "011"   "022"   "011"   "0311" 
#>   [45] "012"   "012"   "0311"  "0312"  "0322"  "011"   "0312"  "011"   "011"   "012"   "012"  
#>   [56] "0212"  "0212"  "014"   "011"   "0313"  "0322"  "011"   "011"   "022"   "0311"  "011"  
#>   [67] "012"   "012"   "0322"  "012"   "0322"  "0311"  "0322"  "011"   "011"   "014"   "011"  
#>   [78] "011"   "022"   "011"   "014"   "0322"  "011"   "014"   "011"   "022"   "011"   "011"  
#>   [89] "011"   "012"   "0322"  "011"   "02113" "011"   "011"   "011"   "011"   "011"   "014"  
#>  [100] "0313"  "011"   "011"   "011"   "011"   "011"   "0322"  "022"   "014"   "014"   "011"  
#>  [111] "011"   "011"   "011"   "014"   "011"   "022"   "022"   "0322"  "011"   "0321"  "0313" 
#>  [122] "0322"  "022"   "022"   "022"   "0234"  "012"   "011"   "011"   "011"   "012"   "011"  
#>  [133] "011"   "0324"  "011"   "022"   "011"   "011"   "0322"  "011"   "011"   "011"   "012"  
#>  [144] "012"   "012"   "022"   "011"   "0212"  "011"   "0324"  "0313"  "0313"  "011"   "0313" 
#>  [155] "0322"  "011"   "0313"  "0234"  "0322"  "0322"  "0322"  "011"   "0313"  "0313"  "022"  
#>  [166] "011"   "0322"  "0313"  "011"   "011"   "0322"  "0313"  "0313"  "022"   "022"   "0313" 
#>  [177] "0313"  "011"   "0313"  "0313"  "0312"  "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "0312"  "022"   "0322"  "011"   "0313"  "0312"  "0313"  "0322"  "0312"  "0312" 
#>  [199] "0312"  "0312"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "0322"  "0313"  "0322" 
#>  [210] "022"   "0313"  "0234"  "0313"  "0312"  "0313"  "0313"  "0322"  "022"   "0312"  "011"  
#>  [221] "0312"  "0313"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "011"   "02113" "0313" 
#>  [232] "0313"  "0312"  "0313"  "02113" "0312"  "0312"  "0313"  "0312"  "0313"  "0313"  "0313" 
#>  [243] "0312"  "011"   "0312"  "0312"  "0312"  "022"   "0312"  "0313"  "011"   "0313"  "0312" 
#>  [254] "0312"  "0313"  "0313"  "011"   "0312"  "0313"  "0313"  "011"   "0313"  "011"   "011"  
#>  [265] "011"   "0313"  "011"   "011"   "011"   "0313"  "011"   "011"   "0313"  "0313"  "011"  
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "0212"  "011"   "0313"  "0313"  "0313"  "022"  
#>  [287] "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312" 
#>  [298] "0312"  "02113" "0312"  "02113" "0313"  "0313"  "0234"  "0313"  "02113" "022"   "0312" 
#>  [309] "022"   "0312"  "0312"  "0313"  "022"   "0313"  "0313"  "0312"  "011"   "0313"  "0313" 
#>  [320] "011"   "0313"  "011"   "0312"  "0313"  "0311"  "011"   "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "011"   "011"   "011"   "011"   "022"   "022"   "011"   "0313"  "011"   "0313" 
#>  [342] "0313"  "022"   "0313"  "0313"  "0313"  "022"   "0311"  "0311"  "022"   "0313"  "011"  
#>  [353] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0313"  "0312"  "0312"  "0312" 
#>  [375] "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "011"   "011"   "022"   "0311"  "011"  
#>  [386] "011"   "011"   "0311"  "0324"  "0311"  "011"   "0311"  "011"   "0311"  "022"   "0311" 
#>  [397] "0313"  "0311"  "011"   "011"   "0311"  "011"   "014"   "0311"  "011"   "022"   "011"  
#>  [408] "0311"  "011"   "011"   "0311"  "0311"  "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [419] "0311"  "011"   "011"   "011"   "011"   "0313"  "0234"  "011"   "011"   "011"   "011"  
#>  [430] "011"   "011"   "0234"  "011"   "0234"  "011"   "022"   "011"   "0212"  "011"   "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "011"   "011"   "0312"  "0312"  "0312"  "0311" 
#>  [452] "011"   "0311"  "011"   "011"   "0312"  "011"   "011"   "0312"  "0312"  "0311"  "0312" 
#>  [463] "0311"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312" 
#>  [474] "0312"  "0312"  "0311"  "0311"  "0312"  "0311"  "0311"  "0311"  "0311"  "0311"  "011"  
#>  [485] "0212"  "0312"  "0311"  "0311"  "022"   "022"   "0212"  "0312"  "0312"  "022"   "0312" 
#>  [496] "011"   "0212"  "02113" "011"   "0312"  "02113" "011"   "0311"  "0312"  "0311"  "02113"
#>  [507] "011"   "0311"  "0311"  "0311"  "0311"  "022"   "0311"  "0311"  "011"   "011"   "022"  
#>  [518] "0311"  "0312"  "0311"  "011"   "011"   "011"   "0312"  "0312"  "0313"  "0312"  "011"  
#>  [529] "011"   "022"   "0212"  "0212"  "011"   "022"   "011"   "011"   "011"   "0212"  "011"  
#>  [540] "0311"  "011"   "022"   "011"   "011"   "022"   "011"   "011"   "011"   "0311"  "011"  
#>  [551] "011"   "011"   "011"   "011"   "011"   "014"   "011"   "0311"  "0311"  "014"   "0311" 
#>  [562] "011"   "0324"  "0324"  "011"   "011"   "011"   "022"   "0311"  "011"   "011"   "022"  
#>  [573] "0324"  "0311"  "011"   "0312"  "011"   "011"   "011"   "022"   "011"   "011"   "011"  
#>  [584] "011"   "0311"  "011"   "0311"  "011"   "011"   "011"   "011"   "0313"  "011"   "0312" 
#>  [595] "0313"  "0324"  "011"   "0313"  "0313"  "011"   "011"   "011"   "011"   "0313"  "011"  
#>  [606] "011"   "022"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0234" 
#>  [617] "0311"  "0311"  "011"   "0311"  "0311"  "0313"  "011"   "0311"  "011"   "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "011"   "011"   "0313"  "011"   "0311"  "02113" "0311"  "011"  
#>  [639] "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312"  "011"   "011"   "022"  
#>  [650] "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311" 
#>  [661] "0311"  "011"   "0234"  "011"   "011"   "0312"  "0311"  "0311"  "0311"  "0311"  "022"  
#>  [672] "011"   "022"   "0311"  "0313"  "0234"  "0311"  "0311"  "022"   "011"   "0311"  "0311" 
#>  [683] "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0311"  "0311"  "011"   "0312" 
#>  [694] "0311"  "022"   "0311"  "0312"  "011"   "0312"  "014"   "0312"  "011"   "011"   "0311" 
#>  [705] "0311"  "022"   "022"   "011"   "0324"  "011"   "0324"  "0212"  "011"   "011"   "011"  
#>  [716] "011"   "011"   "011"   "022"   "0311"  "0311"  "022"   "0234"  "011"   "022"   "0311" 
#>  [727] "0311"  "0311"  "011"   "011"   "0311"  "011"   "011"   "0311"  "011"   "011"   "011"  
#>  [738] "011"   "011"   "0311"  "011"   "011"   "011"   "0311"  "0311"  "011"   "0311"  "0312" 
#>  [749] "0312"  "0312"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0311"  "011"   "0324" 
#>  [760] "0311"  "0212"  "022"   "011"   "011"   "0311"  "011"   "011"   "011"   "011"   "011"  
#>  [771] "0312"  "011"   "011"   "0311"  "011"   "022"   "011"   "011"   "02113" "011"   "0311" 
#>  [782] "011"   "011"   "011"   "011"   "011"   "0312"  "011"   "0311"  "0311"  "011"   "011"  
#>  [793] "0312"  "022"   "011"   "0312"  "011"   "011"   "0234"  "0311"  "0312"  "022"   "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "011"   "0311"  "011"   "011"   "011"   "0324"  "0324" 
#>  [815] "012"   "014"   "011"   "011"   "011"   "0212"  "011"   "011"   "011"   "011"   "011"  
#>  [826] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "012"   "011"   "011"  
#>  [837] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [848] "011"   "0324"  "012"   "011"   "0234"  "0324"  "022"   "011"   "014"   "014"   "014"  
#>  [859] "0324"  "011"   "011"   "0324"  "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [870] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "014"   "011"   "011"   "011"  
#>  [881] "011"   "011"   "011"   "011"   "012"   "0212"  "011"   "0324"  "011"   "0324"  "011"  
#>  [892] "0311"  "011"   "011"   "011"   "022"   "022"   "011"   "011"   "011"   "011"   "011"  
#>  [903] "0311"  "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [914] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"   "011"  
#>  [925] "011"   "011"   "011"   "011"   "022"   "011"   "014"   "011"   "011"   "011"   "022"  
#>  [936] "0324"  "011"   "022"   "011"   "011"   "011"   "014"   "011"   "011"   "011"   "011"  
#>  [947] "011"   "011"   "011"   "011"   "011"   "011"   "011"   "0311"  "011"   "0212"  "014"  
#>  [958] "014"   "011"   "0212"  "022"   "011"   "011"   "0212"  "0311"  "011"   "011"   "011"  
#>  [969] "011"   "0311"  "011"   "011"   "022"   "011"   "012"   "011"   "011"   "011"   "011"  
#>  [980] "011"   "0324"  "0324"  "022"   "022"   "0311"  "011"   "011"   "011"   "011"   "0311" 
#>  [991] "0311"  "011"   "011"   "011"   "0311"  "011"   "011"   "0324"  "0324"  "011"   "022"  
#> [1002] "013"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1013] "012"   "022"   "012"   "022"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1024] "012"   "012"   "0323"  "014"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1035] "012"   "0311"  "012"   "0312"  "012"   "02113" "012"   "011"   "0322"  "012"   "012"  
#> [1046] "012"   "0312"  "012"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"  
#> [1057] "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1068] "012"   "012"   "012"   "012"   "012"   "013"   "012"   "0322"  "012"   "012"   "012"  
#> [1079] "013"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1090] "012"   "012"   "012"   "011"   "013"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1101] "014"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "0311"  "012"  
#> [1112] "012"   "012"   "012"   "012"   "013"   "012"   "0313"  "012"   "014"   "012"   "0313" 
#> [1123] "012"   "012"   "012"   "012"   "012"   "0312"  "012"   "012"   "012"   "011"   "011"  
#> [1134] "012"   "0322"  "012"   "012"   "012"   "012"   "012"   "022"   "012"   "012"   "011"  
#> [1145] "0322"  "012"   "012"   "011"   "012"   "014"   "012"   "012"   "012"   "012"   "012"  
#> [1156] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "011"   "012"   "012"   "012"  
#> [1167] "012"   "011"   "011"   "011"   "012"   "0311"  "011"   "012"   "011"   "011"   "012"  
#> [1178] "012"   "012"   "012"   "022"   "012"   "014"   "012"   "022"   "011"   "012"   "012"  
#> [1189] "011"   "012"   "012"   "012"   "012"   "012"   "012"   "014"   "012"   "012"   "013"  
#> [1200] "012"   "012"   "014"   "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"  
#> [1211] "013"   "012"   "012"   "014"   "022"   "012"   "0321"  "0313"  "012"   "012"   "011"  
#> [1222] "012"   "012"   "022"   "012"   "022"   "012"   "012"   "012"   "014"   "012"   "012"  
#> [1233] "012"   "011"   "012"   "011"   "011"   "0313"  "014"   "012"   "033"   "0321"  "0311" 
#> [1244] "012"   "012"   "012"   "011"   "011"   "012"   "012"   "011"   "012"   "011"   "011"  
#> [1255] "011"   "022"   "022"   "022"   "022"   "012"   "012"   "012"   "012"   "012"   "0311" 
#> [1266] "014"   "011"   "011"   "013"   "013"   "013"   "013"   "033"   "013"   "013"   "013"  
#> [1277] "033"   "0212"  "033"   "033"   "033"   "013"   "033"   "013"   "013"   "013"   "013"  
#> [1288] "013"   "033"   "033"   "013"   "033"   "013"   "013"   "0233"  "033"   "013"   "013"  
#> [1299] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1310] "013"   "013"   "013"   "022"   "033"   "022"   "013"   "033"   "0212"  "013"   "013"  
#> [1321] "013"   "013"   "013"   "013"   "013"   "013"   "033"   "012"   "013"   "013"   "013"  
#> [1332] "02113" "013"   "033"   "013"   "033"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1343] "022"   "013"   "013"   "022"   "0233"  "02113" "013"   "013"   "013"   "013"   "02113"
#> [1354] "022"   "013"   "013"   "013"   "013"   "013"   "013"   "0212"  "0212"  "013"   "013"  
#> [1365] "033"   "033"   "013"   "033"   "013"   "033"   "033"   "033"   "033"   "013"   "033"  
#> [1376] "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1387] "013"   "012"   "012"   "012"   "012"   "0321"  "013"   "013"   "0231"  "014"   "02113"
#> [1398] "0233"  "0233"  "012"   "0233"  "013"   "013"   "013"   "013"   "033"   "0233"  "013"  
#> [1409] "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "033"  
#> [1420] "013"   "013"   "0311"  "013"   "013"   "013"   "013"   "013"   "013"   "033"   "0311" 
#> [1431] "013"   "011"   "013"   "0311"  "012"   "013"   "013"   "013"   "013"   "013"   "013"  
#> [1442] "013"   "013"   "013"   "013"   "012"   "013"   "013"   "0233"  "013"   "033"   "022"  
#> [1453] "013"   "013"   "022"   "013"   "013"   "013"   "022"   "013"   "013"   "013"   "013"  
#> [1464] "013"   "012"   "013"   "011"   "011"   "011"   "013"   "013"   "033"   "012"   "0313" 
#> [1475] "033"   "0313"  "011"   "0212"  "013"   "022"   "012"   "013"   "013"   "011"   "013"  
#> [1486] "013"   "013"   "0321"  "014"   "013"   "014"   "013"   "013"   "011"   "0231"  "014"  
#> [1497] "013"   "011"   "013"   "0233"  "012"   "014"   "013"   "011"   "012"   "0321"  "013"  
#> [1508] "022"   "013"   "022"   "012"   "013"   "012"   "013"   "013"   "012"   "013"   "022"  
#> [1519] "033"   "022"   "0233"  "0233"  "014"   "022"   "014"   "013"   "033"   "013"   "013"  
#> [1530] "013"   "014"   "013"   "013"   "02113" "012"   "022"   "011"   "011"   "013"   "013"  
#> [1541] "012"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "013"   "0311" 
#> [1552] "013"   "011"   "013"   "013"   "013"   "014"   "0212"  "0233"  "013"   "012"   "012"  
#> [1563] "014"   "0312"  "022"   "011"   "013"   "033"   "013"   "012"   "013"   "022"   "0212" 
#> [1574] "014"   "0212"  "033"   "033"   "02113" "0233"  "0233"  "033"   "02113" "033"   "0233" 
#> [1585] "033"   "033"   "033"   "033"   "033"   "033"   "013"   "033"   "033"   "022"   "033"  
#> [1596] "02113" "0212"  "0233"  "013"   "02113" "013"   "033"   "013"   "0212"  "02113" "013"  
#> [1607] "013"   "0233"  "02113" "02113" "033"   "033"   "033"   "033"   "033"   "033"   "033"  
#> [1618] "02113" "013"   "022"   "02113" "0233"  "013"   "033"   "011"   "0212"  "012"   "013"  
#> [1629] "012"   "013"   "014"   "012"   "0323"  "012"   "0212"  "012"   "012"   "012"   "022"  
#> [1640] "012"   "012"   "013"   "012"   "0233"  "014"   "012"   "014"   "012"   "012"   "012"  
#> [1651] "014"   "012"   "012"   "0321"  "012"   "011"   "012"   "011"   "011"   "012"   "012"  
#> [1662] "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1673] "012"   "012"   "012"   "0231"  "012"   "011"   "011"   "0233"  "012"   "012"   "012"  
#> [1684] "014"   "012"   "012"   "011"   "012"   "012"   "012"   "012"   "012"   "0322"  "012"  
#> [1695] "012"   "012"   "012"   "011"   "012"   "012"   "011"   "012"   "0311"  "012"   "012"  
#> [1706] "012"   "0323"  "012"   "012"   "012"   "013"   "0311"  "012"   "012"   "012"   "013"  
#> [1717] "012"   "012"   "0323"  "0323"  "013"   "012"   "014"   "012"   "012"   "012"   "012"  
#> [1728] "0313"  "012"   "0311"  "0311"  "012"   "012"   "0212"  "012"   "011"   "012"   "011"  
#> [1739] "011"   "011"   "012"   "012"   "013"   "012"   "013"   "012"   "012"   "012"   "0323" 
#> [1750] "012"   "0312"  "012"   "022"   "012"   "022"   "012"   "011"   "012"   "014"   "0312" 
#> [1761] "022"   "012"   "011"   "012"   "011"   "022"   "0311"  "011"   "013"   "022"   "012"  
#> [1772] "012"   "012"   "012"   "012"   "012"   "011"   "012"   "012"   "012"   "0322"  "011"  
#> [1783] "012"   "012"   "011"   "012"   "0313"  "011"   "012"   "0323"  "012"   "0313"  "0313" 
#> [1794] "0323"  "022"   "011"   "012"   "0313"  "022"   "012"   "012"   "012"   "012"   "0323" 
#> [1805] "012"   "012"   "0233"  "0212"  "022"   "0311"  "022"   "012"   "012"   "011"   "012"  
#> [1816] "012"   "012"   "012"   "012"   "012"   "0313"  "012"   "012"   "012"   "012"   "012"  
#> [1827] "012"   "012"   "012"   "022"   "012"   "012"   "0323"  "012"   "012"   "0212"  "022"  
#> [1838] "012"   "011"   "012"   "012"   "012"   "0212"  "012"   "012"   "014"   "012"   "012"  
#> [1849] "012"   "012"   "012"   "0323"  "012"   "012"   "011"   "012"   "012"   "011"   "0322" 
#> [1860] "012"   "0312"  "012"   "012"   "033"   "022"   "0312"  "0321"  "0323"  "0212"  "012"  
#> [1871] "012"   "0323"  "0323"  "012"   "012"   "012"   "0231"  "012"   "012"   "012"   "02112"
#> [1882] "012"   "012"   "012"   "012"   "0323"  "012"   "0312"  "012"   "012"   "011"   "022"  
#> [1893] "012"   "012"   "012"   "0311"  "012"   "012"   "012"   "0312"  "013"   "0323"  "012"  
#> [1904] "0311"  "012"   "012"   "033"   "012"   "012"   "012"   "012"   "012"   "012"   "012"  
#> [1915] "0323"  "012"   "012"   "011"   "012"   "0312"  "022"   "012"   "0323"  "0323"  "012"  
#> [1926] "0311"  "012"   "012"   "012"   "0233"  "0323"  "012"   "02112" "012"   "0323"  "0233" 
#> [1937] "033"   "012"   "012"   "0323"  "0323"  "012"   "0323"  "012"   "033"   "022"   "0312" 
#> [1948] "0323"  "012"   "0312"  "0323"  "012"   "012"   "0212"  "012"   "012"   "0233"  "0323" 
#> [1959] "02113" "0323"  "022"   "0323"  "0323"  "022"   "012"   "0323"  "02112" "033"   "0323" 
#> [1970] "0312"  "012"   "0233"  "0312"  "0323"  "0212"  "0311"  "012"   "0212"  "0323"  "0212" 
#> [1981] "0323"  "0323"  "033"   "0232"  "02112" "0232"  "0212"  "0212"  "0212"  "02112" "022"  
#> [1992] "0212"  "0231"  "0232"  "022"   "0212"  "0231"  "0231"  "02112" "0231"  "022"   "02113"
#> [2003] "02112" "0232"  "02112" "022"   "022"   "0212"  "0232"  "0232"  "0212"  "0231"  "0212" 
#> [2014] "0231"  "014"   "022"   "0231"  "0321"  "022"   "02112" "0212"  "022"   "022"   "022"  
#> [2025] "022"   "0321"  "022"   "0212"  "0212"  "022"   "022"   "0212"  "022"   "0232"  "022"  
#> [2036] "02113" "022"   "02112" "022"   "022"   "022"   "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "0212"  "0212"  "0212"  "014"   "022"   "02113" "0231"  "02113" "02112" "0212"  "022"  
#> [2058] "0212"  "0321"  "022"   "02112" "022"   "022"   "0212"  "022"   "022"   "0212"  "0212" 
#> [2069] "0212"  "02112" "02112" "022"   "0232"  "022"   "02113" "0233"  "02112" "022"   "02112"
#> [2080] "02112" "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0232"  "0212"  "022"  
#> [2091] "0212"  "022"   "022"   "0212"  "022"   "022"   "022"   "0212"  "022"   "0231"  "0212" 
#> [2102] "0212"  "0212"  "0212"  "02112" "02112" "0212"  "02112" "0231"  "02112" "0231"  "022"  
#> [2113] "02112" "02112" "02112" "02112" "022"   "0212"  "0231"  "0232"  "0212"  "0212"  "0233" 
#> [2124] "0232"  "014"   "022"   "0212"  "014"   "02112" "02112" "0212"  "0212"  "02112" "02112"
#> [2135] "02112" "0212"  "0212"  "0212"  "022"   "0212"  "022"   "022"   "0212"  "022"   "022"  
#> [2146] "022"   "022"   "0212"  "022"   "0212"  "02112" "0212"  "022"   "022"   "0212"  "02112"
#> [2157] "0212"  "022"   "022"   "02112" "022"   "022"   "022"   "0212"  "022"   "022"   "022"  
#> [2168] "0212"  "022"   "022"   "022"   "022"   "0212"  "0321"  "022"   "022"   "022"   "02111"
#> [2179] "0212"  "0212"  "0212"  "022"   "0234"  "022"   "022"   "022"   "022"   "022"   "022"  
#> [2190] "014"   "022"   "014"   "022"   "0312"  "022"   "0321"  "022"   "02113" "02112" "022"  
#> [2201] "0232"  "0231"  "022"   "0232"  "0232"  "022"   "0212"  "0212"  "0212"  "0231"  "0232" 
#> [2212] "022"   "0232"  "022"   "0212"  "0212"  "02112" "02112" "0212"  "0212"  "022"   "0212" 
#> [2223] "0212"  "0212"  "022"   "02112" "02112" "0212"  "022"   "0212"  "022"   "022"   "022"  
#> [2234] "022"   "0212"  "022"   "0321"  "022"   "022"   "0321"  "022"   "0321"  "022"   "022"  
#> [2245] "022"   "022"   "022"   "0231"  "0231"  "022"   "022"   "0321"  "022"   "022"   "0231" 
#> [2256] "0231"  "022"   "022"   "014"   "0321"  "02112" "022"   "022"   "022"   "022"   "0321" 
#> [2267] "0231"  "022"   "0321"  "022"   "022"   "022"   "014"   "022"   "014"   "022"   "022"  
#> [2278] "0321"  "022"   "0231"  "022"   "022"   "014"   "022"   "022"   "022"   "014"   "0321" 
#> [2289] "0321"  "022"   "022"   "0321"  "022"   "022"   "014"   "022"   "022"   "022"   "014"  
#> [2300] "0321"  "014"   "014"   "014"   "022"   "014"   "022"   "014"   "014"   "014"   "022"  
#> [2311] "014"   "0321"  "022"   "014"   "014"   "014"   "012"   "0212"  "0231"  "022"   "014"  
#> [2322] "022"   "022"   "0321"  "022"   "022"   "022"   "022"   "022"   "022"   "022"   "022"  
#> [2333] "022"   "022"   "0321"  "014"   "014"   "0321"  "022"   "014"   "0321"  "0321"  "022"  
#> [2344] "0212"  "0232"  "022"   "022"   "022"   "022"   "022"   "0321"  "022"   "022"   "022"  
#> [2355] "022"   "022"   "0321"  "0212"  "02112" "022"   "0212"  "022"   "0212"  "0234"  "0212" 
#> [2366] "0212"  "022"   "02112" "02112" "022"   "022"   "022"   "0212"  "022"   "0212"  "022"  
#> [2377] "022"   "022"   "0212"  "0212"  "0232"  "022"   "02112" "0212"  "0232"  "022"   "022"  
#> [2388] "022"   "022"   "0231"  "02113" "022"   "022"   "022"   "02111" "0212"  "0212"  "022"  
#> [2399] "0321"  "022"   "014"   "014"   "014"   "0212"  "022"   "0231"  "02111" "022"   "0212" 
#> [2410] "022"   "0212"  "022"   "0212"  "014"   "022"   "022"   "022"   "022"   "0231"  "012"  
#> [2421] "022"   "022"   "0321"  "0212"  "0212"  "0231"  "022"   "022"   "022"   "022"   "022"  
#> [2432] "022"   "014"   "0321"  "014"   "022"   "0321"  "0321"  "0321"  "014"   "014"   "012"  
#> [2443] "0321"  "0321"  "0321"  "022"   "022"   "022"   "0212"  "022"   "0212"  "0212"  "0212" 
#> [2454] "02112" "0212"  "0212"  "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0212" 
#> [2465] "0212"  "0212"  "0212"  "0212"  "022"   "022"   "0321"  "022"   "022"   "022"   "0212" 
#> [2476] "0212"  "022"   "0212"  "022"   "022"   "022"   "0212"  "022"   "022"   "02112" "022"  
#> [2487] "0212"  "0212"  "0212"  "02112" "0212"  "0212"  "0212"  "02112" "022"   "0212"  "022"  
#> [2498] "0212"  "0212"  "022"   "0212"  "022"   "0212"  "022"   "022"   "022"   "022"   "0321" 
#> [2509] "0321"  "022"   "0324"  "0212"  "0212"  "02112" "0212"  "0212"  "02112" "0212"  "022"  
#> [2520] "0212"  "0212"  "02112" "022"   "022"   "022"   "0212"  "02112" "022"   "0212"  "02113"
#> [2531] "022"   "0212"  "02112" "014"   "0212"  "0321"  "022"   "022"   "022"   "0231"  "022"  
#> [2542] "022"   "022"   "022"   "0232"  "022"   "022"   "022"   "014"   "022"   "0321"  "0321" 
#> [2553] "014"   "014"   "0212"  "0321"  "022"   "014"   "02112" "0212"  "0321"  "0212"  "0321" 
#> [2564] "022"   "022"   "0321"  "022"   "022"   "022"   "022"   "022"   "014"   "014"   "014"  
#> [2575] "0321"  "0321"  "022"   "022"   "02112" "0212"  "0212"  "022"   "022"   "022"   "022"  
#> [2586] "022"   "022"   "014"   "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "014"   "0232"  "02112" "0231"  "022"   "022"   "0321"  "022"   "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "014"   "02112" "022"   "0231"  "014"   "014"   "014"  
#> [2630] "0231"  "02112" "02112" "0212"  "02112" "02112" "022"   "0212"  "022"   "022"   "022"  
#> [2641] "022"   "0321"  "022"   "022"   "0212"  "022"   "022"   "022"   "0321"  "022"   "012"  
#> [2652] "022"   "022"   "022"   "022"   "022"   "0231"  "022"   "022"   "022"   "022"   "022"  
#> [2663] "022"   "0321"  "0321"  "022"   "0321"  "022"   "022"   "0321"  "022"   "014"   "0321" 
#> [2674] "022"   "0321"  "022"   "022"   "0324"  "012"   "014"   "012"   "022"   "014"   "012"  
#> [2685] "012"   "0232"  "0232"  "02112" "02112" "0321"  "0212"  "0212"  "0234"  "0231"  "014"  
#> [2696] "022"   "0324"  "0212"  "022"   "0321"  "022"   "0212"  "014"   "022"   "022"   "0321" 
#> [2707] "014"   "022"   "014"   "014"   "022"   "014"   "014"   "0231"  "022"   "0231"  "014"  
#> [2718] "014"   "0231"  "014"   "022"   "022"   "014"   "02112" "0321"  "014"   "0321"  "014"  
#> [2729] "012"   "0321"  "0212"  "022"   "0321"  "022"   "0321"  "014"   "014"   "0321"  "014"  
#> [2740] "0321"  "014"   "014"   "0212"  "022"   "022"   "014"   "014"   "014"   "014"   "0321" 
#> [2751] "014"   "014"   "022"   "022"   "0321"  "0323"  "014"   "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "014"   "014"   "022"   "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "014"   "014"   "022"   "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "022"   "014"   "014"   "014"   "022"   "0212"  "0231"  "02111" "02111" "0212"  "02111"
#> [2828] "0212"  "02111" "022"   "0212"  "0212"  "02111" "0212"  "0231"  "022"   "0212"  "0212" 
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "0212"  "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "014"   "022"   "0212"  "014"   "022"   "02112"
#> [2861] "0231"  "0232"  "022"   "022"   "0212"  "0212"  "0231"  "022"   "0212"  "022"   "02111"
#> [2872] "0212"  "0212"  "02111" "02111" "0212"  "022"   "0212"  "014"   "0212"  "0212"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 2878))
#>    [1] "01"    "01"    "0231"  "0322"  "01"    "01"    "0322"  "01"    "01"    "01"    "01"   
#>   [12] "01"    "0322"  "01"    "01"    "01"    "01"    "01"    "0313"  "01"    "0322"  "01"   
#>   [23] "01"    "0322"  "01"    "0322"  "0322"  "0322"  "01"    "0312"  "0322"  "01"    "0322" 
#>   [34] "0322"  "0322"  "01"    "01"    "01"    "0312"  "0311"  "01"    "022"   "01"    "0311" 
#>   [45] "01"    "01"    "0311"  "0312"  "0322"  "01"    "0312"  "01"    "01"    "01"    "01"   
#>   [56] "0212"  "0212"  "01"    "01"    "0313"  "0322"  "01"    "01"    "022"   "0311"  "01"   
#>   [67] "01"    "01"    "0322"  "01"    "0322"  "0311"  "0322"  "01"    "01"    "01"    "01"   
#>   [78] "01"    "022"   "01"    "01"    "0322"  "01"    "01"    "01"    "022"   "01"    "01"   
#>   [89] "01"    "01"    "0322"  "01"    "02113" "01"    "01"    "01"    "01"    "01"    "01"   
#>  [100] "0313"  "01"    "01"    "01"    "01"    "01"    "0322"  "022"   "01"    "01"    "01"   
#>  [111] "01"    "01"    "01"    "01"    "01"    "022"   "022"   "0322"  "01"    "0321"  "0313" 
#>  [122] "0322"  "022"   "022"   "022"   "0234"  "01"    "01"    "01"    "01"    "01"    "01"   
#>  [133] "01"    "0324"  "01"    "022"   "01"    "01"    "0322"  "01"    "01"    "01"    "01"   
#>  [144] "01"    "01"    "022"   "01"    "0212"  "01"    "0324"  "0313"  "0313"  "01"    "0313" 
#>  [155] "0322"  "01"    "0313"  "0234"  "0322"  "0322"  "0322"  "01"    "0313"  "0313"  "022"  
#>  [166] "01"    "0322"  "0313"  "01"    "01"    "0322"  "0313"  "0313"  "022"   "022"   "0313" 
#>  [177] "0313"  "01"    "0313"  "0313"  "0312"  "0313"  "0322"  "0313"  "0322"  "0313"  "0313" 
#>  [188] "0313"  "0312"  "022"   "0322"  "01"    "0313"  "0312"  "0313"  "0322"  "0312"  "0312" 
#>  [199] "0312"  "0312"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "0322"  "0313"  "0322" 
#>  [210] "022"   "0313"  "0234"  "0313"  "0312"  "0313"  "0313"  "0322"  "022"   "0312"  "01"   
#>  [221] "0312"  "0313"  "0312"  "0313"  "0312"  "0313"  "0312"  "0312"  "01"    "02113" "0313" 
#>  [232] "0313"  "0312"  "0313"  "02113" "0312"  "0312"  "0313"  "0312"  "0313"  "0313"  "0313" 
#>  [243] "0312"  "01"    "0312"  "0312"  "0312"  "022"   "0312"  "0313"  "01"    "0313"  "0312" 
#>  [254] "0312"  "0313"  "0313"  "01"    "0312"  "0313"  "0313"  "01"    "0313"  "01"    "01"   
#>  [265] "01"    "0313"  "01"    "01"    "01"    "0313"  "01"    "01"    "0313"  "0313"  "01"   
#>  [276] "0313"  "0313"  "0313"  "0313"  "0322"  "0212"  "01"    "0313"  "0313"  "0313"  "022"  
#>  [287] "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312"  "0312" 
#>  [298] "0312"  "02113" "0312"  "02113" "0313"  "0313"  "0234"  "0313"  "02113" "022"   "0312" 
#>  [309] "022"   "0312"  "0312"  "0313"  "022"   "0313"  "0313"  "0312"  "01"    "0313"  "0313" 
#>  [320] "01"    "0313"  "01"    "0312"  "0313"  "0311"  "01"    "0313"  "0313"  "0313"  "0313" 
#>  [331] "0313"  "01"    "01"    "01"    "01"    "022"   "022"   "01"    "0313"  "01"    "0313" 
#>  [342] "0313"  "022"   "0313"  "0313"  "0313"  "022"   "0311"  "0311"  "022"   "0313"  "01"   
#>  [353] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "0313" 
#>  [364] "0313"  "0313"  "0313"  "0313"  "0312"  "0312"  "0312"  "0313"  "0312"  "0312"  "0312" 
#>  [375] "0312"  "0312"  "0312"  "0312"  "0312"  "0313"  "01"    "01"    "022"   "0311"  "01"   
#>  [386] "01"    "01"    "0311"  "0324"  "0311"  "01"    "0311"  "01"    "0311"  "022"   "0311" 
#>  [397] "0313"  "0311"  "01"    "01"    "0311"  "01"    "01"    "0311"  "01"    "022"   "01"   
#>  [408] "0311"  "01"    "01"    "0311"  "0311"  "0212"  "01"    "01"    "01"    "01"    "01"   
#>  [419] "0311"  "01"    "01"    "01"    "01"    "0313"  "0234"  "01"    "01"    "01"    "01"   
#>  [430] "01"    "01"    "0234"  "01"    "0234"  "01"    "022"   "01"    "0212"  "01"    "0234" 
#>  [441] "0234"  "0311"  "0311"  "0311"  "0311"  "01"    "01"    "0312"  "0312"  "0312"  "0311" 
#>  [452] "01"    "0311"  "01"    "01"    "0312"  "01"    "01"    "0312"  "0312"  "0311"  "0312" 
#>  [463] "0311"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0312" 
#>  [474] "0312"  "0312"  "0311"  "0311"  "0312"  "0311"  "0311"  "0311"  "0311"  "0311"  "01"   
#>  [485] "0212"  "0312"  "0311"  "0311"  "022"   "022"   "0212"  "0312"  "0312"  "022"   "0312" 
#>  [496] "01"    "0212"  "02113" "01"    "0312"  "02113" "01"    "0311"  "0312"  "0311"  "02113"
#>  [507] "01"    "0311"  "0311"  "0311"  "0311"  "022"   "0311"  "0311"  "01"    "01"    "022"  
#>  [518] "0311"  "0312"  "0311"  "01"    "01"    "01"    "0312"  "0312"  "0313"  "0312"  "01"   
#>  [529] "01"    "022"   "0212"  "0212"  "01"    "022"   "01"    "01"    "01"    "0212"  "01"   
#>  [540] "0311"  "01"    "022"   "01"    "01"    "022"   "01"    "01"    "01"    "0311"  "01"   
#>  [551] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0311"  "0311"  "01"    "0311" 
#>  [562] "01"    "0324"  "0324"  "01"    "01"    "01"    "022"   "0311"  "01"    "01"    "022"  
#>  [573] "0324"  "0311"  "01"    "0312"  "01"    "01"    "01"    "022"   "01"    "01"    "01"   
#>  [584] "01"    "0311"  "01"    "0311"  "01"    "01"    "01"    "01"    "0313"  "01"    "0312" 
#>  [595] "0313"  "0324"  "01"    "0313"  "0313"  "01"    "01"    "01"    "01"    "0313"  "01"   
#>  [606] "01"    "022"   "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0234" 
#>  [617] "0311"  "0311"  "01"    "0311"  "0311"  "0313"  "01"    "0311"  "01"    "0311"  "0311" 
#>  [628] "0311"  "0311"  "0311"  "01"    "01"    "0313"  "01"    "0311"  "02113" "0311"  "01"   
#>  [639] "01"    "01"    "01"    "0311"  "0311"  "01"    "0311"  "0312"  "01"    "01"    "022"  
#>  [650] "01"    "01"    "01"    "01"    "01"    "0311"  "01"    "01"    "01"    "0311"  "0311" 
#>  [661] "0311"  "01"    "0234"  "01"    "01"    "0312"  "0311"  "0311"  "0311"  "0311"  "022"  
#>  [672] "01"    "022"   "0311"  "0313"  "0234"  "0311"  "0311"  "022"   "01"    "0311"  "0311" 
#>  [683] "0312"  "0312"  "0311"  "0312"  "0312"  "0312"  "0311"  "0311"  "0311"  "01"    "0312" 
#>  [694] "0311"  "022"   "0311"  "0312"  "01"    "0312"  "01"    "0312"  "01"    "01"    "0311" 
#>  [705] "0311"  "022"   "022"   "01"    "0324"  "01"    "0324"  "0212"  "01"    "01"    "01"   
#>  [716] "01"    "01"    "01"    "022"   "0311"  "0311"  "022"   "0234"  "01"    "022"   "0311" 
#>  [727] "0311"  "0311"  "01"    "01"    "0311"  "01"    "01"    "0311"  "01"    "01"    "01"   
#>  [738] "01"    "01"    "0311"  "01"    "01"    "01"    "0311"  "0311"  "01"    "0311"  "0312" 
#>  [749] "0312"  "0312"  "0311"  "01"    "0311"  "01"    "01"    "01"    "0311"  "01"    "0324" 
#>  [760] "0311"  "0212"  "022"   "01"    "01"    "0311"  "01"    "01"    "01"    "01"    "01"   
#>  [771] "0312"  "01"    "01"    "0311"  "01"    "022"   "01"    "01"    "02113" "01"    "0311" 
#>  [782] "01"    "01"    "01"    "01"    "01"    "0312"  "01"    "0311"  "0311"  "01"    "01"   
#>  [793] "0312"  "022"   "01"    "0312"  "01"    "01"    "0234"  "0311"  "0312"  "022"   "0311" 
#>  [804] "0311"  "0311"  "0234"  "0311"  "01"    "0311"  "01"    "01"    "01"    "0324"  "0324" 
#>  [815] "01"    "01"    "01"    "01"    "01"    "0212"  "01"    "01"    "01"    "01"    "01"   
#>  [826] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#>  [837] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#>  [848] "01"    "0324"  "01"    "01"    "0234"  "0324"  "022"   "01"    "01"    "01"    "01"   
#>  [859] "0324"  "01"    "01"    "0324"  "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#>  [870] "0311"  "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#>  [881] "01"    "01"    "01"    "01"    "01"    "0212"  "01"    "0324"  "01"    "0324"  "01"   
#>  [892] "0311"  "01"    "01"    "01"    "022"   "022"   "01"    "01"    "01"    "01"    "01"   
#>  [903] "0311"  "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#>  [914] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#>  [925] "01"    "01"    "01"    "01"    "022"   "01"    "01"    "01"    "01"    "01"    "022"  
#>  [936] "0324"  "01"    "022"   "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#>  [947] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0311"  "01"    "0212"  "01"   
#>  [958] "01"    "01"    "0212"  "022"   "01"    "01"    "0212"  "0311"  "01"    "01"    "01"   
#>  [969] "01"    "0311"  "01"    "01"    "022"   "01"    "01"    "01"    "01"    "01"    "01"   
#>  [980] "01"    "0324"  "0324"  "022"   "022"   "0311"  "01"    "01"    "01"    "01"    "0311" 
#>  [991] "0311"  "01"    "01"    "01"    "0311"  "01"    "01"    "0324"  "0324"  "01"    "022"  
#> [1002] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1013] "01"    "022"   "01"    "022"   "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1024] "01"    "01"    "0323"  "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1035] "01"    "0311"  "01"    "0312"  "01"    "02113" "01"    "01"    "0322"  "01"    "01"   
#> [1046] "01"    "0312"  "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1057] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1068] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0322"  "01"    "01"    "01"   
#> [1079] "01"    "01"    "01"    "01"    "0312"  "01"    "01"    "01"    "01"    "0311"  "01"   
#> [1090] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1101] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0311"  "01"   
#> [1112] "01"    "01"    "01"    "01"    "01"    "01"    "0313"  "01"    "01"    "01"    "0313" 
#> [1123] "01"    "01"    "01"    "01"    "01"    "0312"  "01"    "01"    "01"    "01"    "01"   
#> [1134] "01"    "0322"  "01"    "01"    "01"    "01"    "01"    "022"   "01"    "01"    "01"   
#> [1145] "0322"  "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1156] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1167] "01"    "01"    "01"    "01"    "01"    "0311"  "01"    "01"    "01"    "01"    "01"   
#> [1178] "01"    "01"    "01"    "022"   "01"    "01"    "01"    "022"   "01"    "01"    "01"   
#> [1189] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1200] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1211] "01"    "01"    "01"    "01"    "022"   "01"    "0321"  "0313"  "01"    "01"    "01"   
#> [1222] "01"    "01"    "022"   "01"    "022"   "01"    "01"    "01"    "01"    "01"    "01"   
#> [1233] "01"    "01"    "01"    "01"    "01"    "0313"  "01"    "01"    "033"   "0321"  "0311" 
#> [1244] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1255] "01"    "022"   "022"   "022"   "022"   "01"    "01"    "01"    "01"    "01"    "0311" 
#> [1266] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "033"   "01"    "01"    "01"   
#> [1277] "033"   "0212"  "033"   "033"   "033"   "01"    "033"   "01"    "01"    "01"    "01"   
#> [1288] "01"    "033"   "033"   "01"    "033"   "01"    "01"    "0233"  "033"   "01"    "01"   
#> [1299] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1310] "01"    "01"    "01"    "022"   "033"   "022"   "01"    "033"   "0212"  "01"    "01"   
#> [1321] "01"    "01"    "01"    "01"    "01"    "01"    "033"   "01"    "01"    "01"    "01"   
#> [1332] "02113" "01"    "033"   "01"    "033"   "01"    "01"    "01"    "01"    "01"    "01"   
#> [1343] "022"   "01"    "01"    "022"   "0233"  "02113" "01"    "01"    "01"    "01"    "02113"
#> [1354] "022"   "01"    "01"    "01"    "01"    "01"    "01"    "0212"  "0212"  "01"    "01"   
#> [1365] "033"   "033"   "01"    "033"   "01"    "033"   "033"   "033"   "033"   "01"    "033"  
#> [1376] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1387] "01"    "01"    "01"    "01"    "01"    "0321"  "01"    "01"    "0231"  "01"    "02113"
#> [1398] "0233"  "0233"  "01"    "0233"  "01"    "01"    "01"    "01"    "033"   "0233"  "01"   
#> [1409] "01"    "0311"  "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "033"  
#> [1420] "01"    "01"    "0311"  "01"    "01"    "01"    "01"    "01"    "01"    "033"   "0311" 
#> [1431] "01"    "01"    "01"    "0311"  "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1442] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0233"  "01"    "033"   "022"  
#> [1453] "01"    "01"    "022"   "01"    "01"    "01"    "022"   "01"    "01"    "01"    "01"   
#> [1464] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "033"   "01"    "0313" 
#> [1475] "033"   "0313"  "01"    "0212"  "01"    "022"   "01"    "01"    "01"    "01"    "01"   
#> [1486] "01"    "01"    "0321"  "01"    "01"    "01"    "01"    "01"    "01"    "0231"  "01"   
#> [1497] "01"    "01"    "01"    "0233"  "01"    "01"    "01"    "01"    "01"    "0321"  "01"   
#> [1508] "022"   "01"    "022"   "01"    "01"    "01"    "01"    "01"    "01"    "01"    "022"  
#> [1519] "033"   "022"   "0233"  "0233"  "01"    "022"   "01"    "01"    "033"   "01"    "01"   
#> [1530] "01"    "01"    "01"    "01"    "02113" "01"    "022"   "01"    "01"    "01"    "01"   
#> [1541] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0311" 
#> [1552] "01"    "01"    "01"    "01"    "01"    "01"    "0212"  "0233"  "01"    "01"    "01"   
#> [1563] "01"    "0312"  "022"   "01"    "01"    "033"   "01"    "01"    "01"    "022"   "0212" 
#> [1574] "01"    "0212"  "033"   "033"   "02113" "0233"  "0233"  "033"   "02113" "033"   "0233" 
#> [1585] "033"   "033"   "033"   "033"   "033"   "033"   "01"    "033"   "033"   "022"   "033"  
#> [1596] "02113" "0212"  "0233"  "01"    "02113" "01"    "033"   "01"    "0212"  "02113" "01"   
#> [1607] "01"    "0233"  "02113" "02113" "033"   "033"   "033"   "033"   "033"   "033"   "033"  
#> [1618] "02113" "01"    "022"   "02113" "0233"  "01"    "033"   "01"    "0212"  "01"    "01"   
#> [1629] "01"    "01"    "01"    "01"    "0323"  "01"    "0212"  "01"    "01"    "01"    "022"  
#> [1640] "01"    "01"    "01"    "01"    "0233"  "01"    "01"    "01"    "01"    "01"    "01"   
#> [1651] "01"    "01"    "01"    "0321"  "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1662] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1673] "01"    "01"    "01"    "0231"  "01"    "01"    "01"    "0233"  "01"    "01"    "01"   
#> [1684] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0322"  "01"   
#> [1695] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0311"  "01"    "01"   
#> [1706] "01"    "0323"  "01"    "01"    "01"    "01"    "0311"  "01"    "01"    "01"    "01"   
#> [1717] "01"    "01"    "0323"  "0323"  "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1728] "0313"  "01"    "0311"  "0311"  "01"    "01"    "0212"  "01"    "01"    "01"    "01"   
#> [1739] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0323" 
#> [1750] "01"    "0312"  "01"    "022"   "01"    "022"   "01"    "01"    "01"    "01"    "0312" 
#> [1761] "022"   "01"    "01"    "01"    "01"    "022"   "0311"  "01"    "01"    "022"   "01"   
#> [1772] "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "01"    "0322"  "01"   
#> [1783] "01"    "01"    "01"    "01"    "0313"  "01"    "01"    "0323"  "01"    "0313"  "0313" 
#> [1794] "0323"  "022"   "01"    "01"    "0313"  "022"   "01"    "01"    "01"    "01"    "0323" 
#> [1805] "01"    "01"    "0233"  "0212"  "022"   "0311"  "022"   "01"    "01"    "01"    "01"   
#> [1816] "01"    "01"    "01"    "01"    "01"    "0313"  "01"    "01"    "01"    "01"    "01"   
#> [1827] "01"    "01"    "01"    "022"   "01"    "01"    "0323"  "01"    "01"    "0212"  "022"  
#> [1838] "01"    "01"    "01"    "01"    "01"    "0212"  "01"    "01"    "01"    "01"    "01"   
#> [1849] "01"    "01"    "01"    "0323"  "01"    "01"    "01"    "01"    "01"    "01"    "0322" 
#> [1860] "01"    "0312"  "01"    "01"    "033"   "022"   "0312"  "0321"  "0323"  "0212"  "01"   
#> [1871] "01"    "0323"  "0323"  "01"    "01"    "01"    "0231"  "01"    "01"    "01"    "02112"
#> [1882] "01"    "01"    "01"    "01"    "0323"  "01"    "0312"  "01"    "01"    "01"    "022"  
#> [1893] "01"    "01"    "01"    "0311"  "01"    "01"    "01"    "0312"  "01"    "0323"  "01"   
#> [1904] "0311"  "01"    "01"    "033"   "01"    "01"    "01"    "01"    "01"    "01"    "01"   
#> [1915] "0323"  "01"    "01"    "01"    "01"    "0312"  "022"   "01"    "0323"  "0323"  "01"   
#> [1926] "0311"  "01"    "01"    "01"    "0233"  "0323"  "01"    "02112" "01"    "0323"  "0233" 
#> [1937] "033"   "01"    "01"    "0323"  "0323"  "01"    "0323"  "01"    "033"   "022"   "0312" 
#> [1948] "0323"  "01"    "0312"  "0323"  "01"    "01"    "0212"  "01"    "01"    "0233"  "0323" 
#> [1959] "02113" "0323"  "022"   "0323"  "0323"  "022"   "01"    "0323"  "02112" "033"   "0323" 
#> [1970] "0312"  "01"    "0233"  "0312"  "0323"  "0212"  "0311"  "01"    "0212"  "0323"  "0212" 
#> [1981] "0323"  "0323"  "033"   "0232"  "02112" "0232"  "0212"  "0212"  "0212"  "02112" "022"  
#> [1992] "0212"  "0231"  "0232"  "022"   "0212"  "0231"  "0231"  "02112" "0231"  "022"   "02113"
#> [2003] "02112" "0232"  "02112" "022"   "022"   "0212"  "0232"  "0232"  "0212"  "0231"  "0212" 
#> [2014] "0231"  "01"    "022"   "0231"  "0321"  "022"   "02112" "0212"  "022"   "022"   "022"  
#> [2025] "022"   "0321"  "022"   "0212"  "0212"  "022"   "022"   "0212"  "022"   "0232"  "022"  
#> [2036] "02113" "022"   "02112" "022"   "022"   "022"   "0321"  "02112" "0233"  "0232"  "02113"
#> [2047] "0212"  "0212"  "0212"  "01"    "022"   "02113" "0231"  "02113" "02112" "0212"  "022"  
#> [2058] "0212"  "0321"  "022"   "02112" "022"   "022"   "0212"  "022"   "022"   "0212"  "0212" 
#> [2069] "0212"  "02112" "02112" "022"   "0232"  "022"   "02113" "0233"  "02112" "022"   "02112"
#> [2080] "02112" "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0232"  "0212"  "022"  
#> [2091] "0212"  "022"   "022"   "0212"  "022"   "022"   "022"   "0212"  "022"   "0231"  "0212" 
#> [2102] "0212"  "0212"  "0212"  "02112" "02112" "0212"  "02112" "0231"  "02112" "0231"  "022"  
#> [2113] "02112" "02112" "02112" "02112" "022"   "0212"  "0231"  "0232"  "0212"  "0212"  "0233" 
#> [2124] "0232"  "01"    "022"   "0212"  "01"    "02112" "02112" "0212"  "0212"  "02112" "02112"
#> [2135] "02112" "0212"  "0212"  "0212"  "022"   "0212"  "022"   "022"   "0212"  "022"   "022"  
#> [2146] "022"   "022"   "0212"  "022"   "0212"  "02112" "0212"  "022"   "022"   "0212"  "02112"
#> [2157] "0212"  "022"   "022"   "02112" "022"   "022"   "022"   "0212"  "022"   "022"   "022"  
#> [2168] "0212"  "022"   "022"   "022"   "022"   "0212"  "0321"  "022"   "022"   "022"   "02111"
#> [2179] "0212"  "0212"  "0212"  "022"   "0234"  "022"   "022"   "022"   "022"   "022"   "022"  
#> [2190] "01"    "022"   "01"    "022"   "0312"  "022"   "0321"  "022"   "02113" "02112" "022"  
#> [2201] "0232"  "0231"  "022"   "0232"  "0232"  "022"   "0212"  "0212"  "0212"  "0231"  "0232" 
#> [2212] "022"   "0232"  "022"   "0212"  "0212"  "02112" "02112" "0212"  "0212"  "022"   "0212" 
#> [2223] "0212"  "0212"  "022"   "02112" "02112" "0212"  "022"   "0212"  "022"   "022"   "022"  
#> [2234] "022"   "0212"  "022"   "0321"  "022"   "022"   "0321"  "022"   "0321"  "022"   "022"  
#> [2245] "022"   "022"   "022"   "0231"  "0231"  "022"   "022"   "0321"  "022"   "022"   "0231" 
#> [2256] "0231"  "022"   "022"   "01"    "0321"  "02112" "022"   "022"   "022"   "022"   "0321" 
#> [2267] "0231"  "022"   "0321"  "022"   "022"   "022"   "01"    "022"   "01"    "022"   "022"  
#> [2278] "0321"  "022"   "0231"  "022"   "022"   "01"    "022"   "022"   "022"   "01"    "0321" 
#> [2289] "0321"  "022"   "022"   "0321"  "022"   "022"   "01"    "022"   "022"   "022"   "01"   
#> [2300] "0321"  "01"    "01"    "01"    "022"   "01"    "022"   "01"    "01"    "01"    "022"  
#> [2311] "01"    "0321"  "022"   "01"    "01"    "01"    "01"    "0212"  "0231"  "022"   "01"   
#> [2322] "022"   "022"   "0321"  "022"   "022"   "022"   "022"   "022"   "022"   "022"   "022"  
#> [2333] "022"   "022"   "0321"  "01"    "01"    "0321"  "022"   "01"    "0321"  "0321"  "022"  
#> [2344] "0212"  "0232"  "022"   "022"   "022"   "022"   "022"   "0321"  "022"   "022"   "022"  
#> [2355] "022"   "022"   "0321"  "0212"  "02112" "022"   "0212"  "022"   "0212"  "0234"  "0212" 
#> [2366] "0212"  "022"   "02112" "02112" "022"   "022"   "022"   "0212"  "022"   "0212"  "022"  
#> [2377] "022"   "022"   "0212"  "0212"  "0232"  "022"   "02112" "0212"  "0232"  "022"   "022"  
#> [2388] "022"   "022"   "0231"  "02113" "022"   "022"   "022"   "02111" "0212"  "0212"  "022"  
#> [2399] "0321"  "022"   "01"    "01"    "01"    "0212"  "022"   "0231"  "02111" "022"   "0212" 
#> [2410] "022"   "0212"  "022"   "0212"  "01"    "022"   "022"   "022"   "022"   "0231"  "01"   
#> [2421] "022"   "022"   "0321"  "0212"  "0212"  "0231"  "022"   "022"   "022"   "022"   "022"  
#> [2432] "022"   "01"    "0321"  "01"    "022"   "0321"  "0321"  "0321"  "01"    "01"    "01"   
#> [2443] "0321"  "0321"  "0321"  "022"   "022"   "022"   "0212"  "022"   "0212"  "0212"  "0212" 
#> [2454] "02112" "0212"  "0212"  "02112" "0212"  "0212"  "0231"  "0212"  "0212"  "0212"  "0212" 
#> [2465] "0212"  "0212"  "0212"  "0212"  "022"   "022"   "0321"  "022"   "022"   "022"   "0212" 
#> [2476] "0212"  "022"   "0212"  "022"   "022"   "022"   "0212"  "022"   "022"   "02112" "022"  
#> [2487] "0212"  "0212"  "0212"  "02112" "0212"  "0212"  "0212"  "02112" "022"   "0212"  "022"  
#> [2498] "0212"  "0212"  "022"   "0212"  "022"   "0212"  "022"   "022"   "022"   "022"   "0321" 
#> [2509] "0321"  "022"   "0324"  "0212"  "0212"  "02112" "0212"  "0212"  "02112" "0212"  "022"  
#> [2520] "0212"  "0212"  "02112" "022"   "022"   "022"   "0212"  "02112" "022"   "0212"  "02113"
#> [2531] "022"   "0212"  "02112" "01"    "0212"  "0321"  "022"   "022"   "022"   "0231"  "022"  
#> [2542] "022"   "022"   "022"   "0232"  "022"   "022"   "022"   "01"    "022"   "0321"  "0321" 
#> [2553] "01"    "01"    "0212"  "0321"  "022"   "01"    "02112" "0212"  "0321"  "0212"  "0321" 
#> [2564] "022"   "022"   "0321"  "022"   "022"   "022"   "022"   "022"   "01"    "01"    "01"   
#> [2575] "0321"  "0321"  "022"   "022"   "02112" "0212"  "0212"  "022"   "022"   "022"   "022"  
#> [2586] "022"   "022"   "01"    "02111" "0232"  "0234"  "0232"  "02113" "02113" "02111" "02113"
#> [2597] "02113" "02111" "0231"  "02113" "02111" "02111" "0232"  "02113" "0232"  "0231"  "0234" 
#> [2608] "0232"  "0323"  "01"    "0232"  "02112" "0231"  "022"   "022"   "0321"  "022"   "0231" 
#> [2619] "0231"  "0234"  "0233"  "0232"  "01"    "02112" "022"   "0231"  "01"    "01"    "01"   
#> [2630] "0231"  "02112" "02112" "0212"  "02112" "02112" "022"   "0212"  "022"   "022"   "022"  
#> [2641] "022"   "0321"  "022"   "022"   "0212"  "022"   "022"   "022"   "0321"  "022"   "01"   
#> [2652] "022"   "022"   "022"   "022"   "022"   "0231"  "022"   "022"   "022"   "022"   "022"  
#> [2663] "022"   "0321"  "0321"  "022"   "0321"  "022"   "022"   "0321"  "022"   "01"    "0321" 
#> [2674] "022"   "0321"  "022"   "022"   "0324"  "01"    "01"    "01"    "022"   "01"    "01"   
#> [2685] "01"    "0232"  "0232"  "02112" "02112" "0321"  "0212"  "0212"  "0234"  "0231"  "01"   
#> [2696] "022"   "0324"  "0212"  "022"   "0321"  "022"   "0212"  "01"    "022"   "022"   "0321" 
#> [2707] "01"    "022"   "01"    "01"    "022"   "01"    "01"    "0231"  "022"   "0231"  "01"   
#> [2718] "01"    "0231"  "01"    "022"   "022"   "01"    "02112" "0321"  "01"    "0321"  "01"   
#> [2729] "01"    "0321"  "0212"  "022"   "0321"  "022"   "0321"  "01"    "01"    "0321"  "01"   
#> [2740] "0321"  "01"    "01"    "0212"  "022"   "022"   "01"    "01"    "01"    "01"    "0321" 
#> [2751] "01"    "01"    "022"   "022"   "0321"  "0323"  "01"    "02111" "02111" "02111" "02111"
#> [2762] "02111" "02111" "02111" "0232"  "01"    "01"    "022"   "02111" "02113" "02111" "02111"
#> [2773] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111" "0231"  "02111"
#> [2784] "02111" "02111" "0232"  "02111" "0232"  "02111" "01"    "01"    "022"   "0231"  "0231" 
#> [2795] "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02113" "0233"  "02111" "02113"
#> [2806] "02111" "02111" "0232"  "02111" "02111" "02111" "02111" "02111" "02111" "02111" "02111"
#> [2817] "022"   "01"    "01"    "01"    "022"   "0212"  "0231"  "02111" "02111" "0212"  "02111"
#> [2828] "0212"  "02111" "022"   "0212"  "0212"  "02111" "0212"  "0231"  "022"   "0212"  "0212" 
#> [2839] "0232"  "0231"  "02111" "02111" "02112" "02112" "0212"  "02111" "02112" "02111" "02111"
#> [2850] "02112" "02111" "02111" "0321"  "0231"  "01"    "022"   "0212"  "01"    "022"   "02112"
#> [2861] "0231"  "0232"  "022"   "022"   "0212"  "0212"  "0231"  "022"   "0212"  "022"   "02111"
#> [2872] "0212"  "0212"  "02111" "02111" "0212"  "022"   "0212"  "01"    "0212"  "0212"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 3262))
#>    [1] "01"   "01"   "0231" "0322" "01"   "01"   "0322" "01"   "01"   "01"   "01"   "01"   "0322"
#>   [14] "01"   "01"   "01"   "01"   "01"   "0313" "01"   "0322" "01"   "01"   "0322" "01"   "0322"
#>   [27] "0322" "0322" "01"   "0312" "0322" "01"   "0322" "0322" "0322" "01"   "01"   "01"   "0312"
#>   [40] "0311" "01"   "022"  "01"   "0311" "01"   "01"   "0311" "0312" "0322" "01"   "0312" "01"  
#>   [53] "01"   "01"   "01"   "021"  "021"  "01"   "01"   "0313" "0322" "01"   "01"   "022"  "0311"
#>   [66] "01"   "01"   "01"   "0322" "01"   "0322" "0311" "0322" "01"   "01"   "01"   "01"   "01"  
#>   [79] "022"  "01"   "01"   "0322" "01"   "01"   "01"   "022"  "01"   "01"   "01"   "01"   "0322"
#>   [92] "01"   "021"  "01"   "01"   "01"   "01"   "01"   "01"   "0313" "01"   "01"   "01"   "01"  
#>  [105] "01"   "0322" "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "022" 
#>  [118] "0322" "01"   "0321" "0313" "0322" "022"  "022"  "022"  "0234" "01"   "01"   "01"   "01"  
#>  [131] "01"   "01"   "01"   "0324" "01"   "022"  "01"   "01"   "0322" "01"   "01"   "01"   "01"  
#>  [144] "01"   "01"   "022"  "01"   "021"  "01"   "0324" "0313" "0313" "01"   "0313" "0322" "01"  
#>  [157] "0313" "0234" "0322" "0322" "0322" "01"   "0313" "0313" "022"  "01"   "0322" "0313" "01"  
#>  [170] "01"   "0322" "0313" "0313" "022"  "022"  "0313" "0313" "01"   "0313" "0313" "0312" "0313"
#>  [183] "0322" "0313" "0322" "0313" "0313" "0313" "0312" "022"  "0322" "01"   "0313" "0312" "0313"
#>  [196] "0322" "0312" "0312" "0312" "0312" "0312" "0313" "0312" "0313" "0312" "0312" "0322" "0313"
#>  [209] "0322" "022"  "0313" "0234" "0313" "0312" "0313" "0313" "0322" "022"  "0312" "01"   "0312"
#>  [222] "0313" "0312" "0313" "0312" "0313" "0312" "0312" "01"   "021"  "0313" "0313" "0312" "0313"
#>  [235] "021"  "0312" "0312" "0313" "0312" "0313" "0313" "0313" "0312" "01"   "0312" "0312" "0312"
#>  [248] "022"  "0312" "0313" "01"   "0313" "0312" "0312" "0313" "0313" "01"   "0312" "0313" "0313"
#>  [261] "01"   "0313" "01"   "01"   "01"   "0313" "01"   "01"   "01"   "0313" "01"   "01"   "0313"
#>  [274] "0313" "01"   "0313" "0313" "0313" "0313" "0322" "021"  "01"   "0313" "0313" "0313" "022" 
#>  [287] "0313" "0313" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "021" 
#>  [300] "0312" "021"  "0313" "0313" "0234" "0313" "021"  "022"  "0312" "022"  "0312" "0312" "0313"
#>  [313] "022"  "0313" "0313" "0312" "01"   "0313" "0313" "01"   "0313" "01"   "0312" "0313" "0311"
#>  [326] "01"   "0313" "0313" "0313" "0313" "0313" "01"   "01"   "01"   "01"   "022"  "022"  "01"  
#>  [339] "0313" "01"   "0313" "0313" "022"  "0313" "0313" "0313" "022"  "0311" "0311" "022"  "0313"
#>  [352] "01"   "0313" "0313" "0313" "0313" "0312" "0312" "0312" "0312" "0312" "0313" "0313" "0313"
#>  [365] "0313" "0313" "0313" "0312" "0312" "0312" "0313" "0312" "0312" "0312" "0312" "0312" "0312"
#>  [378] "0312" "0312" "0313" "01"   "01"   "022"  "0311" "01"   "01"   "01"   "0311" "0324" "0311"
#>  [391] "01"   "0311" "01"   "0311" "022"  "0311" "0313" "0311" "01"   "01"   "0311" "01"   "01"  
#>  [404] "0311" "01"   "022"  "01"   "0311" "01"   "01"   "0311" "0311" "021"  "01"   "01"   "01"  
#>  [417] "01"   "01"   "0311" "01"   "01"   "01"   "01"   "0313" "0234" "01"   "01"   "01"   "01"  
#>  [430] "01"   "01"   "0234" "01"   "0234" "01"   "022"  "01"   "021"  "01"   "0234" "0234" "0311"
#>  [443] "0311" "0311" "0311" "01"   "01"   "0312" "0312" "0312" "0311" "01"   "0311" "01"   "01"  
#>  [456] "0312" "01"   "01"   "0312" "0312" "0311" "0312" "0311" "0311" "0312" "0312" "0312" "0311"
#>  [469] "0312" "0312" "0312" "0311" "0312" "0312" "0312" "0311" "0311" "0312" "0311" "0311" "0311"
#>  [482] "0311" "0311" "01"   "021"  "0312" "0311" "0311" "022"  "022"  "021"  "0312" "0312" "022" 
#>  [495] "0312" "01"   "021"  "021"  "01"   "0312" "021"  "01"   "0311" "0312" "0311" "021"  "01"  
#>  [508] "0311" "0311" "0311" "0311" "022"  "0311" "0311" "01"   "01"   "022"  "0311" "0312" "0311"
#>  [521] "01"   "01"   "01"   "0312" "0312" "0313" "0312" "01"   "01"   "022"  "021"  "021"  "01"  
#>  [534] "022"  "01"   "01"   "01"   "021"  "01"   "0311" "01"   "022"  "01"   "01"   "022"  "01"  
#>  [547] "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311" "0311"
#>  [560] "01"   "0311" "01"   "0324" "0324" "01"   "01"   "01"   "022"  "0311" "01"   "01"   "022" 
#>  [573] "0324" "0311" "01"   "0312" "01"   "01"   "01"   "022"  "01"   "01"   "01"   "01"   "0311"
#>  [586] "01"   "0311" "01"   "01"   "01"   "01"   "0313" "01"   "0312" "0313" "0324" "01"   "0313"
#>  [599] "0313" "01"   "01"   "01"   "01"   "0313" "01"   "01"   "022"  "01"   "01"   "01"   "01"  
#>  [612] "01"   "01"   "01"   "01"   "0234" "0311" "0311" "01"   "0311" "0311" "0313" "01"   "0311"
#>  [625] "01"   "0311" "0311" "0311" "0311" "0311" "01"   "01"   "0313" "01"   "0311" "021"  "0311"
#>  [638] "01"   "01"   "01"   "01"   "0311" "0311" "01"   "0311" "0312" "01"   "01"   "022"  "01"  
#>  [651] "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "0311" "0311" "0311" "01"   "0234"
#>  [664] "01"   "01"   "0312" "0311" "0311" "0311" "0311" "022"  "01"   "022"  "0311" "0313" "0234"
#>  [677] "0311" "0311" "022"  "01"   "0311" "0311" "0312" "0312" "0311" "0312" "0312" "0312" "0311"
#>  [690] "0311" "0311" "01"   "0312" "0311" "022"  "0311" "0312" "01"   "0312" "01"   "0312" "01"  
#>  [703] "01"   "0311" "0311" "022"  "022"  "01"   "0324" "01"   "0324" "021"  "01"   "01"   "01"  
#>  [716] "01"   "01"   "01"   "022"  "0311" "0311" "022"  "0234" "01"   "022"  "0311" "0311" "0311"
#>  [729] "01"   "01"   "0311" "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "0311" "01"  
#>  [742] "01"   "01"   "0311" "0311" "01"   "0311" "0312" "0312" "0312" "0311" "01"   "0311" "01"  
#>  [755] "01"   "01"   "0311" "01"   "0324" "0311" "021"  "022"  "01"   "01"   "0311" "01"   "01"  
#>  [768] "01"   "01"   "01"   "0312" "01"   "01"   "0311" "01"   "022"  "01"   "01"   "021"  "01"  
#>  [781] "0311" "01"   "01"   "01"   "01"   "01"   "0312" "01"   "0311" "0311" "01"   "01"   "0312"
#>  [794] "022"  "01"   "0312" "01"   "01"   "0234" "0311" "0312" "022"  "0311" "0311" "0311" "0234"
#>  [807] "0311" "01"   "0311" "01"   "01"   "01"   "0324" "0324" "01"   "01"   "01"   "01"   "01"  
#>  [820] "021"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [833] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [846] "01"   "01"   "01"   "0324" "01"   "01"   "0234" "0324" "022"  "01"   "01"   "01"   "01"  
#>  [859] "0324" "01"   "01"   "0324" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311" "01"  
#>  [872] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [885] "01"   "021"  "01"   "0324" "01"   "0324" "01"   "0311" "01"   "01"   "01"   "022"  "022" 
#>  [898] "01"   "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [911] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [924] "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"   "01"   "01"   "01"   "022"  "0324"
#>  [937] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [950] "01"   "01"   "01"   "01"   "0311" "01"   "021"  "01"   "01"   "01"   "021"  "022"  "01"  
#>  [963] "01"   "021"  "0311" "01"   "01"   "01"   "01"   "0311" "01"   "01"   "022"  "01"   "01"  
#>  [976] "01"   "01"   "01"   "01"   "01"   "0324" "0324" "022"  "022"  "0311" "01"   "01"   "01"  
#>  [989] "01"   "0311" "0311" "01"   "01"   "01"   "0311" "01"   "01"   "0324" "0324" "01"   "022" 
#> [1002] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022" 
#> [1015] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0323" "01"  
#> [1028] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311" "01"   "0312" "01"   "021" 
#> [1041] "01"   "01"   "0322" "01"   "01"   "01"   "0312" "01"   "01"   "01"   "01"   "01"   "01"  
#> [1054] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1067] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0322" "01"   "01"   "01"   "01"  
#> [1080] "01"   "01"   "01"   "0312" "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"  
#> [1093] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1106] "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0313"
#> [1119] "01"   "01"   "01"   "0313" "01"   "01"   "01"   "01"   "01"   "0312" "01"   "01"   "01"  
#> [1132] "01"   "01"   "01"   "0322" "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"   "01"  
#> [1145] "0322" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1158] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1171] "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"  
#> [1184] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1197] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1210] "01"   "01"   "01"   "01"   "01"   "022"  "01"   "0321" "0313" "01"   "01"   "01"   "01"  
#> [1223] "01"   "022"  "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1236] "01"   "01"   "0313" "01"   "01"   "033"  "0321" "0311" "01"   "01"   "01"   "01"   "01"  
#> [1249] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "022"  "022"  "022"  "01"   "01"  
#> [1262] "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "033"  "01"  
#> [1275] "01"   "01"   "033"  "021"  "033"  "033"  "033"  "01"   "033"  "01"   "01"   "01"   "01"  
#> [1288] "01"   "033"  "033"  "01"   "033"  "01"   "01"   "0233" "033"  "01"   "01"   "01"   "01"  
#> [1301] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022" 
#> [1314] "033"  "022"  "01"   "033"  "021"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1327] "033"  "01"   "01"   "01"   "01"   "021"  "01"   "033"  "01"   "033"  "01"   "01"   "01"  
#> [1340] "01"   "01"   "01"   "022"  "01"   "01"   "022"  "0233" "021"  "01"   "01"   "01"   "01"  
#> [1353] "021"  "022"  "01"   "01"   "01"   "01"   "01"   "01"   "021"  "021"  "01"   "01"   "033" 
#> [1366] "033"  "01"   "033"  "01"   "033"  "033"  "033"  "033"  "01"   "033"  "01"   "01"   "01"  
#> [1379] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1392] "0321" "01"   "01"   "0231" "01"   "021"  "0233" "0233" "01"   "0233" "01"   "01"   "01"  
#> [1405] "01"   "033"  "0233" "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1418] "01"   "033"  "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "033"  "0311"
#> [1431] "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1444] "01"   "01"   "01"   "01"   "01"   "0233" "01"   "033"  "022"  "01"   "01"   "022"  "01"  
#> [1457] "01"   "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1470] "01"   "01"   "033"  "01"   "0313" "033"  "0313" "01"   "021"  "01"   "022"  "01"   "01"  
#> [1483] "01"   "01"   "01"   "01"   "01"   "0321" "01"   "01"   "01"   "01"   "01"   "01"   "0231"
#> [1496] "01"   "01"   "01"   "01"   "0233" "01"   "01"   "01"   "01"   "01"   "0321" "01"   "022" 
#> [1509] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "033"  "022"  "0233"
#> [1522] "0233" "01"   "022"  "01"   "01"   "033"  "01"   "01"   "01"   "01"   "01"   "01"   "021" 
#> [1535] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1548] "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "021"  "0233" "01"  
#> [1561] "01"   "01"   "01"   "0312" "022"  "01"   "01"   "033"  "01"   "01"   "01"   "022"  "021" 
#> [1574] "01"   "021"  "033"  "033"  "021"  "0233" "0233" "033"  "021"  "033"  "0233" "033"  "033" 
#> [1587] "033"  "033"  "033"  "033"  "01"   "033"  "033"  "022"  "033"  "021"  "021"  "0233" "01"  
#> [1600] "021"  "01"   "033"  "01"   "021"  "021"  "01"   "01"   "0233" "021"  "021"  "033"  "033" 
#> [1613] "033"  "033"  "033"  "033"  "033"  "021"  "01"   "022"  "021"  "0233" "01"   "033"  "01"  
#> [1626] "021"  "01"   "01"   "01"   "01"   "01"   "01"   "0323" "01"   "021"  "01"   "01"   "01"  
#> [1639] "022"  "01"   "01"   "01"   "01"   "0233" "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1652] "01"   "01"   "0321" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1665] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0231" "01"  
#> [1678] "01"   "01"   "0233" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1691] "01"   "01"   "0322" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311"
#> [1704] "01"   "01"   "01"   "0323" "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"  
#> [1717] "01"   "01"   "0323" "0323" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0313" "01"  
#> [1730] "0311" "0311" "01"   "01"   "021"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1743] "01"   "01"   "01"   "01"   "01"   "01"   "0323" "01"   "0312" "01"   "022"  "01"   "022" 
#> [1756] "01"   "01"   "01"   "01"   "0312" "022"  "01"   "01"   "01"   "01"   "022"  "0311" "01"  
#> [1769] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0322"
#> [1782] "01"   "01"   "01"   "01"   "01"   "0313" "01"   "01"   "0323" "01"   "0313" "0313" "0323"
#> [1795] "022"  "01"   "01"   "0313" "022"  "01"   "01"   "01"   "01"   "0323" "01"   "01"   "0233"
#> [1808] "021"  "022"  "0311" "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1821] "0313" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"   "0323"
#> [1834] "01"   "01"   "021"  "022"  "01"   "01"   "01"   "01"   "01"   "021"  "01"   "01"   "01"  
#> [1847] "01"   "01"   "01"   "01"   "01"   "0323" "01"   "01"   "01"   "01"   "01"   "01"   "0322"
#> [1860] "01"   "0312" "01"   "01"   "033"  "022"  "0312" "0321" "0323" "021"  "01"   "01"   "0323"
#> [1873] "0323" "01"   "01"   "01"   "0231" "01"   "01"   "01"   "021"  "01"   "01"   "01"   "01"  
#> [1886] "0323" "01"   "0312" "01"   "01"   "01"   "022"  "01"   "01"   "01"   "0311" "01"   "01"  
#> [1899] "01"   "0312" "01"   "0323" "01"   "0311" "01"   "01"   "033"  "01"   "01"   "01"   "01"  
#> [1912] "01"   "01"   "01"   "0323" "01"   "01"   "01"   "01"   "0312" "022"  "01"   "0323" "0323"
#> [1925] "01"   "0311" "01"   "01"   "01"   "0233" "0323" "01"   "021"  "01"   "0323" "0233" "033" 
#> [1938] "01"   "01"   "0323" "0323" "01"   "0323" "01"   "033"  "022"  "0312" "0323" "01"   "0312"
#> [1951] "0323" "01"   "01"   "021"  "01"   "01"   "0233" "0323" "021"  "0323" "022"  "0323" "0323"
#> [1964] "022"  "01"   "0323" "021"  "033"  "0323" "0312" "01"   "0233" "0312" "0323" "021"  "0311"
#> [1977] "01"   "021"  "0323" "021"  "0323" "0323" "033"  "0232" "021"  "0232" "021"  "021"  "021" 
#> [1990] "021"  "022"  "021"  "0231" "0232" "022"  "021"  "0231" "0231" "021"  "0231" "022"  "021" 
#> [2003] "021"  "0232" "021"  "022"  "022"  "021"  "0232" "0232" "021"  "0231" "021"  "0231" "01"  
#> [2016] "022"  "0231" "0321" "022"  "021"  "021"  "022"  "022"  "022"  "022"  "0321" "022"  "021" 
#> [2029] "021"  "022"  "022"  "021"  "022"  "0232" "022"  "021"  "022"  "021"  "022"  "022"  "022" 
#> [2042] "0321" "021"  "0233" "0232" "021"  "021"  "021"  "021"  "01"   "022"  "021"  "0231" "021" 
#> [2055] "021"  "021"  "022"  "021"  "0321" "022"  "021"  "022"  "022"  "021"  "022"  "022"  "021" 
#> [2068] "021"  "021"  "021"  "021"  "022"  "0232" "022"  "021"  "0233" "021"  "022"  "021"  "021" 
#> [2081] "021"  "021"  "021"  "0231" "021"  "021"  "021"  "0232" "021"  "022"  "021"  "022"  "022" 
#> [2094] "021"  "022"  "022"  "022"  "021"  "022"  "0231" "021"  "021"  "021"  "021"  "021"  "021" 
#> [2107] "021"  "021"  "0231" "021"  "0231" "022"  "021"  "021"  "021"  "021"  "022"  "021"  "0231"
#> [2120] "0232" "021"  "021"  "0233" "0232" "01"   "022"  "021"  "01"   "021"  "021"  "021"  "021" 
#> [2133] "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "022"  "022"  "021"  "022"  "022" 
#> [2146] "022"  "022"  "021"  "022"  "021"  "021"  "021"  "022"  "022"  "021"  "021"  "021"  "022" 
#> [2159] "022"  "021"  "022"  "022"  "022"  "021"  "022"  "022"  "022"  "021"  "022"  "022"  "022" 
#> [2172] "022"  "021"  "0321" "022"  "022"  "022"  "021"  "021"  "021"  "021"  "022"  "0234" "022" 
#> [2185] "022"  "022"  "022"  "022"  "022"  "01"   "022"  "01"   "022"  "0312" "022"  "0321" "022" 
#> [2198] "021"  "021"  "022"  "0232" "0231" "022"  "0232" "0232" "022"  "021"  "021"  "021"  "0231"
#> [2211] "0232" "022"  "0232" "022"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "021" 
#> [2224] "021"  "022"  "021"  "021"  "021"  "022"  "021"  "022"  "022"  "022"  "022"  "021"  "022" 
#> [2237] "0321" "022"  "022"  "0321" "022"  "0321" "022"  "022"  "022"  "022"  "022"  "0231" "0231"
#> [2250] "022"  "022"  "0321" "022"  "022"  "0231" "0231" "022"  "022"  "01"   "0321" "021"  "022" 
#> [2263] "022"  "022"  "022"  "0321" "0231" "022"  "0321" "022"  "022"  "022"  "01"   "022"  "01"  
#> [2276] "022"  "022"  "0321" "022"  "0231" "022"  "022"  "01"   "022"  "022"  "022"  "01"   "0321"
#> [2289] "0321" "022"  "022"  "0321" "022"  "022"  "01"   "022"  "022"  "022"  "01"   "0321" "01"  
#> [2302] "01"   "01"   "022"  "01"   "022"  "01"   "01"   "01"   "022"  "01"   "0321" "022"  "01"  
#> [2315] "01"   "01"   "01"   "021"  "0231" "022"  "01"   "022"  "022"  "0321" "022"  "022"  "022" 
#> [2328] "022"  "022"  "022"  "022"  "022"  "022"  "022"  "0321" "01"   "01"   "0321" "022"  "01"  
#> [2341] "0321" "0321" "022"  "021"  "0232" "022"  "022"  "022"  "022"  "022"  "0321" "022"  "022" 
#> [2354] "022"  "022"  "022"  "0321" "021"  "021"  "022"  "021"  "022"  "021"  "0234" "021"  "021" 
#> [2367] "022"  "021"  "021"  "022"  "022"  "022"  "021"  "022"  "021"  "022"  "022"  "022"  "021" 
#> [2380] "021"  "0232" "022"  "021"  "021"  "0232" "022"  "022"  "022"  "022"  "0231" "021"  "022" 
#> [2393] "022"  "022"  "021"  "021"  "021"  "022"  "0321" "022"  "01"   "01"   "01"   "021"  "022" 
#> [2406] "0231" "021"  "022"  "021"  "022"  "021"  "022"  "021"  "01"   "022"  "022"  "022"  "022" 
#> [2419] "0231" "01"   "022"  "022"  "0321" "021"  "021"  "0231" "022"  "022"  "022"  "022"  "022" 
#> [2432] "022"  "01"   "0321" "01"   "022"  "0321" "0321" "0321" "01"   "01"   "01"   "0321" "0321"
#> [2445] "0321" "022"  "022"  "022"  "021"  "022"  "021"  "021"  "021"  "021"  "021"  "021"  "021" 
#> [2458] "021"  "021"  "0231" "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "022" 
#> [2471] "0321" "022"  "022"  "022"  "021"  "021"  "022"  "021"  "022"  "022"  "022"  "021"  "022" 
#> [2484] "022"  "021"  "022"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021" 
#> [2497] "022"  "021"  "021"  "022"  "021"  "022"  "021"  "022"  "022"  "022"  "022"  "0321" "0321"
#> [2510] "022"  "0324" "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "021"  "021" 
#> [2523] "022"  "022"  "022"  "021"  "021"  "022"  "021"  "021"  "022"  "021"  "021"  "01"   "021" 
#> [2536] "0321" "022"  "022"  "022"  "0231" "022"  "022"  "022"  "022"  "0232" "022"  "022"  "022" 
#> [2549] "01"   "022"  "0321" "0321" "01"   "01"   "021"  "0321" "022"  "01"   "021"  "021"  "0321"
#> [2562] "021"  "0321" "022"  "022"  "0321" "022"  "022"  "022"  "022"  "022"  "01"   "01"   "01"  
#> [2575] "0321" "0321" "022"  "022"  "021"  "021"  "021"  "022"  "022"  "022"  "022"  "022"  "022" 
#> [2588] "01"   "021"  "0232" "0234" "0232" "021"  "021"  "021"  "021"  "021"  "021"  "0231" "021" 
#> [2601] "021"  "021"  "0232" "021"  "0232" "0231" "0234" "0232" "0323" "01"   "0232" "021"  "0231"
#> [2614] "022"  "022"  "0321" "022"  "0231" "0231" "0234" "0233" "0232" "01"   "021"  "022"  "0231"
#> [2627] "01"   "01"   "01"   "0231" "021"  "021"  "021"  "021"  "021"  "022"  "021"  "022"  "022" 
#> [2640] "022"  "022"  "0321" "022"  "022"  "021"  "022"  "022"  "022"  "0321" "022"  "01"   "022" 
#> [2653] "022"  "022"  "022"  "022"  "0231" "022"  "022"  "022"  "022"  "022"  "022"  "0321" "0321"
#> [2666] "022"  "0321" "022"  "022"  "0321" "022"  "01"   "0321" "022"  "0321" "022"  "022"  "0324"
#> [2679] "01"   "01"   "01"   "022"  "01"   "01"   "01"   "0232" "0232" "021"  "021"  "0321" "021" 
#> [2692] "021"  "0234" "0231" "01"   "022"  "0324" "021"  "022"  "0321" "022"  "021"  "01"   "022" 
#> [2705] "022"  "0321" "01"   "022"  "01"   "01"   "022"  "01"   "01"   "0231" "022"  "0231" "01"  
#> [2718] "01"   "0231" "01"   "022"  "022"  "01"   "021"  "0321" "01"   "0321" "01"   "01"   "0321"
#> [2731] "021"  "022"  "0321" "022"  "0321" "01"   "01"   "0321" "01"   "0321" "01"   "01"   "021" 
#> [2744] "022"  "022"  "01"   "01"   "01"   "01"   "0321" "01"   "01"   "022"  "022"  "0321" "0323"
#> [2757] "01"   "021"  "021"  "021"  "021"  "021"  "021"  "021"  "0232" "01"   "01"   "022"  "021" 
#> [2770] "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "0231"
#> [2783] "021"  "021"  "021"  "0232" "021"  "0232" "021"  "01"   "01"   "022"  "0231" "0231" "021" 
#> [2796] "021"  "021"  "021"  "021"  "021"  "021"  "021"  "0233" "021"  "021"  "021"  "021"  "0232"
#> [2809] "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "01"   "01"   "01"   "022" 
#> [2822] "021"  "0231" "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "021"  "021"  "021" 
#> [2835] "0231" "022"  "021"  "021"  "0232" "0231" "021"  "021"  "021"  "021"  "021"  "021"  "021" 
#> [2848] "021"  "021"  "021"  "021"  "021"  "0321" "0231" "01"   "022"  "021"  "01"   "022"  "021" 
#> [2861] "0231" "0232" "022"  "022"  "021"  "021"  "0231" "022"  "021"  "022"  "021"  "021"  "021" 
#> [2874] "021"  "021"  "021"  "022"  "021"  "01"   "021"  "021"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 3273))
#>    [1] "01"   "01"   "023"  "0322" "01"   "01"   "0322" "01"   "01"   "01"   "01"   "01"   "0322"
#>   [14] "01"   "01"   "01"   "01"   "01"   "0313" "01"   "0322" "01"   "01"   "0322" "01"   "0322"
#>   [27] "0322" "0322" "01"   "0312" "0322" "01"   "0322" "0322" "0322" "01"   "01"   "01"   "0312"
#>   [40] "0311" "01"   "022"  "01"   "0311" "01"   "01"   "0311" "0312" "0322" "01"   "0312" "01"  
#>   [53] "01"   "01"   "01"   "021"  "021"  "01"   "01"   "0313" "0322" "01"   "01"   "022"  "0311"
#>   [66] "01"   "01"   "01"   "0322" "01"   "0322" "0311" "0322" "01"   "01"   "01"   "01"   "01"  
#>   [79] "022"  "01"   "01"   "0322" "01"   "01"   "01"   "022"  "01"   "01"   "01"   "01"   "0322"
#>   [92] "01"   "021"  "01"   "01"   "01"   "01"   "01"   "01"   "0313" "01"   "01"   "01"   "01"  
#>  [105] "01"   "0322" "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "022" 
#>  [118] "0322" "01"   "0321" "0313" "0322" "022"  "022"  "022"  "023"  "01"   "01"   "01"   "01"  
#>  [131] "01"   "01"   "01"   "0324" "01"   "022"  "01"   "01"   "0322" "01"   "01"   "01"   "01"  
#>  [144] "01"   "01"   "022"  "01"   "021"  "01"   "0324" "0313" "0313" "01"   "0313" "0322" "01"  
#>  [157] "0313" "023"  "0322" "0322" "0322" "01"   "0313" "0313" "022"  "01"   "0322" "0313" "01"  
#>  [170] "01"   "0322" "0313" "0313" "022"  "022"  "0313" "0313" "01"   "0313" "0313" "0312" "0313"
#>  [183] "0322" "0313" "0322" "0313" "0313" "0313" "0312" "022"  "0322" "01"   "0313" "0312" "0313"
#>  [196] "0322" "0312" "0312" "0312" "0312" "0312" "0313" "0312" "0313" "0312" "0312" "0322" "0313"
#>  [209] "0322" "022"  "0313" "023"  "0313" "0312" "0313" "0313" "0322" "022"  "0312" "01"   "0312"
#>  [222] "0313" "0312" "0313" "0312" "0313" "0312" "0312" "01"   "021"  "0313" "0313" "0312" "0313"
#>  [235] "021"  "0312" "0312" "0313" "0312" "0313" "0313" "0313" "0312" "01"   "0312" "0312" "0312"
#>  [248] "022"  "0312" "0313" "01"   "0313" "0312" "0312" "0313" "0313" "01"   "0312" "0313" "0313"
#>  [261] "01"   "0313" "01"   "01"   "01"   "0313" "01"   "01"   "01"   "0313" "01"   "01"   "0313"
#>  [274] "0313" "01"   "0313" "0313" "0313" "0313" "0322" "021"  "01"   "0313" "0313" "0313" "022" 
#>  [287] "0313" "0313" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "021" 
#>  [300] "0312" "021"  "0313" "0313" "023"  "0313" "021"  "022"  "0312" "022"  "0312" "0312" "0313"
#>  [313] "022"  "0313" "0313" "0312" "01"   "0313" "0313" "01"   "0313" "01"   "0312" "0313" "0311"
#>  [326] "01"   "0313" "0313" "0313" "0313" "0313" "01"   "01"   "01"   "01"   "022"  "022"  "01"  
#>  [339] "0313" "01"   "0313" "0313" "022"  "0313" "0313" "0313" "022"  "0311" "0311" "022"  "0313"
#>  [352] "01"   "0313" "0313" "0313" "0313" "0312" "0312" "0312" "0312" "0312" "0313" "0313" "0313"
#>  [365] "0313" "0313" "0313" "0312" "0312" "0312" "0313" "0312" "0312" "0312" "0312" "0312" "0312"
#>  [378] "0312" "0312" "0313" "01"   "01"   "022"  "0311" "01"   "01"   "01"   "0311" "0324" "0311"
#>  [391] "01"   "0311" "01"   "0311" "022"  "0311" "0313" "0311" "01"   "01"   "0311" "01"   "01"  
#>  [404] "0311" "01"   "022"  "01"   "0311" "01"   "01"   "0311" "0311" "021"  "01"   "01"   "01"  
#>  [417] "01"   "01"   "0311" "01"   "01"   "01"   "01"   "0313" "023"  "01"   "01"   "01"   "01"  
#>  [430] "01"   "01"   "023"  "01"   "023"  "01"   "022"  "01"   "021"  "01"   "023"  "023"  "0311"
#>  [443] "0311" "0311" "0311" "01"   "01"   "0312" "0312" "0312" "0311" "01"   "0311" "01"   "01"  
#>  [456] "0312" "01"   "01"   "0312" "0312" "0311" "0312" "0311" "0311" "0312" "0312" "0312" "0311"
#>  [469] "0312" "0312" "0312" "0311" "0312" "0312" "0312" "0311" "0311" "0312" "0311" "0311" "0311"
#>  [482] "0311" "0311" "01"   "021"  "0312" "0311" "0311" "022"  "022"  "021"  "0312" "0312" "022" 
#>  [495] "0312" "01"   "021"  "021"  "01"   "0312" "021"  "01"   "0311" "0312" "0311" "021"  "01"  
#>  [508] "0311" "0311" "0311" "0311" "022"  "0311" "0311" "01"   "01"   "022"  "0311" "0312" "0311"
#>  [521] "01"   "01"   "01"   "0312" "0312" "0313" "0312" "01"   "01"   "022"  "021"  "021"  "01"  
#>  [534] "022"  "01"   "01"   "01"   "021"  "01"   "0311" "01"   "022"  "01"   "01"   "022"  "01"  
#>  [547] "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311" "0311"
#>  [560] "01"   "0311" "01"   "0324" "0324" "01"   "01"   "01"   "022"  "0311" "01"   "01"   "022" 
#>  [573] "0324" "0311" "01"   "0312" "01"   "01"   "01"   "022"  "01"   "01"   "01"   "01"   "0311"
#>  [586] "01"   "0311" "01"   "01"   "01"   "01"   "0313" "01"   "0312" "0313" "0324" "01"   "0313"
#>  [599] "0313" "01"   "01"   "01"   "01"   "0313" "01"   "01"   "022"  "01"   "01"   "01"   "01"  
#>  [612] "01"   "01"   "01"   "01"   "023"  "0311" "0311" "01"   "0311" "0311" "0313" "01"   "0311"
#>  [625] "01"   "0311" "0311" "0311" "0311" "0311" "01"   "01"   "0313" "01"   "0311" "021"  "0311"
#>  [638] "01"   "01"   "01"   "01"   "0311" "0311" "01"   "0311" "0312" "01"   "01"   "022"  "01"  
#>  [651] "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "0311" "0311" "0311" "01"   "023" 
#>  [664] "01"   "01"   "0312" "0311" "0311" "0311" "0311" "022"  "01"   "022"  "0311" "0313" "023" 
#>  [677] "0311" "0311" "022"  "01"   "0311" "0311" "0312" "0312" "0311" "0312" "0312" "0312" "0311"
#>  [690] "0311" "0311" "01"   "0312" "0311" "022"  "0311" "0312" "01"   "0312" "01"   "0312" "01"  
#>  [703] "01"   "0311" "0311" "022"  "022"  "01"   "0324" "01"   "0324" "021"  "01"   "01"   "01"  
#>  [716] "01"   "01"   "01"   "022"  "0311" "0311" "022"  "023"  "01"   "022"  "0311" "0311" "0311"
#>  [729] "01"   "01"   "0311" "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "0311" "01"  
#>  [742] "01"   "01"   "0311" "0311" "01"   "0311" "0312" "0312" "0312" "0311" "01"   "0311" "01"  
#>  [755] "01"   "01"   "0311" "01"   "0324" "0311" "021"  "022"  "01"   "01"   "0311" "01"   "01"  
#>  [768] "01"   "01"   "01"   "0312" "01"   "01"   "0311" "01"   "022"  "01"   "01"   "021"  "01"  
#>  [781] "0311" "01"   "01"   "01"   "01"   "01"   "0312" "01"   "0311" "0311" "01"   "01"   "0312"
#>  [794] "022"  "01"   "0312" "01"   "01"   "023"  "0311" "0312" "022"  "0311" "0311" "0311" "023" 
#>  [807] "0311" "01"   "0311" "01"   "01"   "01"   "0324" "0324" "01"   "01"   "01"   "01"   "01"  
#>  [820] "021"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [833] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [846] "01"   "01"   "01"   "0324" "01"   "01"   "023"  "0324" "022"  "01"   "01"   "01"   "01"  
#>  [859] "0324" "01"   "01"   "0324" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311" "01"  
#>  [872] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [885] "01"   "021"  "01"   "0324" "01"   "0324" "01"   "0311" "01"   "01"   "01"   "022"  "022" 
#>  [898] "01"   "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [911] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [924] "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"   "01"   "01"   "01"   "022"  "0324"
#>  [937] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [950] "01"   "01"   "01"   "01"   "0311" "01"   "021"  "01"   "01"   "01"   "021"  "022"  "01"  
#>  [963] "01"   "021"  "0311" "01"   "01"   "01"   "01"   "0311" "01"   "01"   "022"  "01"   "01"  
#>  [976] "01"   "01"   "01"   "01"   "01"   "0324" "0324" "022"  "022"  "0311" "01"   "01"   "01"  
#>  [989] "01"   "0311" "0311" "01"   "01"   "01"   "0311" "01"   "01"   "0324" "0324" "01"   "022" 
#> [1002] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022" 
#> [1015] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0323" "01"  
#> [1028] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311" "01"   "0312" "01"   "021" 
#> [1041] "01"   "01"   "0322" "01"   "01"   "01"   "0312" "01"   "01"   "01"   "01"   "01"   "01"  
#> [1054] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1067] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0322" "01"   "01"   "01"   "01"  
#> [1080] "01"   "01"   "01"   "0312" "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"  
#> [1093] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1106] "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0313"
#> [1119] "01"   "01"   "01"   "0313" "01"   "01"   "01"   "01"   "01"   "0312" "01"   "01"   "01"  
#> [1132] "01"   "01"   "01"   "0322" "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"   "01"  
#> [1145] "0322" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1158] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1171] "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"  
#> [1184] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1197] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1210] "01"   "01"   "01"   "01"   "01"   "022"  "01"   "0321" "0313" "01"   "01"   "01"   "01"  
#> [1223] "01"   "022"  "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1236] "01"   "01"   "0313" "01"   "01"   "033"  "0321" "0311" "01"   "01"   "01"   "01"   "01"  
#> [1249] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "022"  "022"  "022"  "01"   "01"  
#> [1262] "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "033"  "01"  
#> [1275] "01"   "01"   "033"  "021"  "033"  "033"  "033"  "01"   "033"  "01"   "01"   "01"   "01"  
#> [1288] "01"   "033"  "033"  "01"   "033"  "01"   "01"   "023"  "033"  "01"   "01"   "01"   "01"  
#> [1301] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022" 
#> [1314] "033"  "022"  "01"   "033"  "021"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1327] "033"  "01"   "01"   "01"   "01"   "021"  "01"   "033"  "01"   "033"  "01"   "01"   "01"  
#> [1340] "01"   "01"   "01"   "022"  "01"   "01"   "022"  "023"  "021"  "01"   "01"   "01"   "01"  
#> [1353] "021"  "022"  "01"   "01"   "01"   "01"   "01"   "01"   "021"  "021"  "01"   "01"   "033" 
#> [1366] "033"  "01"   "033"  "01"   "033"  "033"  "033"  "033"  "01"   "033"  "01"   "01"   "01"  
#> [1379] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1392] "0321" "01"   "01"   "023"  "01"   "021"  "023"  "023"  "01"   "023"  "01"   "01"   "01"  
#> [1405] "01"   "033"  "023"  "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1418] "01"   "033"  "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "033"  "0311"
#> [1431] "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1444] "01"   "01"   "01"   "01"   "01"   "023"  "01"   "033"  "022"  "01"   "01"   "022"  "01"  
#> [1457] "01"   "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1470] "01"   "01"   "033"  "01"   "0313" "033"  "0313" "01"   "021"  "01"   "022"  "01"   "01"  
#> [1483] "01"   "01"   "01"   "01"   "01"   "0321" "01"   "01"   "01"   "01"   "01"   "01"   "023" 
#> [1496] "01"   "01"   "01"   "01"   "023"  "01"   "01"   "01"   "01"   "01"   "0321" "01"   "022" 
#> [1509] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "033"  "022"  "023" 
#> [1522] "023"  "01"   "022"  "01"   "01"   "033"  "01"   "01"   "01"   "01"   "01"   "01"   "021" 
#> [1535] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1548] "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "021"  "023"  "01"  
#> [1561] "01"   "01"   "01"   "0312" "022"  "01"   "01"   "033"  "01"   "01"   "01"   "022"  "021" 
#> [1574] "01"   "021"  "033"  "033"  "021"  "023"  "023"  "033"  "021"  "033"  "023"  "033"  "033" 
#> [1587] "033"  "033"  "033"  "033"  "01"   "033"  "033"  "022"  "033"  "021"  "021"  "023"  "01"  
#> [1600] "021"  "01"   "033"  "01"   "021"  "021"  "01"   "01"   "023"  "021"  "021"  "033"  "033" 
#> [1613] "033"  "033"  "033"  "033"  "033"  "021"  "01"   "022"  "021"  "023"  "01"   "033"  "01"  
#> [1626] "021"  "01"   "01"   "01"   "01"   "01"   "01"   "0323" "01"   "021"  "01"   "01"   "01"  
#> [1639] "022"  "01"   "01"   "01"   "01"   "023"  "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1652] "01"   "01"   "0321" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1665] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "023"  "01"  
#> [1678] "01"   "01"   "023"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1691] "01"   "01"   "0322" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311"
#> [1704] "01"   "01"   "01"   "0323" "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"  
#> [1717] "01"   "01"   "0323" "0323" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0313" "01"  
#> [1730] "0311" "0311" "01"   "01"   "021"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1743] "01"   "01"   "01"   "01"   "01"   "01"   "0323" "01"   "0312" "01"   "022"  "01"   "022" 
#> [1756] "01"   "01"   "01"   "01"   "0312" "022"  "01"   "01"   "01"   "01"   "022"  "0311" "01"  
#> [1769] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0322"
#> [1782] "01"   "01"   "01"   "01"   "01"   "0313" "01"   "01"   "0323" "01"   "0313" "0313" "0323"
#> [1795] "022"  "01"   "01"   "0313" "022"  "01"   "01"   "01"   "01"   "0323" "01"   "01"   "023" 
#> [1808] "021"  "022"  "0311" "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1821] "0313" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"   "0323"
#> [1834] "01"   "01"   "021"  "022"  "01"   "01"   "01"   "01"   "01"   "021"  "01"   "01"   "01"  
#> [1847] "01"   "01"   "01"   "01"   "01"   "0323" "01"   "01"   "01"   "01"   "01"   "01"   "0322"
#> [1860] "01"   "0312" "01"   "01"   "033"  "022"  "0312" "0321" "0323" "021"  "01"   "01"   "0323"
#> [1873] "0323" "01"   "01"   "01"   "023"  "01"   "01"   "01"   "021"  "01"   "01"   "01"   "01"  
#> [1886] "0323" "01"   "0312" "01"   "01"   "01"   "022"  "01"   "01"   "01"   "0311" "01"   "01"  
#> [1899] "01"   "0312" "01"   "0323" "01"   "0311" "01"   "01"   "033"  "01"   "01"   "01"   "01"  
#> [1912] "01"   "01"   "01"   "0323" "01"   "01"   "01"   "01"   "0312" "022"  "01"   "0323" "0323"
#> [1925] "01"   "0311" "01"   "01"   "01"   "023"  "0323" "01"   "021"  "01"   "0323" "023"  "033" 
#> [1938] "01"   "01"   "0323" "0323" "01"   "0323" "01"   "033"  "022"  "0312" "0323" "01"   "0312"
#> [1951] "0323" "01"   "01"   "021"  "01"   "01"   "023"  "0323" "021"  "0323" "022"  "0323" "0323"
#> [1964] "022"  "01"   "0323" "021"  "033"  "0323" "0312" "01"   "023"  "0312" "0323" "021"  "0311"
#> [1977] "01"   "021"  "0323" "021"  "0323" "0323" "033"  "023"  "021"  "023"  "021"  "021"  "021" 
#> [1990] "021"  "022"  "021"  "023"  "023"  "022"  "021"  "023"  "023"  "021"  "023"  "022"  "021" 
#> [2003] "021"  "023"  "021"  "022"  "022"  "021"  "023"  "023"  "021"  "023"  "021"  "023"  "01"  
#> [2016] "022"  "023"  "0321" "022"  "021"  "021"  "022"  "022"  "022"  "022"  "0321" "022"  "021" 
#> [2029] "021"  "022"  "022"  "021"  "022"  "023"  "022"  "021"  "022"  "021"  "022"  "022"  "022" 
#> [2042] "0321" "021"  "023"  "023"  "021"  "021"  "021"  "021"  "01"   "022"  "021"  "023"  "021" 
#> [2055] "021"  "021"  "022"  "021"  "0321" "022"  "021"  "022"  "022"  "021"  "022"  "022"  "021" 
#> [2068] "021"  "021"  "021"  "021"  "022"  "023"  "022"  "021"  "023"  "021"  "022"  "021"  "021" 
#> [2081] "021"  "021"  "021"  "023"  "021"  "021"  "021"  "023"  "021"  "022"  "021"  "022"  "022" 
#> [2094] "021"  "022"  "022"  "022"  "021"  "022"  "023"  "021"  "021"  "021"  "021"  "021"  "021" 
#> [2107] "021"  "021"  "023"  "021"  "023"  "022"  "021"  "021"  "021"  "021"  "022"  "021"  "023" 
#> [2120] "023"  "021"  "021"  "023"  "023"  "01"   "022"  "021"  "01"   "021"  "021"  "021"  "021" 
#> [2133] "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "022"  "022"  "021"  "022"  "022" 
#> [2146] "022"  "022"  "021"  "022"  "021"  "021"  "021"  "022"  "022"  "021"  "021"  "021"  "022" 
#> [2159] "022"  "021"  "022"  "022"  "022"  "021"  "022"  "022"  "022"  "021"  "022"  "022"  "022" 
#> [2172] "022"  "021"  "0321" "022"  "022"  "022"  "021"  "021"  "021"  "021"  "022"  "023"  "022" 
#> [2185] "022"  "022"  "022"  "022"  "022"  "01"   "022"  "01"   "022"  "0312" "022"  "0321" "022" 
#> [2198] "021"  "021"  "022"  "023"  "023"  "022"  "023"  "023"  "022"  "021"  "021"  "021"  "023" 
#> [2211] "023"  "022"  "023"  "022"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "021" 
#> [2224] "021"  "022"  "021"  "021"  "021"  "022"  "021"  "022"  "022"  "022"  "022"  "021"  "022" 
#> [2237] "0321" "022"  "022"  "0321" "022"  "0321" "022"  "022"  "022"  "022"  "022"  "023"  "023" 
#> [2250] "022"  "022"  "0321" "022"  "022"  "023"  "023"  "022"  "022"  "01"   "0321" "021"  "022" 
#> [2263] "022"  "022"  "022"  "0321" "023"  "022"  "0321" "022"  "022"  "022"  "01"   "022"  "01"  
#> [2276] "022"  "022"  "0321" "022"  "023"  "022"  "022"  "01"   "022"  "022"  "022"  "01"   "0321"
#> [2289] "0321" "022"  "022"  "0321" "022"  "022"  "01"   "022"  "022"  "022"  "01"   "0321" "01"  
#> [2302] "01"   "01"   "022"  "01"   "022"  "01"   "01"   "01"   "022"  "01"   "0321" "022"  "01"  
#> [2315] "01"   "01"   "01"   "021"  "023"  "022"  "01"   "022"  "022"  "0321" "022"  "022"  "022" 
#> [2328] "022"  "022"  "022"  "022"  "022"  "022"  "022"  "0321" "01"   "01"   "0321" "022"  "01"  
#> [2341] "0321" "0321" "022"  "021"  "023"  "022"  "022"  "022"  "022"  "022"  "0321" "022"  "022" 
#> [2354] "022"  "022"  "022"  "0321" "021"  "021"  "022"  "021"  "022"  "021"  "023"  "021"  "021" 
#> [2367] "022"  "021"  "021"  "022"  "022"  "022"  "021"  "022"  "021"  "022"  "022"  "022"  "021" 
#> [2380] "021"  "023"  "022"  "021"  "021"  "023"  "022"  "022"  "022"  "022"  "023"  "021"  "022" 
#> [2393] "022"  "022"  "021"  "021"  "021"  "022"  "0321" "022"  "01"   "01"   "01"   "021"  "022" 
#> [2406] "023"  "021"  "022"  "021"  "022"  "021"  "022"  "021"  "01"   "022"  "022"  "022"  "022" 
#> [2419] "023"  "01"   "022"  "022"  "0321" "021"  "021"  "023"  "022"  "022"  "022"  "022"  "022" 
#> [2432] "022"  "01"   "0321" "01"   "022"  "0321" "0321" "0321" "01"   "01"   "01"   "0321" "0321"
#> [2445] "0321" "022"  "022"  "022"  "021"  "022"  "021"  "021"  "021"  "021"  "021"  "021"  "021" 
#> [2458] "021"  "021"  "023"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "022" 
#> [2471] "0321" "022"  "022"  "022"  "021"  "021"  "022"  "021"  "022"  "022"  "022"  "021"  "022" 
#> [2484] "022"  "021"  "022"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021" 
#> [2497] "022"  "021"  "021"  "022"  "021"  "022"  "021"  "022"  "022"  "022"  "022"  "0321" "0321"
#> [2510] "022"  "0324" "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "021"  "021" 
#> [2523] "022"  "022"  "022"  "021"  "021"  "022"  "021"  "021"  "022"  "021"  "021"  "01"   "021" 
#> [2536] "0321" "022"  "022"  "022"  "023"  "022"  "022"  "022"  "022"  "023"  "022"  "022"  "022" 
#> [2549] "01"   "022"  "0321" "0321" "01"   "01"   "021"  "0321" "022"  "01"   "021"  "021"  "0321"
#> [2562] "021"  "0321" "022"  "022"  "0321" "022"  "022"  "022"  "022"  "022"  "01"   "01"   "01"  
#> [2575] "0321" "0321" "022"  "022"  "021"  "021"  "021"  "022"  "022"  "022"  "022"  "022"  "022" 
#> [2588] "01"   "021"  "023"  "023"  "023"  "021"  "021"  "021"  "021"  "021"  "021"  "023"  "021" 
#> [2601] "021"  "021"  "023"  "021"  "023"  "023"  "023"  "023"  "0323" "01"   "023"  "021"  "023" 
#> [2614] "022"  "022"  "0321" "022"  "023"  "023"  "023"  "023"  "023"  "01"   "021"  "022"  "023" 
#> [2627] "01"   "01"   "01"   "023"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "022"  "022" 
#> [2640] "022"  "022"  "0321" "022"  "022"  "021"  "022"  "022"  "022"  "0321" "022"  "01"   "022" 
#> [2653] "022"  "022"  "022"  "022"  "023"  "022"  "022"  "022"  "022"  "022"  "022"  "0321" "0321"
#> [2666] "022"  "0321" "022"  "022"  "0321" "022"  "01"   "0321" "022"  "0321" "022"  "022"  "0324"
#> [2679] "01"   "01"   "01"   "022"  "01"   "01"   "01"   "023"  "023"  "021"  "021"  "0321" "021" 
#> [2692] "021"  "023"  "023"  "01"   "022"  "0324" "021"  "022"  "0321" "022"  "021"  "01"   "022" 
#> [2705] "022"  "0321" "01"   "022"  "01"   "01"   "022"  "01"   "01"   "023"  "022"  "023"  "01"  
#> [2718] "01"   "023"  "01"   "022"  "022"  "01"   "021"  "0321" "01"   "0321" "01"   "01"   "0321"
#> [2731] "021"  "022"  "0321" "022"  "0321" "01"   "01"   "0321" "01"   "0321" "01"   "01"   "021" 
#> [2744] "022"  "022"  "01"   "01"   "01"   "01"   "0321" "01"   "01"   "022"  "022"  "0321" "0323"
#> [2757] "01"   "021"  "021"  "021"  "021"  "021"  "021"  "021"  "023"  "01"   "01"   "022"  "021" 
#> [2770] "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "023" 
#> [2783] "021"  "021"  "021"  "023"  "021"  "023"  "021"  "01"   "01"   "022"  "023"  "023"  "021" 
#> [2796] "021"  "021"  "021"  "021"  "021"  "021"  "021"  "023"  "021"  "021"  "021"  "021"  "023" 
#> [2809] "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "01"   "01"   "01"   "022" 
#> [2822] "021"  "023"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "021"  "021"  "021" 
#> [2835] "023"  "022"  "021"  "021"  "023"  "023"  "021"  "021"  "021"  "021"  "021"  "021"  "021" 
#> [2848] "021"  "021"  "021"  "021"  "021"  "0321" "023"  "01"   "022"  "021"  "01"   "022"  "021" 
#> [2861] "023"  "023"  "022"  "022"  "021"  "021"  "023"  "022"  "021"  "022"  "021"  "021"  "021" 
#> [2874] "021"  "021"  "021"  "022"  "021"  "01"   "021"  "021"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 3301))
#>    [1] "01"   "01"   "023"  "032"  "01"   "01"   "032"  "01"   "01"   "01"   "01"   "01"   "032" 
#>   [14] "01"   "01"   "01"   "01"   "01"   "0313" "01"   "032"  "01"   "01"   "032"  "01"   "032" 
#>   [27] "032"  "032"  "01"   "0312" "032"  "01"   "032"  "032"  "032"  "01"   "01"   "01"   "0312"
#>   [40] "0311" "01"   "022"  "01"   "0311" "01"   "01"   "0311" "0312" "032"  "01"   "0312" "01"  
#>   [53] "01"   "01"   "01"   "021"  "021"  "01"   "01"   "0313" "032"  "01"   "01"   "022"  "0311"
#>   [66] "01"   "01"   "01"   "032"  "01"   "032"  "0311" "032"  "01"   "01"   "01"   "01"   "01"  
#>   [79] "022"  "01"   "01"   "032"  "01"   "01"   "01"   "022"  "01"   "01"   "01"   "01"   "032" 
#>   [92] "01"   "021"  "01"   "01"   "01"   "01"   "01"   "01"   "0313" "01"   "01"   "01"   "01"  
#>  [105] "01"   "032"  "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "022" 
#>  [118] "032"  "01"   "032"  "0313" "032"  "022"  "022"  "022"  "023"  "01"   "01"   "01"   "01"  
#>  [131] "01"   "01"   "01"   "032"  "01"   "022"  "01"   "01"   "032"  "01"   "01"   "01"   "01"  
#>  [144] "01"   "01"   "022"  "01"   "021"  "01"   "032"  "0313" "0313" "01"   "0313" "032"  "01"  
#>  [157] "0313" "023"  "032"  "032"  "032"  "01"   "0313" "0313" "022"  "01"   "032"  "0313" "01"  
#>  [170] "01"   "032"  "0313" "0313" "022"  "022"  "0313" "0313" "01"   "0313" "0313" "0312" "0313"
#>  [183] "032"  "0313" "032"  "0313" "0313" "0313" "0312" "022"  "032"  "01"   "0313" "0312" "0313"
#>  [196] "032"  "0312" "0312" "0312" "0312" "0312" "0313" "0312" "0313" "0312" "0312" "032"  "0313"
#>  [209] "032"  "022"  "0313" "023"  "0313" "0312" "0313" "0313" "032"  "022"  "0312" "01"   "0312"
#>  [222] "0313" "0312" "0313" "0312" "0313" "0312" "0312" "01"   "021"  "0313" "0313" "0312" "0313"
#>  [235] "021"  "0312" "0312" "0313" "0312" "0313" "0313" "0313" "0312" "01"   "0312" "0312" "0312"
#>  [248] "022"  "0312" "0313" "01"   "0313" "0312" "0312" "0313" "0313" "01"   "0312" "0313" "0313"
#>  [261] "01"   "0313" "01"   "01"   "01"   "0313" "01"   "01"   "01"   "0313" "01"   "01"   "0313"
#>  [274] "0313" "01"   "0313" "0313" "0313" "0313" "032"  "021"  "01"   "0313" "0313" "0313" "022" 
#>  [287] "0313" "0313" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "0312" "021" 
#>  [300] "0312" "021"  "0313" "0313" "023"  "0313" "021"  "022"  "0312" "022"  "0312" "0312" "0313"
#>  [313] "022"  "0313" "0313" "0312" "01"   "0313" "0313" "01"   "0313" "01"   "0312" "0313" "0311"
#>  [326] "01"   "0313" "0313" "0313" "0313" "0313" "01"   "01"   "01"   "01"   "022"  "022"  "01"  
#>  [339] "0313" "01"   "0313" "0313" "022"  "0313" "0313" "0313" "022"  "0311" "0311" "022"  "0313"
#>  [352] "01"   "0313" "0313" "0313" "0313" "0312" "0312" "0312" "0312" "0312" "0313" "0313" "0313"
#>  [365] "0313" "0313" "0313" "0312" "0312" "0312" "0313" "0312" "0312" "0312" "0312" "0312" "0312"
#>  [378] "0312" "0312" "0313" "01"   "01"   "022"  "0311" "01"   "01"   "01"   "0311" "032"  "0311"
#>  [391] "01"   "0311" "01"   "0311" "022"  "0311" "0313" "0311" "01"   "01"   "0311" "01"   "01"  
#>  [404] "0311" "01"   "022"  "01"   "0311" "01"   "01"   "0311" "0311" "021"  "01"   "01"   "01"  
#>  [417] "01"   "01"   "0311" "01"   "01"   "01"   "01"   "0313" "023"  "01"   "01"   "01"   "01"  
#>  [430] "01"   "01"   "023"  "01"   "023"  "01"   "022"  "01"   "021"  "01"   "023"  "023"  "0311"
#>  [443] "0311" "0311" "0311" "01"   "01"   "0312" "0312" "0312" "0311" "01"   "0311" "01"   "01"  
#>  [456] "0312" "01"   "01"   "0312" "0312" "0311" "0312" "0311" "0311" "0312" "0312" "0312" "0311"
#>  [469] "0312" "0312" "0312" "0311" "0312" "0312" "0312" "0311" "0311" "0312" "0311" "0311" "0311"
#>  [482] "0311" "0311" "01"   "021"  "0312" "0311" "0311" "022"  "022"  "021"  "0312" "0312" "022" 
#>  [495] "0312" "01"   "021"  "021"  "01"   "0312" "021"  "01"   "0311" "0312" "0311" "021"  "01"  
#>  [508] "0311" "0311" "0311" "0311" "022"  "0311" "0311" "01"   "01"   "022"  "0311" "0312" "0311"
#>  [521] "01"   "01"   "01"   "0312" "0312" "0313" "0312" "01"   "01"   "022"  "021"  "021"  "01"  
#>  [534] "022"  "01"   "01"   "01"   "021"  "01"   "0311" "01"   "022"  "01"   "01"   "022"  "01"  
#>  [547] "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311" "0311"
#>  [560] "01"   "0311" "01"   "032"  "032"  "01"   "01"   "01"   "022"  "0311" "01"   "01"   "022" 
#>  [573] "032"  "0311" "01"   "0312" "01"   "01"   "01"   "022"  "01"   "01"   "01"   "01"   "0311"
#>  [586] "01"   "0311" "01"   "01"   "01"   "01"   "0313" "01"   "0312" "0313" "032"  "01"   "0313"
#>  [599] "0313" "01"   "01"   "01"   "01"   "0313" "01"   "01"   "022"  "01"   "01"   "01"   "01"  
#>  [612] "01"   "01"   "01"   "01"   "023"  "0311" "0311" "01"   "0311" "0311" "0313" "01"   "0311"
#>  [625] "01"   "0311" "0311" "0311" "0311" "0311" "01"   "01"   "0313" "01"   "0311" "021"  "0311"
#>  [638] "01"   "01"   "01"   "01"   "0311" "0311" "01"   "0311" "0312" "01"   "01"   "022"  "01"  
#>  [651] "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "0311" "0311" "0311" "01"   "023" 
#>  [664] "01"   "01"   "0312" "0311" "0311" "0311" "0311" "022"  "01"   "022"  "0311" "0313" "023" 
#>  [677] "0311" "0311" "022"  "01"   "0311" "0311" "0312" "0312" "0311" "0312" "0312" "0312" "0311"
#>  [690] "0311" "0311" "01"   "0312" "0311" "022"  "0311" "0312" "01"   "0312" "01"   "0312" "01"  
#>  [703] "01"   "0311" "0311" "022"  "022"  "01"   "032"  "01"   "032"  "021"  "01"   "01"   "01"  
#>  [716] "01"   "01"   "01"   "022"  "0311" "0311" "022"  "023"  "01"   "022"  "0311" "0311" "0311"
#>  [729] "01"   "01"   "0311" "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "0311" "01"  
#>  [742] "01"   "01"   "0311" "0311" "01"   "0311" "0312" "0312" "0312" "0311" "01"   "0311" "01"  
#>  [755] "01"   "01"   "0311" "01"   "032"  "0311" "021"  "022"  "01"   "01"   "0311" "01"   "01"  
#>  [768] "01"   "01"   "01"   "0312" "01"   "01"   "0311" "01"   "022"  "01"   "01"   "021"  "01"  
#>  [781] "0311" "01"   "01"   "01"   "01"   "01"   "0312" "01"   "0311" "0311" "01"   "01"   "0312"
#>  [794] "022"  "01"   "0312" "01"   "01"   "023"  "0311" "0312" "022"  "0311" "0311" "0311" "023" 
#>  [807] "0311" "01"   "0311" "01"   "01"   "01"   "032"  "032"  "01"   "01"   "01"   "01"   "01"  
#>  [820] "021"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [833] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [846] "01"   "01"   "01"   "032"  "01"   "01"   "023"  "032"  "022"  "01"   "01"   "01"   "01"  
#>  [859] "032"  "01"   "01"   "032"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311" "01"  
#>  [872] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [885] "01"   "021"  "01"   "032"  "01"   "032"  "01"   "0311" "01"   "01"   "01"   "022"  "022" 
#>  [898] "01"   "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [911] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [924] "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"   "01"   "01"   "01"   "022"  "032" 
#>  [937] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#>  [950] "01"   "01"   "01"   "01"   "0311" "01"   "021"  "01"   "01"   "01"   "021"  "022"  "01"  
#>  [963] "01"   "021"  "0311" "01"   "01"   "01"   "01"   "0311" "01"   "01"   "022"  "01"   "01"  
#>  [976] "01"   "01"   "01"   "01"   "01"   "032"  "032"  "022"  "022"  "0311" "01"   "01"   "01"  
#>  [989] "01"   "0311" "0311" "01"   "01"   "01"   "0311" "01"   "01"   "032"  "032"  "01"   "022" 
#> [1002] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022" 
#> [1015] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "032"  "01"  
#> [1028] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311" "01"   "0312" "01"   "021" 
#> [1041] "01"   "01"   "032"  "01"   "01"   "01"   "0312" "01"   "01"   "01"   "01"   "01"   "01"  
#> [1054] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1067] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "032"  "01"   "01"   "01"   "01"  
#> [1080] "01"   "01"   "01"   "0312" "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"  
#> [1093] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1106] "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0313"
#> [1119] "01"   "01"   "01"   "0313" "01"   "01"   "01"   "01"   "01"   "0312" "01"   "01"   "01"  
#> [1132] "01"   "01"   "01"   "032"  "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"   "01"  
#> [1145] "032"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1158] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1171] "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"  
#> [1184] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1197] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1210] "01"   "01"   "01"   "01"   "01"   "022"  "01"   "032"  "0313" "01"   "01"   "01"   "01"  
#> [1223] "01"   "022"  "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1236] "01"   "01"   "0313" "01"   "01"   "033"  "032"  "0311" "01"   "01"   "01"   "01"   "01"  
#> [1249] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "022"  "022"  "022"  "01"   "01"  
#> [1262] "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "033"  "01"  
#> [1275] "01"   "01"   "033"  "021"  "033"  "033"  "033"  "01"   "033"  "01"   "01"   "01"   "01"  
#> [1288] "01"   "033"  "033"  "01"   "033"  "01"   "01"   "023"  "033"  "01"   "01"   "01"   "01"  
#> [1301] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022" 
#> [1314] "033"  "022"  "01"   "033"  "021"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1327] "033"  "01"   "01"   "01"   "01"   "021"  "01"   "033"  "01"   "033"  "01"   "01"   "01"  
#> [1340] "01"   "01"   "01"   "022"  "01"   "01"   "022"  "023"  "021"  "01"   "01"   "01"   "01"  
#> [1353] "021"  "022"  "01"   "01"   "01"   "01"   "01"   "01"   "021"  "021"  "01"   "01"   "033" 
#> [1366] "033"  "01"   "033"  "01"   "033"  "033"  "033"  "033"  "01"   "033"  "01"   "01"   "01"  
#> [1379] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1392] "032"  "01"   "01"   "023"  "01"   "021"  "023"  "023"  "01"   "023"  "01"   "01"   "01"  
#> [1405] "01"   "033"  "023"  "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1418] "01"   "033"  "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "033"  "0311"
#> [1431] "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1444] "01"   "01"   "01"   "01"   "01"   "023"  "01"   "033"  "022"  "01"   "01"   "022"  "01"  
#> [1457] "01"   "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1470] "01"   "01"   "033"  "01"   "0313" "033"  "0313" "01"   "021"  "01"   "022"  "01"   "01"  
#> [1483] "01"   "01"   "01"   "01"   "01"   "032"  "01"   "01"   "01"   "01"   "01"   "01"   "023" 
#> [1496] "01"   "01"   "01"   "01"   "023"  "01"   "01"   "01"   "01"   "01"   "032"  "01"   "022" 
#> [1509] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "033"  "022"  "023" 
#> [1522] "023"  "01"   "022"  "01"   "01"   "033"  "01"   "01"   "01"   "01"   "01"   "01"   "021" 
#> [1535] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1548] "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"   "01"   "01"   "021"  "023"  "01"  
#> [1561] "01"   "01"   "01"   "0312" "022"  "01"   "01"   "033"  "01"   "01"   "01"   "022"  "021" 
#> [1574] "01"   "021"  "033"  "033"  "021"  "023"  "023"  "033"  "021"  "033"  "023"  "033"  "033" 
#> [1587] "033"  "033"  "033"  "033"  "01"   "033"  "033"  "022"  "033"  "021"  "021"  "023"  "01"  
#> [1600] "021"  "01"   "033"  "01"   "021"  "021"  "01"   "01"   "023"  "021"  "021"  "033"  "033" 
#> [1613] "033"  "033"  "033"  "033"  "033"  "021"  "01"   "022"  "021"  "023"  "01"   "033"  "01"  
#> [1626] "021"  "01"   "01"   "01"   "01"   "01"   "01"   "032"  "01"   "021"  "01"   "01"   "01"  
#> [1639] "022"  "01"   "01"   "01"   "01"   "023"  "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1652] "01"   "01"   "032"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1665] "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "023"  "01"  
#> [1678] "01"   "01"   "023"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1691] "01"   "01"   "032"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0311"
#> [1704] "01"   "01"   "01"   "032"  "01"   "01"   "01"   "01"   "0311" "01"   "01"   "01"   "01"  
#> [1717] "01"   "01"   "032"  "032"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "0313" "01"  
#> [1730] "0311" "0311" "01"   "01"   "021"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1743] "01"   "01"   "01"   "01"   "01"   "01"   "032"  "01"   "0312" "01"   "022"  "01"   "022" 
#> [1756] "01"   "01"   "01"   "01"   "0312" "022"  "01"   "01"   "01"   "01"   "022"  "0311" "01"  
#> [1769] "01"   "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "032" 
#> [1782] "01"   "01"   "01"   "01"   "01"   "0313" "01"   "01"   "032"  "01"   "0313" "0313" "032" 
#> [1795] "022"  "01"   "01"   "0313" "022"  "01"   "01"   "01"   "01"   "032"  "01"   "01"   "023" 
#> [1808] "021"  "022"  "0311" "022"  "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"  
#> [1821] "0313" "01"   "01"   "01"   "01"   "01"   "01"   "01"   "01"   "022"  "01"   "01"   "032" 
#> [1834] "01"   "01"   "021"  "022"  "01"   "01"   "01"   "01"   "01"   "021"  "01"   "01"   "01"  
#> [1847] "01"   "01"   "01"   "01"   "01"   "032"  "01"   "01"   "01"   "01"   "01"   "01"   "032" 
#> [1860] "01"   "0312" "01"   "01"   "033"  "022"  "0312" "032"  "032"  "021"  "01"   "01"   "032" 
#> [1873] "032"  "01"   "01"   "01"   "023"  "01"   "01"   "01"   "021"  "01"   "01"   "01"   "01"  
#> [1886] "032"  "01"   "0312" "01"   "01"   "01"   "022"  "01"   "01"   "01"   "0311" "01"   "01"  
#> [1899] "01"   "0312" "01"   "032"  "01"   "0311" "01"   "01"   "033"  "01"   "01"   "01"   "01"  
#> [1912] "01"   "01"   "01"   "032"  "01"   "01"   "01"   "01"   "0312" "022"  "01"   "032"  "032" 
#> [1925] "01"   "0311" "01"   "01"   "01"   "023"  "032"  "01"   "021"  "01"   "032"  "023"  "033" 
#> [1938] "01"   "01"   "032"  "032"  "01"   "032"  "01"   "033"  "022"  "0312" "032"  "01"   "0312"
#> [1951] "032"  "01"   "01"   "021"  "01"   "01"   "023"  "032"  "021"  "032"  "022"  "032"  "032" 
#> [1964] "022"  "01"   "032"  "021"  "033"  "032"  "0312" "01"   "023"  "0312" "032"  "021"  "0311"
#> [1977] "01"   "021"  "032"  "021"  "032"  "032"  "033"  "023"  "021"  "023"  "021"  "021"  "021" 
#> [1990] "021"  "022"  "021"  "023"  "023"  "022"  "021"  "023"  "023"  "021"  "023"  "022"  "021" 
#> [2003] "021"  "023"  "021"  "022"  "022"  "021"  "023"  "023"  "021"  "023"  "021"  "023"  "01"  
#> [2016] "022"  "023"  "032"  "022"  "021"  "021"  "022"  "022"  "022"  "022"  "032"  "022"  "021" 
#> [2029] "021"  "022"  "022"  "021"  "022"  "023"  "022"  "021"  "022"  "021"  "022"  "022"  "022" 
#> [2042] "032"  "021"  "023"  "023"  "021"  "021"  "021"  "021"  "01"   "022"  "021"  "023"  "021" 
#> [2055] "021"  "021"  "022"  "021"  "032"  "022"  "021"  "022"  "022"  "021"  "022"  "022"  "021" 
#> [2068] "021"  "021"  "021"  "021"  "022"  "023"  "022"  "021"  "023"  "021"  "022"  "021"  "021" 
#> [2081] "021"  "021"  "021"  "023"  "021"  "021"  "021"  "023"  "021"  "022"  "021"  "022"  "022" 
#> [2094] "021"  "022"  "022"  "022"  "021"  "022"  "023"  "021"  "021"  "021"  "021"  "021"  "021" 
#> [2107] "021"  "021"  "023"  "021"  "023"  "022"  "021"  "021"  "021"  "021"  "022"  "021"  "023" 
#> [2120] "023"  "021"  "021"  "023"  "023"  "01"   "022"  "021"  "01"   "021"  "021"  "021"  "021" 
#> [2133] "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "022"  "022"  "021"  "022"  "022" 
#> [2146] "022"  "022"  "021"  "022"  "021"  "021"  "021"  "022"  "022"  "021"  "021"  "021"  "022" 
#> [2159] "022"  "021"  "022"  "022"  "022"  "021"  "022"  "022"  "022"  "021"  "022"  "022"  "022" 
#> [2172] "022"  "021"  "032"  "022"  "022"  "022"  "021"  "021"  "021"  "021"  "022"  "023"  "022" 
#> [2185] "022"  "022"  "022"  "022"  "022"  "01"   "022"  "01"   "022"  "0312" "022"  "032"  "022" 
#> [2198] "021"  "021"  "022"  "023"  "023"  "022"  "023"  "023"  "022"  "021"  "021"  "021"  "023" 
#> [2211] "023"  "022"  "023"  "022"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "021" 
#> [2224] "021"  "022"  "021"  "021"  "021"  "022"  "021"  "022"  "022"  "022"  "022"  "021"  "022" 
#> [2237] "032"  "022"  "022"  "032"  "022"  "032"  "022"  "022"  "022"  "022"  "022"  "023"  "023" 
#> [2250] "022"  "022"  "032"  "022"  "022"  "023"  "023"  "022"  "022"  "01"   "032"  "021"  "022" 
#> [2263] "022"  "022"  "022"  "032"  "023"  "022"  "032"  "022"  "022"  "022"  "01"   "022"  "01"  
#> [2276] "022"  "022"  "032"  "022"  "023"  "022"  "022"  "01"   "022"  "022"  "022"  "01"   "032" 
#> [2289] "032"  "022"  "022"  "032"  "022"  "022"  "01"   "022"  "022"  "022"  "01"   "032"  "01"  
#> [2302] "01"   "01"   "022"  "01"   "022"  "01"   "01"   "01"   "022"  "01"   "032"  "022"  "01"  
#> [2315] "01"   "01"   "01"   "021"  "023"  "022"  "01"   "022"  "022"  "032"  "022"  "022"  "022" 
#> [2328] "022"  "022"  "022"  "022"  "022"  "022"  "022"  "032"  "01"   "01"   "032"  "022"  "01"  
#> [2341] "032"  "032"  "022"  "021"  "023"  "022"  "022"  "022"  "022"  "022"  "032"  "022"  "022" 
#> [2354] "022"  "022"  "022"  "032"  "021"  "021"  "022"  "021"  "022"  "021"  "023"  "021"  "021" 
#> [2367] "022"  "021"  "021"  "022"  "022"  "022"  "021"  "022"  "021"  "022"  "022"  "022"  "021" 
#> [2380] "021"  "023"  "022"  "021"  "021"  "023"  "022"  "022"  "022"  "022"  "023"  "021"  "022" 
#> [2393] "022"  "022"  "021"  "021"  "021"  "022"  "032"  "022"  "01"   "01"   "01"   "021"  "022" 
#> [2406] "023"  "021"  "022"  "021"  "022"  "021"  "022"  "021"  "01"   "022"  "022"  "022"  "022" 
#> [2419] "023"  "01"   "022"  "022"  "032"  "021"  "021"  "023"  "022"  "022"  "022"  "022"  "022" 
#> [2432] "022"  "01"   "032"  "01"   "022"  "032"  "032"  "032"  "01"   "01"   "01"   "032"  "032" 
#> [2445] "032"  "022"  "022"  "022"  "021"  "022"  "021"  "021"  "021"  "021"  "021"  "021"  "021" 
#> [2458] "021"  "021"  "023"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "022" 
#> [2471] "032"  "022"  "022"  "022"  "021"  "021"  "022"  "021"  "022"  "022"  "022"  "021"  "022" 
#> [2484] "022"  "021"  "022"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021" 
#> [2497] "022"  "021"  "021"  "022"  "021"  "022"  "021"  "022"  "022"  "022"  "022"  "032"  "032" 
#> [2510] "022"  "032"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "021"  "021" 
#> [2523] "022"  "022"  "022"  "021"  "021"  "022"  "021"  "021"  "022"  "021"  "021"  "01"   "021" 
#> [2536] "032"  "022"  "022"  "022"  "023"  "022"  "022"  "022"  "022"  "023"  "022"  "022"  "022" 
#> [2549] "01"   "022"  "032"  "032"  "01"   "01"   "021"  "032"  "022"  "01"   "021"  "021"  "032" 
#> [2562] "021"  "032"  "022"  "022"  "032"  "022"  "022"  "022"  "022"  "022"  "01"   "01"   "01"  
#> [2575] "032"  "032"  "022"  "022"  "021"  "021"  "021"  "022"  "022"  "022"  "022"  "022"  "022" 
#> [2588] "01"   "021"  "023"  "023"  "023"  "021"  "021"  "021"  "021"  "021"  "021"  "023"  "021" 
#> [2601] "021"  "021"  "023"  "021"  "023"  "023"  "023"  "023"  "032"  "01"   "023"  "021"  "023" 
#> [2614] "022"  "022"  "032"  "022"  "023"  "023"  "023"  "023"  "023"  "01"   "021"  "022"  "023" 
#> [2627] "01"   "01"   "01"   "023"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "022"  "022" 
#> [2640] "022"  "022"  "032"  "022"  "022"  "021"  "022"  "022"  "022"  "032"  "022"  "01"   "022" 
#> [2653] "022"  "022"  "022"  "022"  "023"  "022"  "022"  "022"  "022"  "022"  "022"  "032"  "032" 
#> [2666] "022"  "032"  "022"  "022"  "032"  "022"  "01"   "032"  "022"  "032"  "022"  "022"  "032" 
#> [2679] "01"   "01"   "01"   "022"  "01"   "01"   "01"   "023"  "023"  "021"  "021"  "032"  "021" 
#> [2692] "021"  "023"  "023"  "01"   "022"  "032"  "021"  "022"  "032"  "022"  "021"  "01"   "022" 
#> [2705] "022"  "032"  "01"   "022"  "01"   "01"   "022"  "01"   "01"   "023"  "022"  "023"  "01"  
#> [2718] "01"   "023"  "01"   "022"  "022"  "01"   "021"  "032"  "01"   "032"  "01"   "01"   "032" 
#> [2731] "021"  "022"  "032"  "022"  "032"  "01"   "01"   "032"  "01"   "032"  "01"   "01"   "021" 
#> [2744] "022"  "022"  "01"   "01"   "01"   "01"   "032"  "01"   "01"   "022"  "022"  "032"  "032" 
#> [2757] "01"   "021"  "021"  "021"  "021"  "021"  "021"  "021"  "023"  "01"   "01"   "022"  "021" 
#> [2770] "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "023" 
#> [2783] "021"  "021"  "021"  "023"  "021"  "023"  "021"  "01"   "01"   "022"  "023"  "023"  "021" 
#> [2796] "021"  "021"  "021"  "021"  "021"  "021"  "021"  "023"  "021"  "021"  "021"  "021"  "023" 
#> [2809] "021"  "021"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "01"   "01"   "01"   "022" 
#> [2822] "021"  "023"  "021"  "021"  "021"  "021"  "021"  "021"  "022"  "021"  "021"  "021"  "021" 
#> [2835] "023"  "022"  "021"  "021"  "023"  "023"  "021"  "021"  "021"  "021"  "021"  "021"  "021" 
#> [2848] "021"  "021"  "021"  "021"  "021"  "032"  "023"  "01"   "022"  "021"  "01"   "022"  "021" 
#> [2861] "023"  "023"  "022"  "022"  "021"  "021"  "023"  "022"  "021"  "022"  "021"  "021"  "021" 
#> [2874] "021"  "021"  "021"  "022"  "021"  "01"   "021"  "021"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 3324))
#>    [1] "01"  "01"  "023" "032" "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "032" "01"  "01" 
#>   [16] "01"  "01"  "01"  "031" "01"  "032" "01"  "01"  "032" "01"  "032" "032" "032" "01"  "031"
#>   [31] "032" "01"  "032" "032" "032" "01"  "01"  "01"  "031" "031" "01"  "022" "01"  "031" "01" 
#>   [46] "01"  "031" "031" "032" "01"  "031" "01"  "01"  "01"  "01"  "021" "021" "01"  "01"  "031"
#>   [61] "032" "01"  "01"  "022" "031" "01"  "01"  "01"  "032" "01"  "032" "031" "032" "01"  "01" 
#>   [76] "01"  "01"  "01"  "022" "01"  "01"  "032" "01"  "01"  "01"  "022" "01"  "01"  "01"  "01" 
#>   [91] "032" "01"  "021" "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01" 
#>  [106] "032" "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "022" "032" "01"  "032"
#>  [121] "031" "032" "022" "022" "022" "023" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01" 
#>  [136] "022" "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "021" "01"  "032"
#>  [151] "031" "031" "01"  "031" "032" "01"  "031" "023" "032" "032" "032" "01"  "031" "031" "022"
#>  [166] "01"  "032" "031" "01"  "01"  "032" "031" "031" "022" "022" "031" "031" "01"  "031" "031"
#>  [181] "031" "031" "032" "031" "032" "031" "031" "031" "031" "022" "032" "01"  "031" "031" "031"
#>  [196] "032" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "032" "031" "032" "022"
#>  [211] "031" "023" "031" "031" "031" "031" "032" "022" "031" "01"  "031" "031" "031" "031" "031"
#>  [226] "031" "031" "031" "01"  "021" "031" "031" "031" "031" "021" "031" "031" "031" "031" "031"
#>  [241] "031" "031" "031" "01"  "031" "031" "031" "022" "031" "031" "01"  "031" "031" "031" "031"
#>  [256] "031" "01"  "031" "031" "031" "01"  "031" "01"  "01"  "01"  "031" "01"  "01"  "01"  "031"
#>  [271] "01"  "01"  "031" "031" "01"  "031" "031" "031" "031" "032" "021" "01"  "031" "031" "031"
#>  [286] "022" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "021" "031"
#>  [301] "021" "031" "031" "023" "031" "021" "022" "031" "022" "031" "031" "031" "022" "031" "031"
#>  [316] "031" "01"  "031" "031" "01"  "031" "01"  "031" "031" "031" "01"  "031" "031" "031" "031"
#>  [331] "031" "01"  "01"  "01"  "01"  "022" "022" "01"  "031" "01"  "031" "031" "022" "031" "031"
#>  [346] "031" "022" "031" "031" "022" "031" "01"  "031" "031" "031" "031" "031" "031" "031" "031"
#>  [361] "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031"
#>  [376] "031" "031" "031" "031" "031" "01"  "01"  "022" "031" "01"  "01"  "01"  "031" "032" "031"
#>  [391] "01"  "031" "01"  "031" "022" "031" "031" "031" "01"  "01"  "031" "01"  "01"  "031" "01" 
#>  [406] "022" "01"  "031" "01"  "01"  "031" "031" "021" "01"  "01"  "01"  "01"  "01"  "031" "01" 
#>  [421] "01"  "01"  "01"  "031" "023" "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "023" "01" 
#>  [436] "022" "01"  "021" "01"  "023" "023" "031" "031" "031" "031" "01"  "01"  "031" "031" "031"
#>  [451] "031" "01"  "031" "01"  "01"  "031" "01"  "01"  "031" "031" "031" "031" "031" "031" "031"
#>  [466] "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031"
#>  [481] "031" "031" "031" "01"  "021" "031" "031" "031" "022" "022" "021" "031" "031" "022" "031"
#>  [496] "01"  "021" "021" "01"  "031" "021" "01"  "031" "031" "031" "021" "01"  "031" "031" "031"
#>  [511] "031" "022" "031" "031" "01"  "01"  "022" "031" "031" "031" "01"  "01"  "01"  "031" "031"
#>  [526] "031" "031" "01"  "01"  "022" "021" "021" "01"  "022" "01"  "01"  "01"  "021" "01"  "031"
#>  [541] "01"  "022" "01"  "01"  "022" "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01" 
#>  [556] "01"  "01"  "031" "031" "01"  "031" "01"  "032" "032" "01"  "01"  "01"  "022" "031" "01" 
#>  [571] "01"  "022" "032" "031" "01"  "031" "01"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "031"
#>  [586] "01"  "031" "01"  "01"  "01"  "01"  "031" "01"  "031" "031" "032" "01"  "031" "031" "01" 
#>  [601] "01"  "01"  "01"  "031" "01"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [616] "023" "031" "031" "01"  "031" "031" "031" "01"  "031" "01"  "031" "031" "031" "031" "031"
#>  [631] "01"  "01"  "031" "01"  "031" "021" "031" "01"  "01"  "01"  "01"  "031" "031" "01"  "031"
#>  [646] "031" "01"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "031" "031"
#>  [661] "031" "01"  "023" "01"  "01"  "031" "031" "031" "031" "031" "022" "01"  "022" "031" "031"
#>  [676] "023" "031" "031" "022" "01"  "031" "031" "031" "031" "031" "031" "031" "031" "031" "031"
#>  [691] "031" "01"  "031" "031" "022" "031" "031" "01"  "031" "01"  "031" "01"  "01"  "031" "031"
#>  [706] "022" "022" "01"  "032" "01"  "032" "021" "01"  "01"  "01"  "01"  "01"  "01"  "022" "031"
#>  [721] "031" "022" "023" "01"  "022" "031" "031" "031" "01"  "01"  "031" "01"  "01"  "031" "01" 
#>  [736] "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "031" "031" "01"  "031" "031" "031" "031"
#>  [751] "031" "01"  "031" "01"  "01"  "01"  "031" "01"  "032" "031" "021" "022" "01"  "01"  "031"
#>  [766] "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "031" "01"  "022" "01"  "01"  "021" "01" 
#>  [781] "031" "01"  "01"  "01"  "01"  "01"  "031" "01"  "031" "031" "01"  "01"  "031" "022" "01" 
#>  [796] "031" "01"  "01"  "023" "031" "031" "022" "031" "031" "031" "023" "031" "01"  "031" "01" 
#>  [811] "01"  "01"  "032" "032" "01"  "01"  "01"  "01"  "01"  "021" "01"  "01"  "01"  "01"  "01" 
#>  [826] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [841] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "023" "032" "022" "01" 
#>  [856] "01"  "01"  "01"  "032" "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031"
#>  [871] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [886] "021" "01"  "032" "01"  "032" "01"  "031" "01"  "01"  "01"  "022" "022" "01"  "01"  "01" 
#>  [901] "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [916] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01" 
#>  [931] "01"  "01"  "01"  "01"  "022" "032" "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [946] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "021" "01"  "01"  "01"  "021"
#>  [961] "022" "01"  "01"  "021" "031" "01"  "01"  "01"  "01"  "031" "01"  "01"  "022" "01"  "01" 
#>  [976] "01"  "01"  "01"  "01"  "01"  "032" "032" "022" "022" "031" "01"  "01"  "01"  "01"  "031"
#>  [991] "031" "01"  "01"  "01"  "031" "01"  "01"  "032" "032" "01"  "022" "01"  "01"  "01"  "01" 
#> [1006] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "022" "01"  "01"  "01"  "01" 
#> [1021] "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1036] "031" "01"  "031" "01"  "021" "01"  "01"  "032" "01"  "01"  "01"  "031" "01"  "01"  "01" 
#> [1051] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1066] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01" 
#> [1081] "01"  "01"  "031" "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1096] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031"
#> [1111] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "031" "01"  "01"  "01" 
#> [1126] "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01" 
#> [1141] "022" "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1156] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1171] "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "01"  "01"  "022"
#> [1186] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1201] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022"
#> [1216] "01"  "032" "031" "01"  "01"  "01"  "01"  "01"  "022" "01"  "022" "01"  "01"  "01"  "01" 
#> [1231] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "033" "032" "031" "01"  "01" 
#> [1246] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "022" "022" "022" "01" 
#> [1261] "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "033" "01"  "01" 
#> [1276] "01"  "033" "021" "033" "033" "033" "01"  "033" "01"  "01"  "01"  "01"  "01"  "033" "033"
#> [1291] "01"  "033" "01"  "01"  "023" "033" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1306] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "033" "022" "01"  "033" "021" "01"  "01" 
#> [1321] "01"  "01"  "01"  "01"  "01"  "01"  "033" "01"  "01"  "01"  "01"  "021" "01"  "033" "01" 
#> [1336] "033" "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "01"  "022" "023" "021" "01"  "01" 
#> [1351] "01"  "01"  "021" "022" "01"  "01"  "01"  "01"  "01"  "01"  "021" "021" "01"  "01"  "033"
#> [1366] "033" "01"  "033" "01"  "033" "033" "033" "033" "01"  "033" "01"  "01"  "01"  "01"  "01" 
#> [1381] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "023"
#> [1396] "01"  "021" "023" "023" "01"  "023" "01"  "01"  "01"  "01"  "033" "023" "01"  "01"  "031"
#> [1411] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "033" "01"  "01"  "031" "01"  "01"  "01" 
#> [1426] "01"  "01"  "01"  "033" "031" "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01" 
#> [1441] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "033" "022" "01"  "01"  "022"
#> [1456] "01"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1471] "01"  "033" "01"  "031" "033" "031" "01"  "021" "01"  "022" "01"  "01"  "01"  "01"  "01" 
#> [1486] "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "01"  "01"  "01"  "023"
#> [1501] "01"  "01"  "01"  "01"  "01"  "032" "01"  "022" "01"  "022" "01"  "01"  "01"  "01"  "01" 
#> [1516] "01"  "01"  "022" "033" "022" "023" "023" "01"  "022" "01"  "01"  "033" "01"  "01"  "01" 
#> [1531] "01"  "01"  "01"  "021" "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1546] "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "021" "023" "01" 
#> [1561] "01"  "01"  "01"  "031" "022" "01"  "01"  "033" "01"  "01"  "01"  "022" "021" "01"  "021"
#> [1576] "033" "033" "021" "023" "023" "033" "021" "033" "023" "033" "033" "033" "033" "033" "033"
#> [1591] "01"  "033" "033" "022" "033" "021" "021" "023" "01"  "021" "01"  "033" "01"  "021" "021"
#> [1606] "01"  "01"  "023" "021" "021" "033" "033" "033" "033" "033" "033" "033" "021" "01"  "022"
#> [1621] "021" "023" "01"  "033" "01"  "021" "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "021"
#> [1636] "01"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "023" "01"  "01"  "01"  "01"  "01"  "01" 
#> [1651] "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1666] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "01"  "01"  "023"
#> [1681] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01" 
#> [1696] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "032" "01"  "01"  "01" 
#> [1711] "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "032" "032" "01"  "01"  "01"  "01"  "01" 
#> [1726] "01"  "01"  "031" "01"  "031" "031" "01"  "01"  "021" "01"  "01"  "01"  "01"  "01"  "01" 
#> [1741] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "031" "01"  "022" "01"  "022"
#> [1756] "01"  "01"  "01"  "01"  "031" "022" "01"  "01"  "01"  "01"  "022" "031" "01"  "01"  "022"
#> [1771] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01" 
#> [1786] "01"  "031" "01"  "01"  "032" "01"  "031" "031" "032" "022" "01"  "01"  "031" "022" "01" 
#> [1801] "01"  "01"  "01"  "032" "01"  "01"  "023" "021" "022" "031" "022" "01"  "01"  "01"  "01" 
#> [1816] "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022"
#> [1831] "01"  "01"  "032" "01"  "01"  "021" "022" "01"  "01"  "01"  "01"  "01"  "021" "01"  "01" 
#> [1846] "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "032" "01" 
#> [1861] "031" "01"  "01"  "033" "022" "031" "032" "032" "021" "01"  "01"  "032" "032" "01"  "01" 
#> [1876] "01"  "023" "01"  "01"  "01"  "021" "01"  "01"  "01"  "01"  "032" "01"  "031" "01"  "01" 
#> [1891] "01"  "022" "01"  "01"  "01"  "031" "01"  "01"  "01"  "031" "01"  "032" "01"  "031" "01" 
#> [1906] "01"  "033" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "031"
#> [1921] "022" "01"  "032" "032" "01"  "031" "01"  "01"  "01"  "023" "032" "01"  "021" "01"  "032"
#> [1936] "023" "033" "01"  "01"  "032" "032" "01"  "032" "01"  "033" "022" "031" "032" "01"  "031"
#> [1951] "032" "01"  "01"  "021" "01"  "01"  "023" "032" "021" "032" "022" "032" "032" "022" "01" 
#> [1966] "032" "021" "033" "032" "031" "01"  "023" "031" "032" "021" "031" "01"  "021" "032" "021"
#> [1981] "032" "032" "033" "023" "021" "023" "021" "021" "021" "021" "022" "021" "023" "023" "022"
#> [1996] "021" "023" "023" "021" "023" "022" "021" "021" "023" "021" "022" "022" "021" "023" "023"
#> [2011] "021" "023" "021" "023" "01"  "022" "023" "032" "022" "021" "021" "022" "022" "022" "022"
#> [2026] "032" "022" "021" "021" "022" "022" "021" "022" "023" "022" "021" "022" "021" "022" "022"
#> [2041] "022" "032" "021" "023" "023" "021" "021" "021" "021" "01"  "022" "021" "023" "021" "021"
#> [2056] "021" "022" "021" "032" "022" "021" "022" "022" "021" "022" "022" "021" "021" "021" "021"
#> [2071] "021" "022" "023" "022" "021" "023" "021" "022" "021" "021" "021" "021" "021" "023" "021"
#> [2086] "021" "021" "023" "021" "022" "021" "022" "022" "021" "022" "022" "022" "021" "022" "023"
#> [2101] "021" "021" "021" "021" "021" "021" "021" "021" "023" "021" "023" "022" "021" "021" "021"
#> [2116] "021" "022" "021" "023" "023" "021" "021" "023" "023" "01"  "022" "021" "01"  "021" "021"
#> [2131] "021" "021" "021" "021" "021" "021" "021" "021" "022" "021" "022" "022" "021" "022" "022"
#> [2146] "022" "022" "021" "022" "021" "021" "021" "022" "022" "021" "021" "021" "022" "022" "021"
#> [2161] "022" "022" "022" "021" "022" "022" "022" "021" "022" "022" "022" "022" "021" "032" "022"
#> [2176] "022" "022" "021" "021" "021" "021" "022" "023" "022" "022" "022" "022" "022" "022" "01" 
#> [2191] "022" "01"  "022" "031" "022" "032" "022" "021" "021" "022" "023" "023" "022" "023" "023"
#> [2206] "022" "021" "021" "021" "023" "023" "022" "023" "022" "021" "021" "021" "021" "021" "021"
#> [2221] "022" "021" "021" "021" "022" "021" "021" "021" "022" "021" "022" "022" "022" "022" "021"
#> [2236] "022" "032" "022" "022" "032" "022" "032" "022" "022" "022" "022" "022" "023" "023" "022"
#> [2251] "022" "032" "022" "022" "023" "023" "022" "022" "01"  "032" "021" "022" "022" "022" "022"
#> [2266] "032" "023" "022" "032" "022" "022" "022" "01"  "022" "01"  "022" "022" "032" "022" "023"
#> [2281] "022" "022" "01"  "022" "022" "022" "01"  "032" "032" "022" "022" "032" "022" "022" "01" 
#> [2296] "022" "022" "022" "01"  "032" "01"  "01"  "01"  "022" "01"  "022" "01"  "01"  "01"  "022"
#> [2311] "01"  "032" "022" "01"  "01"  "01"  "01"  "021" "023" "022" "01"  "022" "022" "032" "022"
#> [2326] "022" "022" "022" "022" "022" "022" "022" "022" "022" "032" "01"  "01"  "032" "022" "01" 
#> [2341] "032" "032" "022" "021" "023" "022" "022" "022" "022" "022" "032" "022" "022" "022" "022"
#> [2356] "022" "032" "021" "021" "022" "021" "022" "021" "023" "021" "021" "022" "021" "021" "022"
#> [2371] "022" "022" "021" "022" "021" "022" "022" "022" "021" "021" "023" "022" "021" "021" "023"
#> [2386] "022" "022" "022" "022" "023" "021" "022" "022" "022" "021" "021" "021" "022" "032" "022"
#> [2401] "01"  "01"  "01"  "021" "022" "023" "021" "022" "021" "022" "021" "022" "021" "01"  "022"
#> [2416] "022" "022" "022" "023" "01"  "022" "022" "032" "021" "021" "023" "022" "022" "022" "022"
#> [2431] "022" "022" "01"  "032" "01"  "022" "032" "032" "032" "01"  "01"  "01"  "032" "032" "032"
#> [2446] "022" "022" "022" "021" "022" "021" "021" "021" "021" "021" "021" "021" "021" "021" "023"
#> [2461] "021" "021" "021" "021" "021" "021" "021" "021" "022" "022" "032" "022" "022" "022" "021"
#> [2476] "021" "022" "021" "022" "022" "022" "021" "022" "022" "021" "022" "021" "021" "021" "021"
#> [2491] "021" "021" "021" "021" "022" "021" "022" "021" "021" "022" "021" "022" "021" "022" "022"
#> [2506] "022" "022" "032" "032" "022" "032" "021" "021" "021" "021" "021" "021" "021" "022" "021"
#> [2521] "021" "021" "022" "022" "022" "021" "021" "022" "021" "021" "022" "021" "021" "01"  "021"
#> [2536] "032" "022" "022" "022" "023" "022" "022" "022" "022" "023" "022" "022" "022" "01"  "022"
#> [2551] "032" "032" "01"  "01"  "021" "032" "022" "01"  "021" "021" "032" "021" "032" "022" "022"
#> [2566] "032" "022" "022" "022" "022" "022" "01"  "01"  "01"  "032" "032" "022" "022" "021" "021"
#> [2581] "021" "022" "022" "022" "022" "022" "022" "01"  "021" "023" "023" "023" "021" "021" "021"
#> [2596] "021" "021" "021" "023" "021" "021" "021" "023" "021" "023" "023" "023" "023" "032" "01" 
#> [2611] "023" "021" "023" "022" "022" "032" "022" "023" "023" "023" "023" "023" "01"  "021" "022"
#> [2626] "023" "01"  "01"  "01"  "023" "021" "021" "021" "021" "021" "022" "021" "022" "022" "022"
#> [2641] "022" "032" "022" "022" "021" "022" "022" "022" "032" "022" "01"  "022" "022" "022" "022"
#> [2656] "022" "023" "022" "022" "022" "022" "022" "022" "032" "032" "022" "032" "022" "022" "032"
#> [2671] "022" "01"  "032" "022" "032" "022" "022" "032" "01"  "01"  "01"  "022" "01"  "01"  "01" 
#> [2686] "023" "023" "021" "021" "032" "021" "021" "023" "023" "01"  "022" "032" "021" "022" "032"
#> [2701] "022" "021" "01"  "022" "022" "032" "01"  "022" "01"  "01"  "022" "01"  "01"  "023" "022"
#> [2716] "023" "01"  "01"  "023" "01"  "022" "022" "01"  "021" "032" "01"  "032" "01"  "01"  "032"
#> [2731] "021" "022" "032" "022" "032" "01"  "01"  "032" "01"  "032" "01"  "01"  "021" "022" "022"
#> [2746] "01"  "01"  "01"  "01"  "032" "01"  "01"  "022" "022" "032" "032" "01"  "021" "021" "021"
#> [2761] "021" "021" "021" "021" "023" "01"  "01"  "022" "021" "021" "021" "021" "021" "021" "021"
#> [2776] "021" "021" "021" "021" "021" "021" "023" "021" "021" "021" "023" "021" "023" "021" "01" 
#> [2791] "01"  "022" "023" "023" "021" "021" "021" "021" "021" "021" "021" "021" "023" "021" "021"
#> [2806] "021" "021" "023" "021" "021" "021" "021" "021" "021" "021" "021" "022" "01"  "01"  "01" 
#> [2821] "022" "021" "023" "021" "021" "021" "021" "021" "021" "022" "021" "021" "021" "021" "023"
#> [2836] "022" "021" "021" "023" "023" "021" "021" "021" "021" "021" "021" "021" "021" "021" "021"
#> [2851] "021" "021" "032" "023" "01"  "022" "021" "01"  "022" "021" "023" "023" "022" "022" "021"
#> [2866] "021" "023" "022" "021" "022" "021" "021" "021" "021" "021" "021" "022" "021" "01"  "021"
#> [2881] "021"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 4249))
#>    [1] "01"  "01"  "023" "032" "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "032" "01"  "01" 
#>   [16] "01"  "01"  "01"  "031" "01"  "032" "01"  "01"  "032" "01"  "032" "032" "032" "01"  "031"
#>   [31] "032" "01"  "032" "032" "032" "01"  "01"  "01"  "031" "031" "01"  "022" "01"  "031" "01" 
#>   [46] "01"  "031" "031" "032" "01"  "031" "01"  "01"  "01"  "01"  "021" "021" "01"  "01"  "031"
#>   [61] "032" "01"  "01"  "022" "031" "01"  "01"  "01"  "032" "01"  "032" "031" "032" "01"  "01" 
#>   [76] "01"  "01"  "01"  "022" "01"  "01"  "032" "01"  "01"  "01"  "022" "01"  "01"  "01"  "01" 
#>   [91] "032" "01"  "021" "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01" 
#>  [106] "032" "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "022" "032" "01"  "032"
#>  [121] "031" "032" "022" "022" "022" "023" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01" 
#>  [136] "022" "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "021" "01"  "032"
#>  [151] "031" "031" "01"  "031" "032" "01"  "031" "023" "032" "032" "032" "01"  "031" "031" "022"
#>  [166] "01"  "032" "031" "01"  "01"  "032" "031" "031" "022" "022" "031" "031" "01"  "031" "031"
#>  [181] "031" "031" "032" "031" "032" "031" "031" "031" "031" "022" "032" "01"  "031" "031" "031"
#>  [196] "032" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "032" "031" "032" "022"
#>  [211] "031" "023" "031" "031" "031" "031" "032" "022" "031" "01"  "031" "031" "031" "031" "031"
#>  [226] "031" "031" "031" "01"  "021" "031" "031" "031" "031" "021" "031" "031" "031" "031" "031"
#>  [241] "031" "031" "031" "01"  "031" "031" "031" "022" "031" "031" "01"  "031" "031" "031" "031"
#>  [256] "031" "01"  "031" "031" "031" "01"  "031" "01"  "01"  "01"  "031" "01"  "01"  "01"  "031"
#>  [271] "01"  "01"  "031" "031" "01"  "031" "031" "031" "031" "032" "021" "01"  "031" "031" "031"
#>  [286] "022" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "021" "031"
#>  [301] "021" "031" "031" "023" "031" "021" "022" "031" "022" "031" "031" "031" "022" "031" "031"
#>  [316] "031" "01"  "031" "031" "01"  "031" "01"  "031" "031" "031" "01"  "031" "031" "031" "031"
#>  [331] "031" "01"  "01"  "01"  "01"  "022" "022" "01"  "031" "01"  "031" "031" "022" "031" "031"
#>  [346] "031" "022" "031" "031" "022" "031" "01"  "031" "031" "031" "031" "031" "031" "031" "031"
#>  [361] "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031"
#>  [376] "031" "031" "031" "031" "031" "01"  "01"  "022" "031" "01"  "01"  "01"  "031" "032" "031"
#>  [391] "01"  "031" "01"  "031" "022" "031" "031" "031" "01"  "01"  "031" "01"  "01"  "031" "01" 
#>  [406] "022" "01"  "031" "01"  "01"  "031" "031" "021" "01"  "01"  "01"  "01"  "01"  "031" "01" 
#>  [421] "01"  "01"  "01"  "031" "023" "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "023" "01" 
#>  [436] "022" "01"  "021" "01"  "023" "023" "031" "031" "031" "031" "01"  "01"  "031" "031" "031"
#>  [451] "031" "01"  "031" "01"  "01"  "031" "01"  "01"  "031" "031" "031" "031" "031" "031" "031"
#>  [466] "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031" "031"
#>  [481] "031" "031" "031" "01"  "021" "031" "031" "031" "022" "022" "021" "031" "031" "022" "031"
#>  [496] "01"  "021" "021" "01"  "031" "021" "01"  "031" "031" "031" "021" "01"  "031" "031" "031"
#>  [511] "031" "022" "031" "031" "01"  "01"  "022" "031" "031" "031" "01"  "01"  "01"  "031" "031"
#>  [526] "031" "031" "01"  "01"  "022" "021" "021" "01"  "022" "01"  "01"  "01"  "021" "01"  "031"
#>  [541] "01"  "022" "01"  "01"  "022" "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01" 
#>  [556] "01"  "01"  "031" "031" "01"  "031" "01"  "032" "032" "01"  "01"  "01"  "022" "031" "01" 
#>  [571] "01"  "022" "032" "031" "01"  "031" "01"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "031"
#>  [586] "01"  "031" "01"  "01"  "01"  "01"  "031" "01"  "031" "031" "032" "01"  "031" "031" "01" 
#>  [601] "01"  "01"  "01"  "031" "01"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [616] "023" "031" "031" "01"  "031" "031" "031" "01"  "031" "01"  "031" "031" "031" "031" "031"
#>  [631] "01"  "01"  "031" "01"  "031" "021" "031" "01"  "01"  "01"  "01"  "031" "031" "01"  "031"
#>  [646] "031" "01"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "031" "031"
#>  [661] "031" "01"  "023" "01"  "01"  "031" "031" "031" "031" "031" "022" "01"  "022" "031" "031"
#>  [676] "023" "031" "031" "022" "01"  "031" "031" "031" "031" "031" "031" "031" "031" "031" "031"
#>  [691] "031" "01"  "031" "031" "022" "031" "031" "01"  "031" "01"  "031" "01"  "01"  "031" "031"
#>  [706] "022" "022" "01"  "032" "01"  "032" "021" "01"  "01"  "01"  "01"  "01"  "01"  "022" "031"
#>  [721] "031" "022" "023" "01"  "022" "031" "031" "031" "01"  "01"  "031" "01"  "01"  "031" "01" 
#>  [736] "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "031" "031" "01"  "031" "031" "031" "031"
#>  [751] "031" "01"  "031" "01"  "01"  "01"  "031" "01"  "032" "031" "021" "022" "01"  "01"  "031"
#>  [766] "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "031" "01"  "022" "01"  "01"  "021" "01" 
#>  [781] "031" "01"  "01"  "01"  "01"  "01"  "031" "01"  "031" "031" "01"  "01"  "031" "022" "01" 
#>  [796] "031" "01"  "01"  "023" "031" "031" "022" "031" "031" "031" "023" "031" "01"  "031" "01" 
#>  [811] "01"  "01"  "032" "032" "01"  "01"  "01"  "01"  "01"  "021" "01"  "01"  "01"  "01"  "01" 
#>  [826] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [841] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "023" "032" "022" "01" 
#>  [856] "01"  "01"  "01"  "032" "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031"
#>  [871] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [886] "021" "01"  "032" "01"  "032" "01"  "031" "01"  "01"  "01"  "022" "022" "01"  "01"  "01" 
#>  [901] "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [916] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01" 
#>  [931] "01"  "01"  "01"  "01"  "022" "032" "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [946] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "021" "01"  "01"  "01"  "021"
#>  [961] "022" "01"  "01"  "021" "031" "01"  "01"  "01"  "01"  "031" "01"  "01"  "022" "01"  "01" 
#>  [976] "01"  "01"  "01"  "01"  "01"  "032" "032" "022" "022" "031" "01"  "01"  "01"  "01"  "031"
#>  [991] "031" "01"  "01"  "01"  "031" "01"  "01"  "032" "032" "01"  "022" "01"  "01"  "01"  "01" 
#> [1006] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "022" "01"  "01"  "01"  "01" 
#> [1021] "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1036] "031" "01"  "031" "01"  "021" "01"  "01"  "032" "01"  "01"  "01"  "031" "01"  "01"  "01" 
#> [1051] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1066] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01" 
#> [1081] "01"  "01"  "031" "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1096] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031"
#> [1111] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "031" "01"  "01"  "01" 
#> [1126] "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01" 
#> [1141] "022" "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1156] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1171] "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "01"  "01"  "022"
#> [1186] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1201] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022"
#> [1216] "01"  "032" "031" "01"  "01"  "01"  "01"  "01"  "022" "01"  "022" "01"  "01"  "01"  "01" 
#> [1231] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "033" "032" "031" "01"  "01" 
#> [1246] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "022" "022" "022" "01" 
#> [1261] "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "033" "01"  "01" 
#> [1276] "01"  "033" "021" "033" "033" "033" "01"  "033" "01"  "01"  "01"  "01"  "01"  "033" "033"
#> [1291] "01"  "033" "01"  "01"  "023" "033" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1306] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "033" "022" "01"  "033" "021" "01"  "01" 
#> [1321] "01"  "01"  "01"  "01"  "01"  "01"  "033" "01"  "01"  "01"  "01"  "021" "01"  "033" "01" 
#> [1336] "033" "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "01"  "022" "023" "021" "01"  "01" 
#> [1351] "01"  "01"  "021" "022" "01"  "01"  "01"  "01"  "01"  "01"  "021" "021" "01"  "01"  "033"
#> [1366] "033" "01"  "033" "01"  "033" "033" "033" "033" "01"  "033" "01"  "01"  "01"  "01"  "01" 
#> [1381] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "023"
#> [1396] "01"  "021" "023" "023" "01"  "023" "01"  "01"  "01"  "01"  "033" "023" "01"  "01"  "031"
#> [1411] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "033" "01"  "01"  "031" "01"  "01"  "01" 
#> [1426] "01"  "01"  "01"  "033" "031" "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01" 
#> [1441] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "033" "022" "01"  "01"  "022"
#> [1456] "01"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1471] "01"  "033" "01"  "031" "033" "031" "01"  "021" "01"  "022" "01"  "01"  "01"  "01"  "01" 
#> [1486] "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "01"  "01"  "01"  "023"
#> [1501] "01"  "01"  "01"  "01"  "01"  "032" "01"  "022" "01"  "022" "01"  "01"  "01"  "01"  "01" 
#> [1516] "01"  "01"  "022" "033" "022" "023" "023" "01"  "022" "01"  "01"  "033" "01"  "01"  "01" 
#> [1531] "01"  "01"  "01"  "021" "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1546] "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "021" "023" "01" 
#> [1561] "01"  "01"  "01"  "031" "022" "01"  "01"  "033" "01"  "01"  "01"  "022" "021" "01"  "021"
#> [1576] "033" "033" "021" "023" "023" "033" "021" "033" "023" "033" "033" "033" "033" "033" "033"
#> [1591] "01"  "033" "033" "022" "033" "021" "021" "023" "01"  "021" "01"  "033" "01"  "021" "021"
#> [1606] "01"  "01"  "023" "021" "021" "033" "033" "033" "033" "033" "033" "033" "021" "01"  "022"
#> [1621] "021" "023" "01"  "033" "01"  "021" "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "021"
#> [1636] "01"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "023" "01"  "01"  "01"  "01"  "01"  "01" 
#> [1651] "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1666] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "01"  "01"  "023"
#> [1681] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01" 
#> [1696] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "032" "01"  "01"  "01" 
#> [1711] "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "032" "032" "01"  "01"  "01"  "01"  "01" 
#> [1726] "01"  "01"  "031" "01"  "031" "031" "01"  "01"  "021" "01"  "01"  "01"  "01"  "01"  "01" 
#> [1741] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "031" "01"  "022" "01"  "022"
#> [1756] "01"  "01"  "01"  "01"  "031" "022" "01"  "01"  "01"  "01"  "022" "031" "01"  "01"  "022"
#> [1771] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01" 
#> [1786] "01"  "031" "01"  "01"  "032" "01"  "031" "031" "032" "022" "01"  "01"  "031" "022" "01" 
#> [1801] "01"  "01"  "01"  "032" "01"  "01"  "023" "021" "022" "031" "022" "01"  "01"  "01"  "01" 
#> [1816] "01"  "01"  "01"  "01"  "01"  "031" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022"
#> [1831] "01"  "01"  "032" "01"  "01"  "021" "022" "01"  "01"  "01"  "01"  "01"  "021" "01"  "01" 
#> [1846] "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "01"  "01"  "032" "01" 
#> [1861] "031" "01"  "01"  "033" "022" "031" "032" "032" "021" "01"  "01"  "032" "032" "01"  "01" 
#> [1876] "01"  "023" "01"  "01"  "01"  "021" "01"  "01"  "01"  "01"  "032" "01"  "031" "01"  "01" 
#> [1891] "01"  "022" "01"  "01"  "01"  "031" "01"  "01"  "01"  "031" "01"  "032" "01"  "031" "01" 
#> [1906] "01"  "033" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "032" "01"  "01"  "01"  "01"  "031"
#> [1921] "022" "01"  "032" "032" "01"  "031" "01"  "01"  "01"  "023" "032" "01"  "021" "01"  "032"
#> [1936] "023" "033" "01"  "01"  "032" "032" "01"  "032" "01"  "033" "022" "031" "032" "01"  "031"
#> [1951] "032" "01"  "01"  "021" "01"  "01"  "023" "032" "021" "032" "022" "032" "032" "022" "01" 
#> [1966] "032" "021" "033" "032" "031" "01"  "023" "031" "032" "021" "031" "01"  "021" "032" "021"
#> [1981] "032" "032" "033" "023" "021" "023" "021" "021" "021" "021" "022" "021" "023" "023" "022"
#> [1996] "021" "023" "023" "021" "023" "022" "021" "021" "023" "021" "022" "022" "021" "023" "023"
#> [2011] "021" "023" "021" "023" "01"  "022" "023" "032" "022" "021" "021" "022" "022" "022" "022"
#> [2026] "032" "022" "021" "021" "022" "022" "021" "022" "023" "022" "021" "022" "021" "022" "022"
#> [2041] "022" "032" "021" "023" "023" "021" "021" "021" "021" "01"  "022" "021" "023" "021" "021"
#> [2056] "021" "022" "021" "032" "022" "021" "022" "022" "021" "022" "022" "021" "021" "021" "021"
#> [2071] "021" "022" "023" "022" "021" "023" "021" "022" "021" "021" "021" "021" "021" "023" "021"
#> [2086] "021" "021" "023" "021" "022" "021" "022" "022" "021" "022" "022" "022" "021" "022" "023"
#> [2101] "021" "021" "021" "021" "021" "021" "021" "021" "023" "021" "023" "022" "021" "021" "021"
#> [2116] "021" "022" "021" "023" "023" "021" "021" "023" "023" "01"  "022" "021" "01"  "021" "021"
#> [2131] "021" "021" "021" "021" "021" "021" "021" "021" "022" "021" "022" "022" "021" "022" "022"
#> [2146] "022" "022" "021" "022" "021" "021" "021" "022" "022" "021" "021" "021" "022" "022" "021"
#> [2161] "022" "022" "022" "021" "022" "022" "022" "021" "022" "022" "022" "022" "021" "032" "022"
#> [2176] "022" "022" "021" "021" "021" "021" "022" "023" "022" "022" "022" "022" "022" "022" "01" 
#> [2191] "022" "01"  "022" "031" "022" "032" "022" "021" "021" "022" "023" "023" "022" "023" "023"
#> [2206] "022" "021" "021" "021" "023" "023" "022" "023" "022" "021" "021" "021" "021" "021" "021"
#> [2221] "022" "021" "021" "021" "022" "021" "021" "021" "022" "021" "022" "022" "022" "022" "021"
#> [2236] "022" "032" "022" "022" "032" "022" "032" "022" "022" "022" "022" "022" "023" "023" "022"
#> [2251] "022" "032" "022" "022" "023" "023" "022" "022" "01"  "032" "021" "022" "022" "022" "022"
#> [2266] "032" "023" "022" "032" "022" "022" "022" "01"  "022" "01"  "022" "022" "032" "022" "023"
#> [2281] "022" "022" "01"  "022" "022" "022" "01"  "032" "032" "022" "022" "032" "022" "022" "01" 
#> [2296] "022" "022" "022" "01"  "032" "01"  "01"  "01"  "022" "01"  "022" "01"  "01"  "01"  "022"
#> [2311] "01"  "032" "022" "01"  "01"  "01"  "01"  "021" "023" "022" "01"  "022" "022" "032" "022"
#> [2326] "022" "022" "022" "022" "022" "022" "022" "022" "022" "032" "01"  "01"  "032" "022" "01" 
#> [2341] "032" "032" "022" "021" "023" "022" "022" "022" "022" "022" "032" "022" "022" "022" "022"
#> [2356] "022" "032" "021" "021" "022" "021" "022" "021" "023" "021" "021" "022" "021" "021" "022"
#> [2371] "022" "022" "021" "022" "021" "022" "022" "022" "021" "021" "023" "022" "021" "021" "023"
#> [2386] "022" "022" "022" "022" "023" "021" "022" "022" "022" "021" "021" "021" "022" "032" "022"
#> [2401] "01"  "01"  "01"  "021" "022" "023" "021" "022" "021" "022" "021" "022" "021" "01"  "022"
#> [2416] "022" "022" "022" "023" "01"  "022" "022" "032" "021" "021" "023" "022" "022" "022" "022"
#> [2431] "022" "022" "01"  "032" "01"  "022" "032" "032" "032" "01"  "01"  "01"  "032" "032" "032"
#> [2446] "022" "022" "022" "021" "022" "021" "021" "021" "021" "021" "021" "021" "021" "021" "023"
#> [2461] "021" "021" "021" "021" "021" "021" "021" "021" "022" "022" "032" "022" "022" "022" "021"
#> [2476] "021" "022" "021" "022" "022" "022" "021" "022" "022" "021" "022" "021" "021" "021" "021"
#> [2491] "021" "021" "021" "021" "022" "021" "022" "021" "021" "022" "021" "022" "021" "022" "022"
#> [2506] "022" "022" "032" "032" "022" "032" "021" "021" "021" "021" "021" "021" "021" "022" "021"
#> [2521] "021" "021" "022" "022" "022" "021" "021" "022" "021" "021" "022" "021" "021" "01"  "021"
#> [2536] "032" "022" "022" "022" "023" "022" "022" "022" "022" "023" "022" "022" "022" "01"  "022"
#> [2551] "032" "032" "01"  "01"  "021" "032" "022" "01"  "021" "021" "032" "021" "032" "022" "022"
#> [2566] "032" "022" "022" "022" "022" "022" "01"  "01"  "01"  "032" "032" "022" "022" "021" "021"
#> [2581] "021" "022" "022" "022" "022" "022" "022" "01"  "021" "023" "023" "023" "021" "021" "021"
#> [2596] "021" "021" "021" "023" "021" "021" "021" "023" "021" "023" "023" "023" "023" "032" "01" 
#> [2611] "023" "021" "023" "022" "022" "032" "022" "023" "023" "023" "023" "023" "01"  "021" "022"
#> [2626] "023" "01"  "01"  "01"  "023" "021" "021" "021" "021" "021" "022" "021" "022" "022" "022"
#> [2641] "022" "032" "022" "022" "021" "022" "022" "022" "032" "022" "01"  "022" "022" "022" "022"
#> [2656] "022" "023" "022" "022" "022" "022" "022" "022" "032" "032" "022" "032" "022" "022" "032"
#> [2671] "022" "01"  "032" "022" "032" "022" "022" "032" "01"  "01"  "01"  "022" "01"  "01"  "01" 
#> [2686] "023" "023" "021" "021" "032" "021" "021" "023" "023" "01"  "022" "032" "021" "022" "032"
#> [2701] "022" "021" "01"  "022" "022" "032" "01"  "022" "01"  "01"  "022" "01"  "01"  "023" "022"
#> [2716] "023" "01"  "01"  "023" "01"  "022" "022" "01"  "021" "032" "01"  "032" "01"  "01"  "032"
#> [2731] "021" "022" "032" "022" "032" "01"  "01"  "032" "01"  "032" "01"  "01"  "021" "022" "022"
#> [2746] "01"  "01"  "01"  "01"  "032" "01"  "01"  "022" "022" "032" "032" "01"  "021" "021" "021"
#> [2761] "021" "021" "021" "021" "023" "01"  "01"  "022" "021" "021" "021" "021" "021" "021" "021"
#> [2776] "021" "021" "021" "021" "021" "021" "023" "021" "021" "021" "023" "021" "023" "021" "01" 
#> [2791] "01"  "022" "023" "023" "021" "021" "021" "021" "021" "021" "021" "021" "023" "021" "021"
#> [2806] "021" "021" "023" "021" "021" "021" "021" "021" "021" "021" "021" "022" "01"  "01"  "01" 
#> [2821] "022" "021" "023" "021" "021" "021" "021" "021" "021" "022" "021" "021" "021" "021" "023"
#> [2836] "022" "021" "021" "023" "023" "021" "021" "021" "021" "021" "021" "021" "021" "021" "021"
#> [2851] "021" "021" "032" "023" "01"  "022" "021" "01"  "022" "021" "023" "023" "022" "022" "021"
#> [2866] "021" "023" "022" "021" "022" "021" "021" "021" "021" "021" "021" "022" "021" "01"  "021"
#> [2881] "021"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 5466))
#>    [1] "01"  "01"  "023" "03"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01" 
#>   [16] "01"  "01"  "01"  "03"  "01"  "03"  "01"  "01"  "03"  "01"  "03"  "03"  "03"  "01"  "03" 
#>   [31] "03"  "01"  "03"  "03"  "03"  "01"  "01"  "01"  "03"  "03"  "01"  "022" "01"  "03"  "01" 
#>   [46] "01"  "03"  "03"  "03"  "01"  "03"  "01"  "01"  "01"  "01"  "021" "021" "01"  "01"  "03" 
#>   [61] "03"  "01"  "01"  "022" "03"  "01"  "01"  "01"  "03"  "01"  "03"  "03"  "03"  "01"  "01" 
#>   [76] "01"  "01"  "01"  "022" "01"  "01"  "03"  "01"  "01"  "01"  "022" "01"  "01"  "01"  "01" 
#>   [91] "03"  "01"  "021" "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01" 
#>  [106] "03"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "022" "03"  "01"  "03" 
#>  [121] "03"  "03"  "022" "022" "022" "023" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01" 
#>  [136] "022" "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "021" "01"  "03" 
#>  [151] "03"  "03"  "01"  "03"  "03"  "01"  "03"  "023" "03"  "03"  "03"  "01"  "03"  "03"  "022"
#>  [166] "01"  "03"  "03"  "01"  "01"  "03"  "03"  "03"  "022" "022" "03"  "03"  "01"  "03"  "03" 
#>  [181] "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "022" "03"  "01"  "03"  "03"  "03" 
#>  [196] "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "022"
#>  [211] "03"  "023" "03"  "03"  "03"  "03"  "03"  "022" "03"  "01"  "03"  "03"  "03"  "03"  "03" 
#>  [226] "03"  "03"  "03"  "01"  "021" "03"  "03"  "03"  "03"  "021" "03"  "03"  "03"  "03"  "03" 
#>  [241] "03"  "03"  "03"  "01"  "03"  "03"  "03"  "022" "03"  "03"  "01"  "03"  "03"  "03"  "03" 
#>  [256] "03"  "01"  "03"  "03"  "03"  "01"  "03"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "03" 
#>  [271] "01"  "01"  "03"  "03"  "01"  "03"  "03"  "03"  "03"  "03"  "021" "01"  "03"  "03"  "03" 
#>  [286] "022" "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "021" "03" 
#>  [301] "021" "03"  "03"  "023" "03"  "021" "022" "03"  "022" "03"  "03"  "03"  "022" "03"  "03" 
#>  [316] "03"  "01"  "03"  "03"  "01"  "03"  "01"  "03"  "03"  "03"  "01"  "03"  "03"  "03"  "03" 
#>  [331] "03"  "01"  "01"  "01"  "01"  "022" "022" "01"  "03"  "01"  "03"  "03"  "022" "03"  "03" 
#>  [346] "03"  "022" "03"  "03"  "022" "03"  "01"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03" 
#>  [361] "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03" 
#>  [376] "03"  "03"  "03"  "03"  "03"  "01"  "01"  "022" "03"  "01"  "01"  "01"  "03"  "03"  "03" 
#>  [391] "01"  "03"  "01"  "03"  "022" "03"  "03"  "03"  "01"  "01"  "03"  "01"  "01"  "03"  "01" 
#>  [406] "022" "01"  "03"  "01"  "01"  "03"  "03"  "021" "01"  "01"  "01"  "01"  "01"  "03"  "01" 
#>  [421] "01"  "01"  "01"  "03"  "023" "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "023" "01" 
#>  [436] "022" "01"  "021" "01"  "023" "023" "03"  "03"  "03"  "03"  "01"  "01"  "03"  "03"  "03" 
#>  [451] "03"  "01"  "03"  "01"  "01"  "03"  "01"  "01"  "03"  "03"  "03"  "03"  "03"  "03"  "03" 
#>  [466] "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03" 
#>  [481] "03"  "03"  "03"  "01"  "021" "03"  "03"  "03"  "022" "022" "021" "03"  "03"  "022" "03" 
#>  [496] "01"  "021" "021" "01"  "03"  "021" "01"  "03"  "03"  "03"  "021" "01"  "03"  "03"  "03" 
#>  [511] "03"  "022" "03"  "03"  "01"  "01"  "022" "03"  "03"  "03"  "01"  "01"  "01"  "03"  "03" 
#>  [526] "03"  "03"  "01"  "01"  "022" "021" "021" "01"  "022" "01"  "01"  "01"  "021" "01"  "03" 
#>  [541] "01"  "022" "01"  "01"  "022" "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [556] "01"  "01"  "03"  "03"  "01"  "03"  "01"  "03"  "03"  "01"  "01"  "01"  "022" "03"  "01" 
#>  [571] "01"  "022" "03"  "03"  "01"  "03"  "01"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "03" 
#>  [586] "01"  "03"  "01"  "01"  "01"  "01"  "03"  "01"  "03"  "03"  "03"  "01"  "03"  "03"  "01" 
#>  [601] "01"  "01"  "01"  "03"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [616] "023" "03"  "03"  "01"  "03"  "03"  "03"  "01"  "03"  "01"  "03"  "03"  "03"  "03"  "03" 
#>  [631] "01"  "01"  "03"  "01"  "03"  "021" "03"  "01"  "01"  "01"  "01"  "03"  "03"  "01"  "03" 
#>  [646] "03"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "03"  "03" 
#>  [661] "03"  "01"  "023" "01"  "01"  "03"  "03"  "03"  "03"  "03"  "022" "01"  "022" "03"  "03" 
#>  [676] "023" "03"  "03"  "022" "01"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03"  "03" 
#>  [691] "03"  "01"  "03"  "03"  "022" "03"  "03"  "01"  "03"  "01"  "03"  "01"  "01"  "03"  "03" 
#>  [706] "022" "022" "01"  "03"  "01"  "03"  "021" "01"  "01"  "01"  "01"  "01"  "01"  "022" "03" 
#>  [721] "03"  "022" "023" "01"  "022" "03"  "03"  "03"  "01"  "01"  "03"  "01"  "01"  "03"  "01" 
#>  [736] "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "03"  "03"  "01"  "03"  "03"  "03"  "03" 
#>  [751] "03"  "01"  "03"  "01"  "01"  "01"  "03"  "01"  "03"  "03"  "021" "022" "01"  "01"  "03" 
#>  [766] "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "03"  "01"  "022" "01"  "01"  "021" "01" 
#>  [781] "03"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "03"  "03"  "01"  "01"  "03"  "022" "01" 
#>  [796] "03"  "01"  "01"  "023" "03"  "03"  "022" "03"  "03"  "03"  "023" "03"  "01"  "03"  "01" 
#>  [811] "01"  "01"  "03"  "03"  "01"  "01"  "01"  "01"  "01"  "021" "01"  "01"  "01"  "01"  "01" 
#>  [826] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [841] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "023" "03"  "022" "01" 
#>  [856] "01"  "01"  "01"  "03"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03" 
#>  [871] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [886] "021" "01"  "03"  "01"  "03"  "01"  "03"  "01"  "01"  "01"  "022" "022" "01"  "01"  "01" 
#>  [901] "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [916] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01" 
#>  [931] "01"  "01"  "01"  "01"  "022" "03"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#>  [946] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "021" "01"  "01"  "01"  "021"
#>  [961] "022" "01"  "01"  "021" "03"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "022" "01"  "01" 
#>  [976] "01"  "01"  "01"  "01"  "01"  "03"  "03"  "022" "022" "03"  "01"  "01"  "01"  "01"  "03" 
#>  [991] "03"  "01"  "01"  "01"  "03"  "01"  "01"  "03"  "03"  "01"  "022" "01"  "01"  "01"  "01" 
#> [1006] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "022" "01"  "01"  "01"  "01" 
#> [1021] "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1036] "03"  "01"  "03"  "01"  "021" "01"  "01"  "03"  "01"  "01"  "01"  "03"  "01"  "01"  "01" 
#> [1051] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1066] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01" 
#> [1081] "01"  "01"  "03"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1096] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03" 
#> [1111] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "03"  "01"  "01"  "01" 
#> [1126] "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01" 
#> [1141] "022" "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1156] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1171] "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "01"  "01"  "022"
#> [1186] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1201] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022"
#> [1216] "01"  "03"  "03"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "022" "01"  "01"  "01"  "01" 
#> [1231] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "03"  "03"  "03"  "01"  "01" 
#> [1246] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "022" "022" "022" "01" 
#> [1261] "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01" 
#> [1276] "01"  "03"  "021" "03"  "03"  "03"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "03"  "03" 
#> [1291] "01"  "03"  "01"  "01"  "023" "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1306] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "03"  "022" "01"  "03"  "021" "01"  "01" 
#> [1321] "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "021" "01"  "03"  "01" 
#> [1336] "03"  "01"  "01"  "01"  "01"  "01"  "01"  "022" "01"  "01"  "022" "023" "021" "01"  "01" 
#> [1351] "01"  "01"  "021" "022" "01"  "01"  "01"  "01"  "01"  "01"  "021" "021" "01"  "01"  "03" 
#> [1366] "03"  "01"  "03"  "01"  "03"  "03"  "03"  "03"  "01"  "03"  "01"  "01"  "01"  "01"  "01" 
#> [1381] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "023"
#> [1396] "01"  "021" "023" "023" "01"  "023" "01"  "01"  "01"  "01"  "03"  "023" "01"  "01"  "03" 
#> [1411] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "03"  "01"  "01"  "01" 
#> [1426] "01"  "01"  "01"  "03"  "03"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1441] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "03"  "022" "01"  "01"  "022"
#> [1456] "01"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1471] "01"  "03"  "01"  "03"  "03"  "03"  "01"  "021" "01"  "022" "01"  "01"  "01"  "01"  "01" 
#> [1486] "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "01"  "01"  "01"  "023"
#> [1501] "01"  "01"  "01"  "01"  "01"  "03"  "01"  "022" "01"  "022" "01"  "01"  "01"  "01"  "01" 
#> [1516] "01"  "01"  "022" "03"  "022" "023" "023" "01"  "022" "01"  "01"  "03"  "01"  "01"  "01" 
#> [1531] "01"  "01"  "01"  "021" "01"  "022" "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1546] "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "021" "023" "01" 
#> [1561] "01"  "01"  "01"  "03"  "022" "01"  "01"  "03"  "01"  "01"  "01"  "022" "021" "01"  "021"
#> [1576] "03"  "03"  "021" "023" "023" "03"  "021" "03"  "023" "03"  "03"  "03"  "03"  "03"  "03" 
#> [1591] "01"  "03"  "03"  "022" "03"  "021" "021" "023" "01"  "021" "01"  "03"  "01"  "021" "021"
#> [1606] "01"  "01"  "023" "021" "021" "03"  "03"  "03"  "03"  "03"  "03"  "03"  "021" "01"  "022"
#> [1621] "021" "023" "01"  "03"  "01"  "021" "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "021"
#> [1636] "01"  "01"  "01"  "022" "01"  "01"  "01"  "01"  "023" "01"  "01"  "01"  "01"  "01"  "01" 
#> [1651] "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01" 
#> [1666] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "023" "01"  "01"  "01"  "023"
#> [1681] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01" 
#> [1696] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "03"  "01"  "01"  "01" 
#> [1711] "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "03"  "01"  "01"  "01"  "01"  "01" 
#> [1726] "01"  "01"  "03"  "01"  "03"  "03"  "01"  "01"  "021" "01"  "01"  "01"  "01"  "01"  "01" 
#> [1741] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "03"  "01"  "022" "01"  "022"
#> [1756] "01"  "01"  "01"  "01"  "03"  "022" "01"  "01"  "01"  "01"  "022" "03"  "01"  "01"  "022"
#> [1771] "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01" 
#> [1786] "01"  "03"  "01"  "01"  "03"  "01"  "03"  "03"  "03"  "022" "01"  "01"  "03"  "022" "01" 
#> [1801] "01"  "01"  "01"  "03"  "01"  "01"  "023" "021" "022" "03"  "022" "01"  "01"  "01"  "01" 
#> [1816] "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "022"
#> [1831] "01"  "01"  "03"  "01"  "01"  "021" "022" "01"  "01"  "01"  "01"  "01"  "021" "01"  "01" 
#> [1846] "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01" 
#> [1861] "03"  "01"  "01"  "03"  "022" "03"  "03"  "03"  "021" "01"  "01"  "03"  "03"  "01"  "01" 
#> [1876] "01"  "023" "01"  "01"  "01"  "021" "01"  "01"  "01"  "01"  "03"  "01"  "03"  "01"  "01" 
#> [1891] "01"  "022" "01"  "01"  "01"  "03"  "01"  "01"  "01"  "03"  "01"  "03"  "01"  "03"  "01" 
#> [1906] "01"  "03"  "01"  "01"  "01"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "01"  "01"  "03" 
#> [1921] "022" "01"  "03"  "03"  "01"  "03"  "01"  "01"  "01"  "023" "03"  "01"  "021" "01"  "03" 
#> [1936] "023" "03"  "01"  "01"  "03"  "03"  "01"  "03"  "01"  "03"  "022" "03"  "03"  "01"  "03" 
#> [1951] "03"  "01"  "01"  "021" "01"  "01"  "023" "03"  "021" "03"  "022" "03"  "03"  "022" "01" 
#> [1966] "03"  "021" "03"  "03"  "03"  "01"  "023" "03"  "03"  "021" "03"  "01"  "021" "03"  "021"
#> [1981] "03"  "03"  "03"  "023" "021" "023" "021" "021" "021" "021" "022" "021" "023" "023" "022"
#> [1996] "021" "023" "023" "021" "023" "022" "021" "021" "023" "021" "022" "022" "021" "023" "023"
#> [2011] "021" "023" "021" "023" "01"  "022" "023" "03"  "022" "021" "021" "022" "022" "022" "022"
#> [2026] "03"  "022" "021" "021" "022" "022" "021" "022" "023" "022" "021" "022" "021" "022" "022"
#> [2041] "022" "03"  "021" "023" "023" "021" "021" "021" "021" "01"  "022" "021" "023" "021" "021"
#> [2056] "021" "022" "021" "03"  "022" "021" "022" "022" "021" "022" "022" "021" "021" "021" "021"
#> [2071] "021" "022" "023" "022" "021" "023" "021" "022" "021" "021" "021" "021" "021" "023" "021"
#> [2086] "021" "021" "023" "021" "022" "021" "022" "022" "021" "022" "022" "022" "021" "022" "023"
#> [2101] "021" "021" "021" "021" "021" "021" "021" "021" "023" "021" "023" "022" "021" "021" "021"
#> [2116] "021" "022" "021" "023" "023" "021" "021" "023" "023" "01"  "022" "021" "01"  "021" "021"
#> [2131] "021" "021" "021" "021" "021" "021" "021" "021" "022" "021" "022" "022" "021" "022" "022"
#> [2146] "022" "022" "021" "022" "021" "021" "021" "022" "022" "021" "021" "021" "022" "022" "021"
#> [2161] "022" "022" "022" "021" "022" "022" "022" "021" "022" "022" "022" "022" "021" "03"  "022"
#> [2176] "022" "022" "021" "021" "021" "021" "022" "023" "022" "022" "022" "022" "022" "022" "01" 
#> [2191] "022" "01"  "022" "03"  "022" "03"  "022" "021" "021" "022" "023" "023" "022" "023" "023"
#> [2206] "022" "021" "021" "021" "023" "023" "022" "023" "022" "021" "021" "021" "021" "021" "021"
#> [2221] "022" "021" "021" "021" "022" "021" "021" "021" "022" "021" "022" "022" "022" "022" "021"
#> [2236] "022" "03"  "022" "022" "03"  "022" "03"  "022" "022" "022" "022" "022" "023" "023" "022"
#> [2251] "022" "03"  "022" "022" "023" "023" "022" "022" "01"  "03"  "021" "022" "022" "022" "022"
#> [2266] "03"  "023" "022" "03"  "022" "022" "022" "01"  "022" "01"  "022" "022" "03"  "022" "023"
#> [2281] "022" "022" "01"  "022" "022" "022" "01"  "03"  "03"  "022" "022" "03"  "022" "022" "01" 
#> [2296] "022" "022" "022" "01"  "03"  "01"  "01"  "01"  "022" "01"  "022" "01"  "01"  "01"  "022"
#> [2311] "01"  "03"  "022" "01"  "01"  "01"  "01"  "021" "023" "022" "01"  "022" "022" "03"  "022"
#> [2326] "022" "022" "022" "022" "022" "022" "022" "022" "022" "03"  "01"  "01"  "03"  "022" "01" 
#> [2341] "03"  "03"  "022" "021" "023" "022" "022" "022" "022" "022" "03"  "022" "022" "022" "022"
#> [2356] "022" "03"  "021" "021" "022" "021" "022" "021" "023" "021" "021" "022" "021" "021" "022"
#> [2371] "022" "022" "021" "022" "021" "022" "022" "022" "021" "021" "023" "022" "021" "021" "023"
#> [2386] "022" "022" "022" "022" "023" "021" "022" "022" "022" "021" "021" "021" "022" "03"  "022"
#> [2401] "01"  "01"  "01"  "021" "022" "023" "021" "022" "021" "022" "021" "022" "021" "01"  "022"
#> [2416] "022" "022" "022" "023" "01"  "022" "022" "03"  "021" "021" "023" "022" "022" "022" "022"
#> [2431] "022" "022" "01"  "03"  "01"  "022" "03"  "03"  "03"  "01"  "01"  "01"  "03"  "03"  "03" 
#> [2446] "022" "022" "022" "021" "022" "021" "021" "021" "021" "021" "021" "021" "021" "021" "023"
#> [2461] "021" "021" "021" "021" "021" "021" "021" "021" "022" "022" "03"  "022" "022" "022" "021"
#> [2476] "021" "022" "021" "022" "022" "022" "021" "022" "022" "021" "022" "021" "021" "021" "021"
#> [2491] "021" "021" "021" "021" "022" "021" "022" "021" "021" "022" "021" "022" "021" "022" "022"
#> [2506] "022" "022" "03"  "03"  "022" "03"  "021" "021" "021" "021" "021" "021" "021" "022" "021"
#> [2521] "021" "021" "022" "022" "022" "021" "021" "022" "021" "021" "022" "021" "021" "01"  "021"
#> [2536] "03"  "022" "022" "022" "023" "022" "022" "022" "022" "023" "022" "022" "022" "01"  "022"
#> [2551] "03"  "03"  "01"  "01"  "021" "03"  "022" "01"  "021" "021" "03"  "021" "03"  "022" "022"
#> [2566] "03"  "022" "022" "022" "022" "022" "01"  "01"  "01"  "03"  "03"  "022" "022" "021" "021"
#> [2581] "021" "022" "022" "022" "022" "022" "022" "01"  "021" "023" "023" "023" "021" "021" "021"
#> [2596] "021" "021" "021" "023" "021" "021" "021" "023" "021" "023" "023" "023" "023" "03"  "01" 
#> [2611] "023" "021" "023" "022" "022" "03"  "022" "023" "023" "023" "023" "023" "01"  "021" "022"
#> [2626] "023" "01"  "01"  "01"  "023" "021" "021" "021" "021" "021" "022" "021" "022" "022" "022"
#> [2641] "022" "03"  "022" "022" "021" "022" "022" "022" "03"  "022" "01"  "022" "022" "022" "022"
#> [2656] "022" "023" "022" "022" "022" "022" "022" "022" "03"  "03"  "022" "03"  "022" "022" "03" 
#> [2671] "022" "01"  "03"  "022" "03"  "022" "022" "03"  "01"  "01"  "01"  "022" "01"  "01"  "01" 
#> [2686] "023" "023" "021" "021" "03"  "021" "021" "023" "023" "01"  "022" "03"  "021" "022" "03" 
#> [2701] "022" "021" "01"  "022" "022" "03"  "01"  "022" "01"  "01"  "022" "01"  "01"  "023" "022"
#> [2716] "023" "01"  "01"  "023" "01"  "022" "022" "01"  "021" "03"  "01"  "03"  "01"  "01"  "03" 
#> [2731] "021" "022" "03"  "022" "03"  "01"  "01"  "03"  "01"  "03"  "01"  "01"  "021" "022" "022"
#> [2746] "01"  "01"  "01"  "01"  "03"  "01"  "01"  "022" "022" "03"  "03"  "01"  "021" "021" "021"
#> [2761] "021" "021" "021" "021" "023" "01"  "01"  "022" "021" "021" "021" "021" "021" "021" "021"
#> [2776] "021" "021" "021" "021" "021" "021" "023" "021" "021" "021" "023" "021" "023" "021" "01" 
#> [2791] "01"  "022" "023" "023" "021" "021" "021" "021" "021" "021" "021" "021" "023" "021" "021"
#> [2806] "021" "021" "023" "021" "021" "021" "021" "021" "021" "021" "021" "022" "01"  "01"  "01" 
#> [2821] "022" "021" "023" "021" "021" "021" "021" "021" "021" "022" "021" "021" "021" "021" "023"
#> [2836] "022" "021" "021" "023" "023" "021" "021" "021" "021" "021" "021" "021" "021" "021" "021"
#> [2851] "021" "021" "03"  "023" "01"  "022" "021" "01"  "022" "021" "023" "023" "022" "022" "021"
#> [2866] "021" "023" "022" "021" "022" "021" "021" "021" "021" "021" "021" "022" "021" "01"  "021"
#> [2881] "021"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 6708))
#>    [1] "01" "01" "02" "03" "01" "01" "03" "01" "01" "01" "01" "01" "03" "01" "01" "01" "01" "01"
#>   [19] "03" "01" "03" "01" "01" "03" "01" "03" "03" "03" "01" "03" "03" "01" "03" "03" "03" "01"
#>   [37] "01" "01" "03" "03" "01" "02" "01" "03" "01" "01" "03" "03" "03" "01" "03" "01" "01" "01"
#>   [55] "01" "02" "02" "01" "01" "03" "03" "01" "01" "02" "03" "01" "01" "01" "03" "01" "03" "03"
#>   [73] "03" "01" "01" "01" "01" "01" "02" "01" "01" "03" "01" "01" "01" "02" "01" "01" "01" "01"
#>   [91] "03" "01" "02" "01" "01" "01" "01" "01" "01" "03" "01" "01" "01" "01" "01" "03" "02" "01"
#>  [109] "01" "01" "01" "01" "01" "01" "01" "02" "02" "03" "01" "03" "03" "03" "02" "02" "02" "02"
#>  [127] "01" "01" "01" "01" "01" "01" "01" "03" "01" "02" "01" "01" "03" "01" "01" "01" "01" "01"
#>  [145] "01" "02" "01" "02" "01" "03" "03" "03" "01" "03" "03" "01" "03" "02" "03" "03" "03" "01"
#>  [163] "03" "03" "02" "01" "03" "03" "01" "01" "03" "03" "03" "02" "02" "03" "03" "01" "03" "03"
#>  [181] "03" "03" "03" "03" "03" "03" "03" "03" "03" "02" "03" "01" "03" "03" "03" "03" "03" "03"
#>  [199] "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "02" "03" "02" "03" "03" "03" "03"
#>  [217] "03" "02" "03" "01" "03" "03" "03" "03" "03" "03" "03" "03" "01" "02" "03" "03" "03" "03"
#>  [235] "02" "03" "03" "03" "03" "03" "03" "03" "03" "01" "03" "03" "03" "02" "03" "03" "01" "03"
#>  [253] "03" "03" "03" "03" "01" "03" "03" "03" "01" "03" "01" "01" "01" "03" "01" "01" "01" "03"
#>  [271] "01" "01" "03" "03" "01" "03" "03" "03" "03" "03" "02" "01" "03" "03" "03" "02" "03" "03"
#>  [289] "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "02" "03" "02" "03" "03" "02" "03" "02"
#>  [307] "02" "03" "02" "03" "03" "03" "02" "03" "03" "03" "01" "03" "03" "01" "03" "01" "03" "03"
#>  [325] "03" "01" "03" "03" "03" "03" "03" "01" "01" "01" "01" "02" "02" "01" "03" "01" "03" "03"
#>  [343] "02" "03" "03" "03" "02" "03" "03" "02" "03" "01" "03" "03" "03" "03" "03" "03" "03" "03"
#>  [361] "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03"
#>  [379] "03" "03" "01" "01" "02" "03" "01" "01" "01" "03" "03" "03" "01" "03" "01" "03" "02" "03"
#>  [397] "03" "03" "01" "01" "03" "01" "01" "03" "01" "02" "01" "03" "01" "01" "03" "03" "02" "01"
#>  [415] "01" "01" "01" "01" "03" "01" "01" "01" "01" "03" "02" "01" "01" "01" "01" "01" "01" "02"
#>  [433] "01" "02" "01" "02" "01" "02" "01" "02" "02" "03" "03" "03" "03" "01" "01" "03" "03" "03"
#>  [451] "03" "01" "03" "01" "01" "03" "01" "01" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03"
#>  [469] "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "03" "01" "02" "03"
#>  [487] "03" "03" "02" "02" "02" "03" "03" "02" "03" "01" "02" "02" "01" "03" "02" "01" "03" "03"
#>  [505] "03" "02" "01" "03" "03" "03" "03" "02" "03" "03" "01" "01" "02" "03" "03" "03" "01" "01"
#>  [523] "01" "03" "03" "03" "03" "01" "01" "02" "02" "02" "01" "02" "01" "01" "01" "02" "01" "03"
#>  [541] "01" "02" "01" "01" "02" "01" "01" "01" "03" "01" "01" "01" "01" "01" "01" "01" "01" "03"
#>  [559] "03" "01" "03" "01" "03" "03" "01" "01" "01" "02" "03" "01" "01" "02" "03" "03" "01" "03"
#>  [577] "01" "01" "01" "02" "01" "01" "01" "01" "03" "01" "03" "01" "01" "01" "01" "03" "01" "03"
#>  [595] "03" "03" "01" "03" "03" "01" "01" "01" "01" "03" "01" "01" "02" "01" "01" "01" "01" "01"
#>  [613] "01" "01" "01" "02" "03" "03" "01" "03" "03" "03" "01" "03" "01" "03" "03" "03" "03" "03"
#>  [631] "01" "01" "03" "01" "03" "02" "03" "01" "01" "01" "01" "03" "03" "01" "03" "03" "01" "01"
#>  [649] "02" "01" "01" "01" "01" "01" "03" "01" "01" "01" "03" "03" "03" "01" "02" "01" "01" "03"
#>  [667] "03" "03" "03" "03" "02" "01" "02" "03" "03" "02" "03" "03" "02" "01" "03" "03" "03" "03"
#>  [685] "03" "03" "03" "03" "03" "03" "03" "01" "03" "03" "02" "03" "03" "01" "03" "01" "03" "01"
#>  [703] "01" "03" "03" "02" "02" "01" "03" "01" "03" "02" "01" "01" "01" "01" "01" "01" "02" "03"
#>  [721] "03" "02" "02" "01" "02" "03" "03" "03" "01" "01" "03" "01" "01" "03" "01" "01" "01" "01"
#>  [739] "01" "03" "01" "01" "01" "03" "03" "01" "03" "03" "03" "03" "03" "01" "03" "01" "01" "01"
#>  [757] "03" "01" "03" "03" "02" "02" "01" "01" "03" "01" "01" "01" "01" "01" "03" "01" "01" "03"
#>  [775] "01" "02" "01" "01" "02" "01" "03" "01" "01" "01" "01" "01" "03" "01" "03" "03" "01" "01"
#>  [793] "03" "02" "01" "03" "01" "01" "02" "03" "03" "02" "03" "03" "03" "02" "03" "01" "03" "01"
#>  [811] "01" "01" "03" "03" "01" "01" "01" "01" "01" "02" "01" "01" "01" "01" "01" "01" "01" "01"
#>  [829] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#>  [847] "01" "01" "03" "01" "01" "02" "03" "02" "01" "01" "01" "01" "03" "01" "01" "03" "01" "01"
#>  [865] "01" "01" "01" "01" "01" "03" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#>  [883] "01" "01" "01" "02" "01" "03" "01" "03" "01" "03" "01" "01" "01" "02" "02" "01" "01" "01"
#>  [901] "01" "01" "03" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#>  [919] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "02" "01" "01" "01" "01" "01" "02" "03"
#>  [937] "01" "02" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "03"
#>  [955] "01" "02" "01" "01" "01" "02" "02" "01" "01" "02" "03" "01" "01" "01" "01" "03" "01" "01"
#>  [973] "02" "01" "01" "01" "01" "01" "01" "01" "03" "03" "02" "02" "03" "01" "01" "01" "01" "03"
#>  [991] "03" "01" "01" "01" "03" "01" "01" "03" "03" "01" "02" "01" "01" "01" "01" "01" "01" "01"
#> [1009] "01" "01" "01" "01" "01" "02" "01" "02" "01" "01" "01" "01" "01" "01" "01" "01" "01" "03"
#> [1027] "01" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "03" "01" "02" "01" "01" "03" "01"
#> [1045] "01" "01" "03" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#> [1063] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01" "01" "01" "01"
#> [1081] "01" "01" "03" "01" "01" "01" "01" "03" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#> [1099] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01" "01" "01" "01" "01"
#> [1117] "01" "03" "01" "01" "01" "03" "01" "01" "01" "01" "01" "03" "01" "01" "01" "01" "01" "01"
#> [1135] "03" "01" "01" "01" "01" "01" "02" "01" "01" "01" "03" "01" "01" "01" "01" "01" "01" "01"
#> [1153] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#> [1171] "01" "03" "01" "01" "01" "01" "01" "01" "01" "01" "02" "01" "01" "01" "02" "01" "01" "01"
#> [1189] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#> [1207] "01" "01" "01" "01" "01" "01" "01" "01" "02" "01" "03" "03" "01" "01" "01" "01" "01" "02"
#> [1225] "01" "02" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01" "03" "03"
#> [1243] "03" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "02" "02" "02" "02" "01"
#> [1261] "01" "01" "01" "01" "03" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01" "01" "03" "02"
#> [1279] "03" "03" "03" "01" "03" "01" "01" "01" "01" "01" "03" "03" "01" "03" "01" "01" "02" "03"
#> [1297] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "02" "03"
#> [1315] "02" "01" "03" "02" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01" "01" "01" "02"
#> [1333] "01" "03" "01" "03" "01" "01" "01" "01" "01" "01" "02" "01" "01" "02" "02" "02" "01" "01"
#> [1351] "01" "01" "02" "02" "01" "01" "01" "01" "01" "01" "02" "02" "01" "01" "03" "03" "01" "03"
#> [1369] "01" "03" "03" "03" "03" "01" "03" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#> [1387] "01" "01" "01" "01" "01" "03" "01" "01" "02" "01" "02" "02" "02" "01" "02" "01" "01" "01"
#> [1405] "01" "03" "02" "01" "01" "03" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01" "03"
#> [1423] "01" "01" "01" "01" "01" "01" "03" "03" "01" "01" "01" "03" "01" "01" "01" "01" "01" "01"
#> [1441] "01" "01" "01" "01" "01" "01" "01" "01" "02" "01" "03" "02" "01" "01" "02" "01" "01" "01"
#> [1459] "02" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "03" "03" "03"
#> [1477] "01" "02" "01" "02" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01" "01" "01" "01" "01"
#> [1495] "02" "01" "01" "01" "01" "02" "01" "01" "01" "01" "01" "03" "01" "02" "01" "02" "01" "01"
#> [1513] "01" "01" "01" "01" "01" "02" "03" "02" "02" "02" "01" "02" "01" "01" "03" "01" "01" "01"
#> [1531] "01" "01" "01" "02" "01" "02" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#> [1549] "01" "01" "03" "01" "01" "01" "01" "01" "01" "02" "02" "01" "01" "01" "01" "03" "02" "01"
#> [1567] "01" "03" "01" "01" "01" "02" "02" "01" "02" "03" "03" "02" "02" "02" "03" "02" "03" "02"
#> [1585] "03" "03" "03" "03" "03" "03" "01" "03" "03" "02" "03" "02" "02" "02" "01" "02" "01" "03"
#> [1603] "01" "02" "02" "01" "01" "02" "02" "02" "03" "03" "03" "03" "03" "03" "03" "02" "01" "02"
#> [1621] "02" "02" "01" "03" "01" "02" "01" "01" "01" "01" "01" "01" "03" "01" "02" "01" "01" "01"
#> [1639] "02" "01" "01" "01" "01" "02" "01" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01"
#> [1657] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#> [1675] "01" "02" "01" "01" "01" "02" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#> [1693] "03" "01" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01" "01" "03" "01" "01" "01"
#> [1711] "01" "03" "01" "01" "01" "01" "01" "01" "03" "03" "01" "01" "01" "01" "01" "01" "01" "03"
#> [1729] "01" "03" "03" "01" "01" "02" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
#> [1747] "01" "01" "03" "01" "03" "01" "02" "01" "02" "01" "01" "01" "01" "03" "02" "01" "01" "01"
#> [1765] "01" "02" "03" "01" "01" "02" "01" "01" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01"
#> [1783] "01" "01" "01" "01" "03" "01" "01" "03" "01" "03" "03" "03" "02" "01" "01" "03" "02" "01"
#> [1801] "01" "01" "01" "03" "01" "01" "02" "02" "02" "03" "02" "01" "01" "01" "01" "01" "01" "01"
#> [1819] "01" "01" "03" "01" "01" "01" "01" "01" "01" "01" "01" "02" "01" "01" "03" "01" "01" "02"
#> [1837] "02" "01" "01" "01" "01" "01" "02" "01" "01" "01" "01" "01" "01" "01" "01" "03" "01" "01"
#> [1855] "01" "01" "01" "01" "03" "01" "03" "01" "01" "03" "02" "03" "03" "03" "02" "01" "01" "03"
#> [1873] "03" "01" "01" "01" "02" "01" "01" "01" "02" "01" "01" "01" "01" "03" "01" "03" "01" "01"
#> [1891] "01" "02" "01" "01" "01" "03" "01" "01" "01" "03" "01" "03" "01" "03" "01" "01" "03" "01"
#> [1909] "01" "01" "01" "01" "01" "01" "03" "01" "01" "01" "01" "03" "02" "01" "03" "03" "01" "03"
#> [1927] "01" "01" "01" "02" "03" "01" "02" "01" "03" "02" "03" "01" "01" "03" "03" "01" "03" "01"
#> [1945] "03" "02" "03" "03" "01" "03" "03" "01" "01" "02" "01" "01" "02" "03" "02" "03" "02" "03"
#> [1963] "03" "02" "01" "03" "02" "03" "03" "03" "01" "02" "03" "03" "02" "03" "01" "02" "03" "02"
#> [1981] "03" "03" "03" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [1999] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "01" "02"
#> [2017] "02" "03" "02" "02" "02" "02" "02" "02" "02" "03" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2035] "02" "02" "02" "02" "02" "02" "02" "03" "02" "02" "02" "02" "02" "02" "02" "01" "02" "02"
#> [2053] "02" "02" "02" "02" "02" "02" "03" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2071] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2089] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2107] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2125] "01" "02" "02" "01" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2143] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2161] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "03" "02" "02" "02" "02"
#> [2179] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "01" "02" "01" "02" "03" "02" "03"
#> [2197] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2215] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2233] "02" "02" "02" "02" "03" "02" "02" "03" "02" "03" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2251] "02" "03" "02" "02" "02" "02" "02" "02" "01" "03" "02" "02" "02" "02" "02" "03" "02" "02"
#> [2269] "03" "02" "02" "02" "01" "02" "01" "02" "02" "03" "02" "02" "02" "02" "01" "02" "02" "02"
#> [2287] "01" "03" "03" "02" "02" "03" "02" "02" "01" "02" "02" "02" "01" "03" "01" "01" "01" "02"
#> [2305] "01" "02" "01" "01" "01" "02" "01" "03" "02" "01" "01" "01" "01" "02" "02" "02" "01" "02"
#> [2323] "02" "03" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "03" "01" "01" "03" "02" "01"
#> [2341] "03" "03" "02" "02" "02" "02" "02" "02" "02" "02" "03" "02" "02" "02" "02" "02" "03" "02"
#> [2359] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2377] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2395] "02" "02" "02" "02" "03" "02" "01" "01" "01" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2413] "02" "01" "02" "02" "02" "02" "02" "01" "02" "02" "03" "02" "02" "02" "02" "02" "02" "02"
#> [2431] "02" "02" "01" "03" "01" "02" "03" "03" "03" "01" "01" "01" "03" "03" "03" "02" "02" "02"
#> [2449] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2467] "02" "02" "02" "02" "03" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2485] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2503] "02" "02" "02" "02" "02" "03" "03" "02" "03" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2521] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "01" "02" "03" "02" "02"
#> [2539] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "01" "02" "03" "03" "01" "01" "02" "03"
#> [2557] "02" "01" "02" "02" "03" "02" "03" "02" "02" "03" "02" "02" "02" "02" "02" "01" "01" "01"
#> [2575] "03" "03" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "01" "02" "02" "02" "02"
#> [2593] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "03" "01"
#> [2611] "02" "02" "02" "02" "02" "03" "02" "02" "02" "02" "02" "02" "01" "02" "02" "02" "01" "01"
#> [2629] "01" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "03" "02" "02" "02" "02"
#> [2647] "02" "02" "03" "02" "01" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "03"
#> [2665] "03" "02" "03" "02" "02" "03" "02" "01" "03" "02" "03" "02" "02" "03" "01" "01" "01" "02"
#> [2683] "01" "01" "01" "02" "02" "02" "02" "03" "02" "02" "02" "02" "01" "02" "03" "02" "02" "03"
#> [2701] "02" "02" "01" "02" "02" "03" "01" "02" "01" "01" "02" "01" "01" "02" "02" "02" "01" "01"
#> [2719] "02" "01" "02" "02" "01" "02" "03" "01" "03" "01" "01" "03" "02" "02" "03" "02" "03" "01"
#> [2737] "01" "03" "01" "03" "01" "01" "02" "02" "02" "01" "01" "01" "01" "03" "01" "01" "02" "02"
#> [2755] "03" "03" "01" "02" "02" "02" "02" "02" "02" "02" "02" "01" "01" "02" "02" "02" "02" "02"
#> [2773] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "01"
#> [2791] "01" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2809] "02" "02" "02" "02" "02" "02" "02" "02" "02" "01" "01" "01" "02" "02" "02" "02" "02" "02"
#> [2827] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02"
#> [2845] "02" "02" "02" "02" "02" "02" "02" "02" "03" "02" "01" "02" "02" "01" "02" "02" "02" "02"
#> [2863] "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "02" "01" "02"
#> [2881] "02"

Top rows heatmap

Heatmaps of the top rows:

top_rows_heatmap(res_rh)

plot of chunk top-rows-heatmap

Top rows on each node:

top_rows_overlap(res_rh, method = "upset")

plot of chunk top-rows-overlap

UMAP plot

UMAP plot which shows how samples are separated.

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 347),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 347),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-1

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 438),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 438),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-2

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 508),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 508),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-3

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 577),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 577),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-4

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 628),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 628),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-5

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 634),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 634),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-6

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 677),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 677),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-7

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 755),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 755),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-8

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 890),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 890),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-9

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 960),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 960),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-10

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 979),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 979),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-11

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1000),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1000),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-12

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1348),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1348),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-13

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1387),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1387),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-14

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1390),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1390),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-15

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1908),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1908),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-16

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 2292),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 2292),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-17

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 2797),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 2797),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-18

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 2878),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 2878),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-19

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 3262),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 3262),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-20

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 3273),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 3273),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-21

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 3301),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 3301),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-22

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 3324),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 3324),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-23

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 4249),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 4249),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-24

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 5466),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 5466),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-25

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 6708),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 6708),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-26

Signature heatmap

Signatures on the heatmap are the union of all signatures found on every node on the hierarchy. The number of k-means on rows are automatically selected by the function.

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 347))

plot of chunk tab-get-signatures-from-hierarchical-partition-1

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 438))

plot of chunk tab-get-signatures-from-hierarchical-partition-2

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 508))

plot of chunk tab-get-signatures-from-hierarchical-partition-3

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 577))

plot of chunk tab-get-signatures-from-hierarchical-partition-4

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 628))

plot of chunk tab-get-signatures-from-hierarchical-partition-5

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 634))

plot of chunk tab-get-signatures-from-hierarchical-partition-6

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 677))

plot of chunk tab-get-signatures-from-hierarchical-partition-7

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 755))

plot of chunk tab-get-signatures-from-hierarchical-partition-8

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 890))

plot of chunk tab-get-signatures-from-hierarchical-partition-9

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 960))

plot of chunk tab-get-signatures-from-hierarchical-partition-10

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 979))

plot of chunk tab-get-signatures-from-hierarchical-partition-11

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 1000))

plot of chunk tab-get-signatures-from-hierarchical-partition-12

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 1348))

plot of chunk tab-get-signatures-from-hierarchical-partition-13

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 1387))

plot of chunk tab-get-signatures-from-hierarchical-partition-14

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 1390))

plot of chunk tab-get-signatures-from-hierarchical-partition-15

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 1908))

plot of chunk tab-get-signatures-from-hierarchical-partition-16

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 2292))

plot of chunk tab-get-signatures-from-hierarchical-partition-17

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 2797))

plot of chunk tab-get-signatures-from-hierarchical-partition-18

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 2878))

plot of chunk tab-get-signatures-from-hierarchical-partition-19

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 3262))

plot of chunk tab-get-signatures-from-hierarchical-partition-20

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 3273))

plot of chunk tab-get-signatures-from-hierarchical-partition-21

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 3301))

plot of chunk tab-get-signatures-from-hierarchical-partition-22

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 3324))

plot of chunk tab-get-signatures-from-hierarchical-partition-23

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 4249))

plot of chunk tab-get-signatures-from-hierarchical-partition-24

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 5466))

plot of chunk tab-get-signatures-from-hierarchical-partition-25

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 6708))

plot of chunk tab-get-signatures-from-hierarchical-partition-26

Compare signatures from different nodes:

compare_signatures(res_rh, verbose = FALSE)

plot of chunk unnamed-chunk-24

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs. Note it only works on every node and the final signatures are the union of all signatures of all nodes.

# code only for demonstration
# e.g. to show the top 500 most significant rows on each node.
tb = get_signature(res_rh, top_signatures = 500)

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 347))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 438))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 508))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 577))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 628))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 634))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 677))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 755))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 890))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 960))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 979))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 1000))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 1348))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 1387))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 1390))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 1908))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 2292))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 2797))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 2878))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 3262))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 3273))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 3301))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 3324))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 4249))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 5466))
#>       level1.class
#> class            0
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 6708))
#>       level1.class
#> class            0

Results for each node


Node0

Child nodes: Node01 , Node02 , Node03 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0"]

A summary of res and all the functions that can be applied to it:

res
#> A 'DownSamplingConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 10389 rows and 500 columns, randomly sampled from 2881 columns.
#>   Top rows (980) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'DownSamplingConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.983       0.993         0.4868 0.512   0.512
#> 3 3 1.000           0.973       0.990         0.2476 0.858   0.729
#> 4 4 0.998           0.950       0.977         0.0822 0.938   0.846

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

get_classes(res, k = 2)
#>      class     p
#> 1        1 0.000
#> 2        1 0.249
#> 3        2 0.000
#> 4        1 0.000
#> 5        1 0.000
#> 6        1 0.000
#> 7        1 0.000
#> 8        1 0.000
#> 9        1 0.000
#> 10       1 0.000
#> 11       1 0.000
#> 12       1 0.000
#> 13       1 0.000
#> 14       1 0.000
#> 15       1 0.000
#> 16       1 0.000
#> 17       1 0.000
#> 18       1 0.000
#> 19       1 0.000
#> 20       1 0.000
#> 21       1 0.000
#> 22       1 0.000
#> 23       1 0.000
#> 24       1 0.000
#> 25       1 0.000
#> 26       1 0.249
#> 27       1 0.000
#> 28       1 0.000
#> 29       1 0.000
#> 30       1 0.000
#> 31       1 0.000
#> 32       1 0.000
#> 33       1 0.000
#> 34       1 0.000
#> 35       1 0.249
#> 36       1 0.000
#> 37       1 0.000
#> 38       1 0.000
#> 39       1 0.000
#> 40       1 0.000
#> 41       1 0.000
#> 42       2 0.000
#> 43       1 0.000
#> 44       1 0.000
#> 45       1 0.000
#> 46       1 0.000
#> 47       1 0.000
#> 48       1 0.000
#> 49       1 0.000
#> 50       1 0.000
#> 51       1 0.000
#> 52       1 0.249
#> 53       1 0.000
#> 54       1 0.000
#> 55       1 0.249
#> 56       2 0.000
#> 57       2 0.000
#> 58       1 0.000
#> 59       1 0.000
#> 60       1 0.000
#> 61       1 0.000
#> 62       1 0.000
#> 63       1 0.249
#> 64       2 0.000
#> 65       1 0.000
#> 66       1 0.249
#> 67       1 0.000
#> 68       1 0.502
#> 69       1 0.000
#> 70       1 0.000
#> 71       1 1.000
#> 72       1 0.000
#> 73       1 0.253
#> 74       1 0.249
#> 75       1 0.000
#> 76       1 0.751
#> 77       1 0.000
#> 78       1 0.000
#> 79       2 0.000
#> 80       1 0.000
#> 81       1 1.000
#> 82       1 0.000
#> 83       1 0.000
#> 84       1 0.249
#> 85       1 0.249
#> 86       2 0.000
#> 87       1 0.000
#> 88       1 0.000
#> 89       1 0.000
#> 90       1 0.249
#> 91       1 0.000
#> 92       1 0.000
#> 93       2 0.000
#> 94       1 0.000
#> 95       1 0.000
#> 96       1 0.000
#> 97       1 0.000
#> 98       1 0.000
#> 99       1 0.498
#> 100      1 0.000
#> 101      1 0.000
#> 102      1 0.000
#> 103      1 0.000
#> 104      1 0.000
#> 105      1 0.000
#> 106      1 0.000
#> 107      2 0.000
#> 108      1 0.502
#> 109      1 0.751
#> 110      1 0.000
#> 111      1 0.000
#> 112      1 0.249
#> 113      1 1.000
#> 114      1 0.751
#> 115      1 1.000
#> 116      2 0.000
#> 117      2 0.000
#> 118      1 0.000
#> 119      1 0.000
#> 120      1 1.000
#> 121      1 0.000
#> 122      1 0.747
#> 123      2 0.000
#> 124      2 0.000
#> 125      2 0.000
#> 126      2 0.000
#> 127      1 0.502
#> 128      1 0.000
#> 129      1 0.000
#> 130      1 0.502
#> 131      1 0.000
#> 132      1 0.000
#> 133      1 0.000
#> 134      1 1.000
#> 135      1 0.751
#> 136      2 0.000
#> 137      1 0.000
#> 138      1 0.000
#> 139      1 0.000
#> 140      1 0.502
#> 141      1 0.000
#> 142      1 0.000
#> 143      1 0.000
#> 144      1 0.249
#> 145      1 0.000
#> 146      2 0.000
#> 147      1 0.000
#> 148      2 0.000
#> 149      1 0.000
#> 150      1 1.000
#> 151      1 0.249
#> 152      1 0.000
#> 153      1 0.000
#> 154      1 0.000
#> 155      1 0.000
#> 156      1 0.000
#> 157      1 0.000
#> 158      2 1.000
#> 159      1 0.000
#> 160      1 0.000
#> 161      1 0.000
#> 162      1 0.000
#> 163      1 0.000
#> 164      1 0.000
#> 165      2 1.000
#> 166      1 0.000
#> 167      1 0.000
#> 168      1 0.000
#> 169      1 0.000
#> 170      1 0.000
#> 171      2 0.502
#> 172      1 0.000
#> 173      1 0.000
#> 174      2 0.000
#> 175      2 0.249
#> 176      1 0.000
#> 177      1 0.000
#> 178      1 0.000
#> 179      1 0.000
#> 180      1 0.000
#> 181      1 0.000
#> 182      1 0.000
#> 183      1 0.000
#> 184      1 0.000
#> 185      1 0.000
#> 186      1 0.000
#> 187      1 0.000
#> 188      1 0.000
#> 189      1 0.000
#> 190      2 0.000
#> 191      1 0.498
#> 192      1 0.000
#> 193      1 0.000
#> 194      1 0.000
#> 195      1 0.000
#> 196      1 0.000
#> 197      2 1.000
#> 198      1 0.000
#> 199      2 1.000
#> 200      2 1.000
#> 201      1 0.000
#> 202      1 0.000
#> 203      1 0.000
#> 204      1 0.000
#> 205      1 0.000
#> 206      1 0.000
#> 207      1 0.000
#> 208      1 0.000
#> 209      1 0.000
#> 210      2 0.000
#> 211      1 0.000
#> 212      2 0.000
#> 213      1 0.000
#> 214      1 0.000
#> 215      1 0.000
#> 216      1 0.000
#> 217      1 0.000
#> 218      2 0.000
#> 219      1 0.000
#> 220      1 0.000
#> 221      2 1.000
#> 222      1 0.000
#> 223      2 1.000
#> 224      1 0.000
#> 225      1 0.000
#> 226      1 0.000
#> 227      1 0.000
#> 228      1 0.000
#> 229      1 0.000
#> 230      2 0.000
#> 231      1 0.000
#> 232      1 0.751
#> 233      1 0.000
#> 234      1 0.000
#> 235      2 0.000
#> 236      2 1.000
#> 237      2 0.000
#> 238      1 0.000
#> 239      1 0.000
#> 240      1 0.000
#> 241      1 0.000
#> 242      1 0.000
#> 243      1 0.000
#> 244      1 0.000
#> 245      1 0.000
#> 246      1 0.000
#> 247      1 0.000
#> 248      2 0.000
#> 249      1 0.000
#> 250      1 0.000
#> 251      1 0.249
#> 252      1 0.000
#> 253      1 0.000
#> 254      1 0.000
#> 255      1 0.249
#> 256      1 0.249
#> 257      1 0.000
#> 258      1 0.000
#> 259      1 0.498
#> 260      1 0.000
#> 261      1 0.000
#> 262      1 0.249
#> 263      1 0.000
#> 264      1 0.000
#> 265      1 0.253
#> 266      1 0.000
#> 267      1 0.000
#> 268      1 0.000
#> 269      1 0.253
#> 270      1 0.000
#> 271      1 0.000
#> 272      1 0.000
#> 273      1 0.000
#> 274      1 0.000
#> 275      1 0.000
#> 276      1 0.000
#> 277      1 0.000
#> 278      1 0.000
#> 279      1 0.000
#> 280      1 0.249
#> 281      2 0.000
#> 282      1 0.000
#> 283      1 0.253
#> 284      1 0.000
#> 285      1 0.000
#> 286      2 0.000
#> 287      1 0.000
#> 288      1 0.000
#> 289      1 0.000
#> 290      2 1.000
#> 291      1 0.000
#> 292      1 0.000
#> 293      1 0.000
#> 294      1 0.000
#> 295      2 0.000
#> 296      1 0.000
#> 297      1 0.000
#> 298      2 1.000
#> 299      2 0.249
#> 300      1 0.000
#> 301      2 0.249
#> 302      1 0.502
#> 303      1 0.249
#> 304      2 0.000
#> 305      1 0.000
#> 306      2 0.000
#> 307      2 0.000
#> 308      2 1.000
#> 309      2 0.000
#> 310      1 0.000
#> 311      1 0.000
#> 312      1 0.000
#> 313      2 0.000
#> 314      1 0.000
#> 315      1 0.000
#> 316      2 1.000
#> 317      1 0.000
#> 318      1 0.498
#> 319      1 0.000
#> 320      1 0.249
#> 321      1 0.000
#> 322      1 0.000
#> 323      2 0.000
#> 324      1 0.000
#> 325      1 0.000
#> 326      1 0.249
#> 327      1 0.000
#> 328      1 0.000
#> 329      1 0.000
#> 330      1 0.000
#> 331      1 0.000
#> 332      1 0.000
#> 333      1 0.253
#> 334      1 0.000
#> 335      1 0.000
#> 336      2 0.000
#> 337      2 0.000
#> 338      1 0.000
#> 339      1 0.249
#> 340      1 0.000
#> 341      1 0.000
#> 342      1 1.000
#> 343      2 0.000
#> 344      1 0.000
#> 345      1 0.000
#> 346      1 0.000
#> 347      2 0.000
#> 348      1 0.747
#> 349      1 0.000
#> 350      2 0.000
#> 351      1 0.249
#> 352      1 0.000
#> 353      1 0.000
#> 354      1 0.000
#> 355      1 0.000
#> 356      1 0.000
#> 357      1 0.000
#> 358      1 0.000
#> 359      2 1.000
#> 360      1 0.000
#> 361      2 0.249
#> 362      1 0.000
#> 363      1 0.000
#> 364      1 0.249
#> 365      1 0.000
#> 366      1 0.249
#> 367      1 0.000
#> 368      1 0.000
#> 369      1 0.000
#> 370      1 0.000
#> 371      1 0.000
#> 372      2 1.000
#> 373      1 0.000
#> 374      1 0.000
#> 375      1 0.000
#> 376      1 0.000
#> 377      1 0.000
#> 378      1 0.000
#> 379      2 1.000
#> 380      1 0.000
#> 381      1 0.000
#> 382      1 0.000
#> 383      2 0.000
#> 384      1 0.498
#> 385      1 0.000
#> 386      1 0.000
#> 387      1 0.000
#> 388      1 0.253
#> 389      1 0.751
#> 390      2 0.502
#> 391      1 0.000
#> 392      1 0.000
#> 393      1 0.000
#> 394      1 1.000
#> 395      2 0.000
#> 396      1 0.000
#> 397      1 0.498
#> 398      1 0.000
#> 399      1 0.000
#> 400      1 0.000
#> 401      1 0.000
#> 402      1 0.000
#> 403      1 1.000
#> 404      1 0.000
#> 405      1 0.000
#> 406      2 0.000
#> 407      1 0.000
#> 408      1 0.249
#> 409      1 0.249
#> 410      1 0.249
#> 411      1 0.249
#> 412      1 0.000
#> 413      2 0.000
#> 414      1 0.747
#> 415      1 0.000
#> 416      1 0.249
#> 417      1 0.000
#> 418      1 0.000
#> 419      1 0.502
#> 420      1 0.000
#> 421      1 1.000
#> 422      1 0.000
#> 423      1 0.000
#> 424      1 0.000
#> 425      2 0.249
#> 426      1 0.000
#> 427      1 0.000
#> 428      1 0.000
#> 429      1 0.000
#> 430      1 0.000
#> 431      1 0.502
#> 432      2 1.000
#> 433      1 0.249
#> 434      2 0.249
#> 435      1 0.000
#> 436      2 0.000
#> 437      1 0.000
#> 438      2 0.000
#> 439      1 0.000
#> 440      2 0.000
#> 441      2 0.000
#> 442      1 0.000
#> 443      1 0.000
#> 444      1 0.000
#> 445      1 0.000
#> 446      1 0.249
#> 447      1 0.000
#> 448      1 0.000
#> 449      1 0.000
#> 450      1 0.000
#> 451      1 0.000
#> 452      1 0.000
#> 453      1 0.000
#> 454      1 0.502
#> 455      1 0.000
#> 456      1 0.000
#> 457      1 0.000
#> 458      1 0.000
#> 459      1 0.000
#> 460      1 0.000
#> 461      1 0.000
#> 462      1 0.000
#> 463      1 0.000
#> 464      1 0.000
#> 465      1 0.000
#> 466      1 0.000
#> 467      1 0.000
#> 468      1 0.000
#> 469      2 1.000
#> 470      2 1.000
#> 471      1 0.000
#> 472      1 0.000
#> 473      1 0.000
#> 474      2 1.000
#> 475      2 1.000
#> 476      1 0.000
#> 477      1 0.000
#> 478      1 0.000
#> 479      1 0.000
#> 480      1 0.000
#> 481      1 0.000
#> 482      1 0.000
#> 483      1 0.000
#> 484      1 0.000
#> 485      2 0.000
#> 486      1 0.000
#> 487      1 0.000
#> 488      1 0.000
#> 489      2 0.502
#> 490      2 0.000
#> 491      2 0.000
#> 492      1 0.000
#> 493      1 0.000
#> 494      2 0.000
#> 495      1 0.000
#> 496      1 0.000
#> 497      2 0.000
#> 498      2 0.249
#> 499      1 0.000
#> 500      1 0.000
#> 501      2 0.000
#> 502      1 0.000
#> 503      1 0.000
#> 504      2 1.000
#> 505      1 0.000
#> 506      2 0.000
#> 507      1 0.000
#> 508      1 0.000
#> 509      1 0.000
#> 510      1 0.000
#> 511      1 0.000
#> 512      2 1.000
#> 513      1 0.000
#> 514      1 0.000
#> 515      1 0.000
#> 516      1 0.000
#> 517      2 0.000
#> 518      1 0.000
#> 519      1 0.000
#> 520      1 0.000
#> 521      1 0.000
#> 522      1 0.000
#> 523      1 0.253
#> 524      2 1.000
#> 525      1 0.000
#> 526      1 0.000
#> 527      1 0.000
#> 528      1 0.000
#> 529      1 1.000
#> 530      2 0.000
#> 531      2 0.000
#> 532      2 0.000
#> 533      1 0.000
#> 534      2 0.000
#> 535      1 0.000
#> 536      1 0.000
#> 537      1 0.000
#> 538      2 0.000
#> 539      1 0.000
#> 540      1 0.000
#> 541      1 0.000
#> 542      2 0.000
#> 543      1 0.000
#> 544      1 0.000
#> 545      2 0.000
#> 546      1 0.000
#> 547      1 0.000
#> 548      1 0.000
#> 549      1 0.000
#> 550      1 0.000
#> 551      1 0.000
#> 552      1 0.000
#> 553      1 0.000
#> 554      1 0.000
#> 555      1 0.000
#> 556      1 0.498
#> 557      1 0.000
#> 558      1 0.502
#> 559      1 0.000
#> 560      1 0.502
#> 561      1 1.000
#> 562      1 0.249
#> 563      2 0.000
#> 564      1 0.751
#> 565      1 0.000
#> 566      1 0.000
#> 567      1 0.498
#> 568      2 0.000
#> 569      1 0.000
#> 570      1 0.000
#> 571      1 0.502
#> 572      2 0.000
#> 573      2 0.000
#> 574      1 0.000
#> 575      1 0.000
#> 576      1 0.000
#> 577      1 0.000
#> 578      1 0.000
#> 579      1 0.000
#> 580      2 0.000
#> 581      1 0.249
#> 582      1 0.000
#> 583      1 0.000
#> 584      1 0.249
#> 585      1 0.502
#> 586      1 0.000
#> 587      2 0.498
#> 588      1 0.249
#> 589      1 0.751
#> 590      1 0.502
#> 591      1 0.502
#> 592      1 0.000
#> 593      1 0.000
#> 594      1 0.000
#> 595      1 0.000
#> 596      1 0.498
#> 597      1 0.249
#> 598      1 0.000
#> 599      1 0.000
#> 600      1 0.000
#> 601      1 0.000
#> 602      1 0.498
#> 603      1 0.000
#> 604      1 0.000
#> 605      1 0.000
#> 606      1 0.000
#> 607      2 0.000
#> 608      1 0.000
#> 609      1 0.000
#> 610      1 0.000
#> 611      1 0.000
#> 612      1 0.000
#> 613      1 0.253
#> 614      1 0.000
#> 615      1 0.249
#> 616      2 0.249
#> 617      1 0.000
#> 618      1 0.000
#> 619      1 0.000
#> 620      1 0.000
#> 621      1 0.000
#> 622      1 0.000
#> 623      1 0.000
#> 624      1 0.747
#> 625      1 0.000
#> 626      1 0.000
#> 627      1 0.000
#> 628      1 0.000
#> 629      1 0.000
#> 630      1 0.000
#> 631      1 0.000
#> 632      1 0.000
#> 633      1 0.000
#> 634      1 0.000
#> 635      1 0.498
#> 636      2 0.253
#> 637      1 0.000
#> 638      1 0.000
#> 639      1 0.249
#> 640      1 0.253
#> 641      1 0.000
#> 642      1 0.502
#> 643      1 0.000
#> 644      1 0.249
#> 645      1 0.000
#> 646      1 0.000
#> 647      1 0.000
#> 648      1 0.000
#> 649      2 0.000
#> 650      1 0.000
#> 651      1 0.000
#> 652      1 0.000
#> 653      1 0.000
#> 654      1 0.000
#> 655      1 0.000
#> 656      1 0.000
#> 657      1 0.000
#> 658      1 0.000
#> 659      1 0.000
#> 660      1 0.000
#> 661      1 0.000
#> 662      1 0.000
#> 663      2 0.000
#> 664      1 0.000
#> 665      1 0.000
#> 666      1 0.000
#> 667      1 0.000
#> 668      1 0.000
#> 669      1 0.000
#> 670      1 0.000
#> 671      2 0.000
#> 672      1 0.000
#> 673      2 0.000
#> 674      1 0.000
#> 675      1 0.000
#> 676      2 0.253
#> 677      1 0.000
#> 678      1 0.000
#> 679      2 0.000
#> 680      1 0.249
#> 681      1 0.000
#> 682      1 0.000
#> 683      1 0.000
#> 684      2 0.751
#> 685      2 0.502
#> 686      2 1.000
#> 687      2 1.000
#> 688      1 0.000
#> 689      1 0.000
#> 690      1 0.000
#> 691      1 0.000
#> 692      1 0.000
#> 693      2 1.000
#> 694      1 0.000
#> 695      2 0.000
#> 696      1 0.000
#> 697      2 1.000
#> 698      1 0.000
#> 699      1 0.000
#> 700      1 0.000
#> 701      2 1.000
#> 702      1 0.000
#> 703      1 0.000
#> 704      1 0.000
#> 705      1 0.000
#> 706      2 0.000
#> 707      2 0.249
#> 708      1 0.000
#> 709      1 0.000
#> 710      1 0.751
#> 711      1 0.000
#> 712      2 0.000
#> 713      1 0.000
#> 714      1 0.000
#> 715      1 0.000
#> 716      1 0.000
#> 717      1 0.000
#> 718      1 0.000
#> 719      2 0.000
#> 720      1 0.000
#> 721      1 0.000
#> 722      2 0.000
#> 723      2 0.000
#> 724      1 0.000
#> 725      2 0.000
#> 726      1 0.249
#> 727      1 0.000
#> 728      1 0.000
#> 729      1 0.000
#> 730      1 0.000
#> 731      1 0.000
#> 732      1 0.000
#> 733      1 0.000
#> 734      1 0.000
#> 735      1 0.000
#> 736      1 0.000
#> 737      1 0.000
#> 738      1 0.000
#> 739      1 0.000
#> 740      1 0.000
#> 741      1 0.000
#> 742      1 0.000
#> 743      1 0.000
#> 744      1 0.000
#> 745      1 0.000
#> 746      1 0.000
#> 747      1 0.253
#> 748      1 0.000
#> 749      1 0.000
#> 750      2 1.000
#> 751      1 0.000
#> 752      1 0.000
#> 753      1 0.000
#> 754      1 0.000
#> 755      1 0.000
#> 756      1 0.000
#> 757      1 0.000
#> 758      1 0.000
#> 759      1 0.000
#> 760      2 0.253
#> 761      2 0.253
#> 762      2 0.751
#> 763      1 0.000
#> 764      1 0.000
#> 765      1 0.253
#> 766      1 0.000
#> 767      1 0.000
#> 768      1 0.000
#> 769      1 0.000
#> 770      1 0.000
#> 771      1 0.000
#> 772      1 0.000
#> 773      1 0.000
#> 774      1 0.000
#> 775      1 0.000
#> 776      2 0.000
#> 777      1 0.000
#> 778      1 0.000
#> 779      2 0.000
#> 780      1 0.000
#> 781      1 0.000
#> 782      1 0.000
#> 783      1 0.000
#> 784      1 0.000
#> 785      1 0.000
#> 786      1 0.000
#> 787      1 0.000
#> 788      1 0.000
#> 789      1 0.000
#> 790      1 0.000
#> 791      1 0.000
#> 792      1 0.000
#> 793      2 1.000
#> 794      2 0.000
#> 795      1 0.000
#> 796      1 0.000
#> 797      1 0.000
#> 798      1 0.000
#> 799      2 0.249
#> 800      1 0.000
#> 801      1 0.000
#> 802      2 0.000
#> 803      1 0.000
#> 804      1 0.000
#> 805      1 0.000
#> 806      2 0.498
#> 807      1 0.000
#> 808      1 0.000
#> 809      1 0.000
#> 810      1 0.000
#> 811      1 0.000
#> 812      1 0.000
#> 813      1 0.747
#> 814      2 0.000
#> 815      1 0.000
#> 816      1 1.000
#> 817      1 0.000
#> 818      1 0.249
#> 819      1 0.000
#> 820      2 0.000
#> 821      1 0.000
#> 822      1 0.000
#> 823      1 0.000
#> 824      1 0.000
#> 825      1 0.249
#> 826      1 0.000
#> 827      1 0.000
#> 828      1 0.000
#> 829      1 0.000
#> 830      1 0.000
#> 831      1 0.000
#> 832      1 0.000
#> 833      1 0.000
#> 834      1 0.000
#> 835      1 0.000
#> 836      1 0.000
#> 837      1 0.000
#> 838      1 0.000
#> 839      1 0.000
#> 840      1 0.000
#> 841      1 0.000
#> 842      1 0.000
#> 843      1 0.000
#> 844      1 0.000
#> 845      1 0.000
#> 846      1 0.000
#> 847      1 0.000
#> 848      1 0.000
#> 849      2 0.000
#> 850      1 0.502
#> 851      1 0.249
#> 852      2 0.000
#> 853      1 1.000
#> 854      2 0.000
#> 855      1 0.249
#> 856      1 1.000
#> 857      1 0.253
#> 858      1 1.000
#> 859      1 1.000
#> 860      1 0.000
#> 861      1 0.000
#> 862      1 1.000
#> 863      1 1.000
#> 864      1 0.000
#> 865      1 0.000
#> 866      1 0.000
#> 867      1 0.000
#> 868      1 0.502
#> 869      1 0.000
#> 870      1 0.000
#> 871      1 0.000
#> 872      1 0.000
#> 873      1 0.000
#> 874      1 0.000
#> 875      1 0.000
#> 876      1 0.000
#> 877      1 0.751
#> 878      1 0.000
#> 879      1 0.253
#> 880      1 0.000
#> 881      1 0.000
#> 882      1 0.000
#> 883      1 0.000
#> 884      1 1.000
#> 885      1 0.000
#> 886      2 0.000
#> 887      1 0.000
#> 888      2 0.000
#> 889      1 0.000
#> 890      1 1.000
#> 891      1 0.000
#> 892      1 0.000
#> 893      1 0.000
#> 894      1 0.000
#> 895      1 0.000
#> 896      2 0.000
#> 897      2 0.000
#> 898      1 0.000
#> 899      1 0.000
#> 900      1 0.000
#> 901      1 0.000
#> 902      1 0.000
#> 903      1 0.000
#> 904      1 0.249
#> 905      1 0.000
#> 906      1 0.253
#> 907      1 0.502
#> 908      1 0.000
#> 909      1 0.000
#> 910      1 0.249
#> 911      1 0.000
#> 912      1 0.000
#> 913      1 0.000
#> 914      1 0.253
#> 915      1 0.000
#> 916      1 0.000
#> 917      1 0.000
#> 918      1 0.000
#> 919      1 0.000
#> 920      1 0.000
#> 921      1 0.000
#> 922      1 0.000
#> 923      1 0.000
#> 924      1 0.000
#> 925      1 0.000
#> 926      1 0.000
#> 927      1 0.253
#> 928      1 0.000
#> 929      2 0.000
#> 930      1 1.000
#> 931      1 1.000
#> 932      1 0.000
#> 933      1 0.000
#> 934      1 0.000
#> 935      2 0.000
#> 936      1 1.000
#> 937      1 0.000
#> 938      2 0.000
#> 939      1 0.000
#> 940      1 0.000
#> 941      1 0.000
#> 942      1 0.249
#> 943      1 0.000
#> 944      1 0.000
#> 945      1 0.000
#> 946      1 0.000
#> 947      1 0.000
#> 948      1 0.000
#> 949      1 0.000
#> 950      1 0.000
#> 951      1 0.253
#> 952      1 0.502
#> 953      1 0.000
#> 954      1 0.000
#> 955      1 0.502
#> 956      2 0.000
#> 957      1 0.502
#> 958      1 0.502
#> 959      1 0.000
#> 960      2 0.000
#> 961      2 0.000
#> 962      1 0.000
#> 963      1 0.000
#> 964      2 0.000
#> 965      1 0.498
#> 966      1 0.249
#> 967      1 0.000
#> 968      1 1.000
#> 969      1 0.000
#> 970      1 0.000
#> 971      1 0.000
#> 972      1 0.253
#> 973      2 0.000
#> 974      1 0.502
#> 975      1 0.000
#> 976      1 0.000
#> 977      1 0.000
#> 978      1 0.000
#> 979      1 0.000
#> 980      1 0.253
#> 981      1 0.751
#> 982      1 1.000
#> 983      2 0.000
#> 984      2 0.000
#> 985      1 0.000
#> 986      1 0.000
#> 987      1 0.000
#> 988      1 0.000
#> 989      1 0.502
#> 990      1 0.000
#> 991      1 0.000
#> 992      1 0.253
#> 993      1 0.000
#> 994      1 0.000
#> 995      1 0.000
#> 996      1 0.000
#> 997      1 0.000
#> 998      1 0.000
#> 999      1 1.000
#> 1000     1 0.502
#> 1001     2 0.000
#> 1002     1 0.502
#> 1003     1 0.253
#> 1004     1 0.000
#> 1005     1 0.000
#> 1006     1 0.000
#> 1007     1 0.000
#> 1008     1 0.249
#> 1009     1 0.751
#> 1010     1 0.000
#> 1011     1 0.253
#> 1012     1 0.000
#> 1013     1 0.000
#> 1014     2 0.000
#> 1015     1 1.000
#> 1016     2 0.000
#> 1017     1 0.000
#> 1018     1 0.000
#> 1019     1 0.249
#> 1020     1 0.253
#> 1021     1 0.000
#> 1022     1 0.000
#> 1023     1 0.000
#> 1024     1 0.000
#> 1025     1 0.000
#> 1026     1 0.498
#> 1027     1 0.253
#> 1028     1 0.000
#> 1029     1 0.000
#> 1030     1 0.000
#> 1031     1 0.249
#> 1032     1 0.000
#> 1033     1 0.000
#> 1034     1 0.000
#> 1035     1 0.249
#> 1036     1 0.000
#> 1037     1 0.000
#> 1038     1 0.000
#> 1039     1 0.000
#> 1040     2 0.000
#> 1041     1 0.000
#> 1042     1 0.000
#> 1043     1 0.000
#> 1044     1 0.000
#> 1045     1 0.000
#> 1046     1 0.502
#> 1047     1 0.000
#> 1048     1 0.000
#> 1049     1 0.000
#> 1050     1 0.249
#> 1051     1 0.000
#> 1052     1 0.498
#> 1053     1 0.000
#> 1054     1 0.000
#> 1055     1 0.253
#> 1056     1 0.000
#> 1057     1 0.000
#> 1058     1 0.000
#> 1059     1 0.751
#> 1060     1 0.000
#> 1061     1 0.000
#> 1062     1 0.000
#> 1063     1 0.000
#> 1064     1 0.000
#> 1065     1 0.249
#> 1066     1 0.000
#> 1067     1 0.751
#> 1068     1 0.249
#> 1069     1 0.000
#> 1070     1 0.000
#> 1071     1 0.249
#> 1072     1 0.000
#> 1073     1 0.000
#> 1074     1 0.249
#> 1075     1 0.000
#> 1076     1 0.000
#> 1077     1 0.000
#> 1078     1 0.249
#> 1079     1 0.000
#> 1080     1 0.000
#> 1081     1 0.000
#> 1082     1 0.249
#> 1083     1 0.000
#> 1084     1 0.000
#> 1085     1 0.000
#> 1086     1 0.000
#> 1087     1 0.249
#> 1088     1 0.000
#> 1089     1 0.000
#> 1090     1 0.747
#> 1091     1 0.502
#> 1092     1 0.000
#> 1093     1 0.249
#> 1094     1 0.000
#> 1095     1 0.000
#> 1096     1 0.000
#> 1097     1 0.249
#> 1098     1 0.751
#> 1099     1 0.000
#> 1100     1 0.747
#> 1101     1 0.249
#> 1102     1 0.000
#> 1103     1 0.000
#> 1104     1 0.498
#> 1105     1 0.000
#> 1106     1 0.000
#> 1107     1 0.249
#> 1108     1 0.000
#> 1109     1 0.000
#> 1110     1 0.000
#> 1111     1 0.000
#> 1112     1 0.000
#> 1113     1 0.000
#> 1114     1 0.000
#> 1115     1 0.249
#> 1116     1 0.000
#> 1117     1 0.000
#> 1118     1 0.000
#> 1119     1 1.000
#> 1120     1 1.000
#> 1121     1 1.000
#> 1122     1 0.000
#> 1123     1 0.253
#> 1124     1 0.000
#> 1125     1 0.000
#> 1126     1 0.249
#> 1127     1 0.000
#> 1128     2 1.000
#> 1129     1 0.249
#> 1130     1 0.000
#> 1131     1 0.502
#> 1132     1 0.502
#> 1133     1 0.000
#> 1134     1 0.000
#> 1135     1 0.000
#> 1136     1 0.000
#> 1137     1 0.000
#> 1138     1 0.000
#> 1139     1 0.000
#> 1140     1 0.751
#> 1141     2 0.000
#> 1142     1 0.249
#> 1143     1 0.000
#> 1144     1 0.000
#> 1145     1 0.000
#> 1146     1 0.249
#> 1147     1 0.000
#> 1148     1 0.000
#> 1149     1 0.000
#> 1150     1 0.751
#> 1151     1 0.253
#> 1152     1 0.000
#> 1153     1 0.253
#> 1154     1 0.249
#> 1155     1 0.000
#> 1156     1 0.000
#> 1157     1 0.000
#> 1158     1 0.000
#> 1159     1 1.000
#> 1160     1 0.502
#> 1161     1 0.502
#> 1162     1 0.000
#> 1163     1 0.000
#> 1164     1 0.000
#> 1165     1 0.000
#> 1166     1 0.000
#> 1167     1 0.000
#> 1168     1 0.000
#> 1169     1 0.000
#> 1170     1 0.253
#> 1171     1 1.000
#> 1172     1 0.000
#> 1173     1 1.000
#> 1174     1 0.498
#> 1175     1 0.000
#> 1176     1 0.253
#> 1177     1 0.000
#> 1178     1 0.253
#> 1179     1 1.000
#> 1180     1 0.000
#> 1181     2 0.000
#> 1182     1 0.502
#> 1183     1 1.000
#> 1184     1 0.751
#> 1185     2 0.000
#> 1186     1 0.000
#> 1187     1 0.000
#> 1188     1 0.000
#> 1189     1 0.000
#> 1190     1 0.751
#> 1191     1 0.502
#> 1192     1 0.000
#> 1193     1 0.502
#> 1194     1 0.751
#> 1195     1 0.000
#> 1196     1 0.751
#> 1197     1 0.502
#> 1198     1 1.000
#> 1199     1 0.502
#> 1200     1 0.253
#> 1201     1 0.000
#> 1202     1 1.000
#> 1203     1 1.000
#> 1204     1 0.249
#> 1205     1 0.253
#> 1206     1 0.000
#> 1207     1 0.249
#> 1208     1 0.000
#> 1209     1 0.000
#> 1210     1 0.000
#> 1211     1 0.000
#> 1212     1 0.000
#> 1213     1 0.747
#> 1214     1 0.502
#> 1215     2 0.000
#> 1216     1 0.000
#> 1217     1 1.000
#> 1218     1 0.249
#> 1219     1 0.502
#> 1220     1 1.000
#> 1221     1 0.000
#> 1222     1 0.751
#> 1223     1 0.751
#> 1224     2 0.000
#> 1225     1 0.253
#> 1226     2 0.000
#> 1227     1 0.000
#> 1228     1 0.000
#> 1229     1 0.000
#> 1230     1 0.249
#> 1231     1 0.000
#> 1232     1 0.000
#> 1233     1 1.000
#> 1234     1 0.000
#> 1235     1 0.249
#> 1236     1 0.000
#> 1237     1 0.000
#> 1238     1 0.000
#> 1239     1 0.502
#> 1240     1 0.249
#> 1241     1 0.000
#> 1242     1 1.000
#> 1243     1 0.000
#> 1244     1 0.000
#> 1245     1 1.000
#> 1246     1 0.502
#> 1247     1 0.000
#> 1248     1 0.000
#> 1249     1 0.502
#> 1250     1 0.000
#> 1251     1 0.000
#> 1252     1 0.000
#> 1253     1 0.000
#> 1254     1 0.253
#> 1255     1 0.000
#> 1256     2 0.000
#> 1257     2 0.000
#> 1258     2 0.000
#> 1259     2 0.000
#> 1260     1 0.000
#> 1261     1 0.000
#> 1262     1 0.000
#> 1263     1 0.502
#> 1264     1 0.249
#> 1265     1 0.000
#> 1266     1 0.000
#> 1267     1 0.000
#> 1268     1 0.000
#> 1269     1 0.000
#> 1270     1 0.249
#> 1271     1 0.000
#> 1272     1 0.000
#> 1273     2 0.000
#> 1274     1 0.000
#> 1275     1 0.498
#> 1276     1 0.502
#> 1277     1 0.000
#> 1278     2 0.000
#> 1279     2 1.000
#> 1280     1 0.502
#> 1281     1 0.000
#> 1282     1 0.000
#> 1283     2 1.000
#> 1284     1 0.000
#> 1285     1 0.000
#> 1286     1 0.000
#> 1287     1 0.000
#> 1288     1 0.000
#> 1289     1 0.000
#> 1290     2 1.000
#> 1291     1 0.000
#> 1292     1 0.000
#> 1293     1 0.000
#> 1294     1 0.249
#> 1295     2 0.000
#> 1296     1 0.000
#> 1297     1 0.000
#> 1298     1 0.502
#> 1299     1 0.253
#> 1300     1 0.751
#> 1301     1 0.000
#> 1302     1 0.000
#> 1303     1 0.000
#> 1304     1 0.000
#> 1305     1 0.000
#> 1306     1 0.000
#> 1307     1 0.000
#> 1308     1 0.000
#> 1309     1 0.000
#> 1310     1 0.249
#> 1311     1 1.000
#> 1312     1 0.000
#> 1313     2 0.000
#> 1314     1 0.000
#> 1315     2 0.000
#> 1316     1 0.000
#> 1317     1 0.000
#> 1318     2 0.000
#> 1319     1 0.000
#> 1320     1 0.000
#> 1321     1 0.000
#> 1322     1 0.000
#> 1323     1 0.000
#> 1324     1 0.000
#> 1325     1 0.253
#> 1326     1 0.249
#> 1327     1 0.000
#> 1328     1 0.249
#> 1329     1 0.000
#> 1330     1 0.000
#> 1331     1 0.502
#> 1332     2 0.000
#> 1333     1 0.249
#> 1334     1 0.000
#> 1335     1 0.249
#> 1336     1 0.000
#> 1337     1 0.000
#> 1338     1 0.000
#> 1339     1 0.000
#> 1340     1 0.000
#> 1341     1 0.000
#> 1342     1 0.249
#> 1343     2 0.000
#> 1344     1 0.000
#> 1345     1 0.249
#> 1346     2 0.000
#> 1347     2 0.000
#> 1348     2 0.000
#> 1349     1 0.000
#> 1350     1 0.000
#> 1351     1 0.502
#> 1352     1 0.000
#> 1353     2 0.000
#> 1354     2 0.000
#> 1355     1 0.000
#> 1356     1 0.000
#> 1357     1 0.000
#> 1358     1 0.000
#> 1359     1 0.000
#> 1360     1 0.751
#> 1361     2 0.000
#> 1362     2 0.000
#> 1363     1 0.502
#> 1364     1 0.000
#> 1365     1 0.000
#> 1366     1 0.000
#> 1367     1 0.000
#> 1368     2 0.751
#> 1369     1 0.000
#> 1370     1 0.000
#> 1371     1 0.000
#> 1372     1 0.249
#> 1373     1 0.000
#> 1374     1 0.498
#> 1375     1 0.000
#> 1376     1 0.000
#> 1377     1 0.751
#> 1378     1 0.000
#> 1379     1 0.249
#> 1380     1 0.000
#> 1381     1 0.000
#> 1382     1 0.249
#> 1383     1 0.000
#> 1384     1 0.000
#> 1385     1 0.000
#> 1386     1 0.502
#> 1387     1 0.000
#> 1388     1 1.000
#> 1389     1 0.249
#> 1390     1 0.000
#> 1391     1 0.498
#> 1392     1 0.502
#> 1393     1 0.000
#> 1394     1 0.000
#> 1395     2 0.000
#> 1396     1 0.502
#> 1397     2 0.000
#> 1398     2 0.000
#> 1399     2 0.249
#> 1400     1 0.253
#> 1401     2 0.249
#> 1402     1 1.000
#> 1403     1 1.000
#> 1404     1 0.249
#> 1405     1 0.751
#> 1406     1 0.000
#> 1407     2 0.000
#> 1408     1 0.000
#> 1409     1 0.249
#> 1410     1 0.000
#> 1411     1 0.000
#> 1412     1 0.000
#> 1413     1 0.249
#> 1414     1 0.000
#> 1415     1 0.000
#> 1416     1 0.000
#> 1417     1 0.000
#> 1418     1 0.000
#> 1419     1 0.000
#> 1420     1 0.000
#> 1421     1 0.000
#> 1422     1 0.000
#> 1423     1 0.000
#> 1424     1 0.000
#> 1425     1 0.000
#> 1426     1 0.000
#> 1427     1 0.000
#> 1428     1 0.000
#> 1429     1 0.000
#> 1430     1 0.000
#> 1431     1 0.000
#> 1432     1 0.000
#> 1433     1 0.000
#> 1434     1 0.000
#> 1435     1 0.000
#> 1436     1 0.000
#> 1437     1 0.000
#> 1438     1 0.000
#> 1439     1 0.000
#> 1440     1 0.000
#> 1441     1 0.000
#> 1442     1 0.502
#> 1443     1 0.000
#> 1444     1 0.747
#> 1445     1 0.000
#> 1446     1 0.000
#> 1447     1 0.000
#> 1448     1 0.000
#> 1449     2 0.249
#> 1450     1 1.000
#> 1451     1 0.000
#> 1452     2 0.000
#> 1453     1 0.249
#> 1454     1 0.253
#> 1455     2 0.000
#> 1456     1 0.249
#> 1457     1 0.498
#> 1458     1 0.000
#> 1459     2 0.000
#> 1460     1 0.498
#> 1461     1 0.000
#> 1462     1 0.253
#> 1463     1 1.000
#> 1464     1 1.000
#> 1465     1 0.253
#> 1466     1 0.000
#> 1467     1 0.000
#> 1468     1 0.000
#> 1469     1 0.000
#> 1470     1 0.000
#> 1471     1 0.249
#> 1472     1 0.000
#> 1473     1 0.502
#> 1474     1 0.000
#> 1475     1 0.000
#> 1476     1 0.000
#> 1477     1 0.000
#> 1478     2 0.000
#> 1479     1 0.000
#> 1480     2 0.000
#> 1481     1 0.751
#> 1482     1 0.000
#> 1483     1 0.000
#> 1484     1 0.000
#> 1485     1 0.498
#> 1486     1 0.000
#> 1487     1 0.000
#> 1488     1 1.000
#> 1489     1 1.000
#> 1490     1 0.000
#> 1491     1 1.000
#> 1492     1 0.502
#> 1493     1 0.751
#> 1494     1 0.751
#> 1495     2 0.249
#> 1496     1 0.751
#> 1497     1 0.000
#> 1498     1 0.000
#> 1499     1 0.253
#> 1500     2 0.000
#> 1501     1 0.000
#> 1502     1 0.751
#> 1503     1 0.000
#> 1504     1 0.000
#> 1505     1 0.249
#> 1506     2 0.000
#> 1507     1 0.000
#> 1508     2 0.000
#> 1509     1 0.249
#> 1510     2 0.000
#> 1511     1 1.000
#> 1512     1 0.000
#> 1513     1 0.253
#> 1514     1 0.751
#> 1515     1 1.000
#> 1516     1 0.253
#> 1517     1 0.000
#> 1518     2 0.000
#> 1519     2 0.000
#> 1520     2 0.000
#> 1521     2 0.000
#> 1522     2 0.000
#> 1523     1 1.000
#> 1524     2 0.000
#> 1525     1 1.000
#> 1526     1 0.000
#> 1527     1 0.000
#> 1528     1 1.000
#> 1529     1 1.000
#> 1530     1 0.249
#> 1531     1 0.249
#> 1532     1 0.000
#> 1533     1 0.000
#> 1534     2 0.249
#> 1535     1 0.000
#> 1536     2 0.000
#> 1537     1 0.000
#> 1538     1 0.000
#> 1539     1 1.000
#> 1540     1 0.249
#> 1541     1 0.000
#> 1542     1 0.000
#> 1543     1 0.000
#> 1544     1 0.000
#> 1545     1 0.000
#> 1546     1 0.000
#> 1547     1 0.000
#> 1548     1 0.000
#> 1549     1 0.000
#> 1550     1 0.000
#> 1551     1 0.000
#> 1552     1 0.000
#> 1553     1 0.000
#> 1554     1 0.502
#> 1555     1 0.249
#> 1556     1 0.000
#> 1557     1 0.751
#> 1558     2 0.000
#> 1559     2 0.000
#> 1560     1 0.000
#> 1561     1 0.747
#> 1562     1 0.498
#> 1563     1 0.000
#> 1564     1 0.502
#> 1565     2 0.000
#> 1566     1 0.000
#> 1567     1 0.498
#> 1568     1 0.249
#> 1569     1 0.000
#> 1570     1 0.253
#> 1571     1 0.000
#> 1572     2 0.000
#> 1573     2 0.000
#> 1574     1 1.000
#> 1575     2 0.000
#> 1576     2 1.000
#> 1577     2 1.000
#> 1578     2 0.498
#> 1579     2 0.751
#> 1580     2 1.000
#> 1581     2 1.000
#> 1582     2 0.747
#> 1583     2 1.000
#> 1584     2 0.249
#> 1585     1 0.000
#> 1586     2 1.000
#> 1587     1 0.249
#> 1588     2 1.000
#> 1589     1 0.000
#> 1590     2 1.000
#> 1591     1 0.502
#> 1592     1 0.000
#> 1593     1 0.000
#> 1594     2 0.249
#> 1595     1 0.000
#> 1596     2 0.000
#> 1597     2 0.000
#> 1598     2 0.000
#> 1599     1 0.000
#> 1600     2 1.000
#> 1601     1 0.000
#> 1602     2 1.000
#> 1603     1 0.000
#> 1604     2 0.249
#> 1605     2 0.000
#> 1606     1 0.000
#> 1607     1 0.000
#> 1608     2 0.249
#> 1609     2 1.000
#> 1610     2 1.000
#> 1611     1 0.000
#> 1612     1 0.000
#> 1613     1 0.000
#> 1614     1 0.000
#> 1615     1 0.000
#> 1616     1 0.000
#> 1617     1 0.000
#> 1618     2 0.249
#> 1619     1 0.000
#> 1620     2 0.000
#> 1621     2 0.000
#> 1622     2 0.498
#> 1623     1 0.249
#> 1624     1 0.498
#> 1625     1 0.498
#> 1626     2 0.000
#> 1627     1 0.000
#> 1628     1 0.000
#> 1629     1 0.000
#> 1630     1 0.000
#> 1631     1 0.000
#> 1632     1 0.000
#> 1633     1 0.249
#> 1634     1 0.000
#> 1635     2 0.000
#> 1636     1 0.000
#> 1637     1 0.000
#> 1638     1 0.000
#> 1639     2 0.000
#> 1640     1 0.502
#> 1641     1 0.249
#> 1642     1 0.000
#> 1643     1 0.000
#> 1644     2 0.751
#> 1645     1 1.000
#> 1646     1 0.000
#> 1647     1 0.000
#> 1648     1 0.000
#> 1649     1 0.000
#> 1650     1 0.000
#> 1651     1 1.000
#> 1652     1 0.000
#> 1653     1 0.253
#> 1654     1 1.000
#> 1655     1 0.000
#> 1656     1 0.000
#> 1657     1 0.000
#> 1658     1 0.000
#> 1659     1 0.000
#> 1660     1 0.751
#> 1661     1 0.249
#> 1662     1 0.000
#> 1663     1 0.000
#> 1664     1 0.751
#> 1665     1 0.000
#> 1666     1 0.000
#> 1667     1 0.000
#> 1668     1 0.000
#> 1669     1 0.000
#> 1670     1 0.000
#> 1671     1 0.000
#> 1672     1 0.751
#> 1673     1 0.000
#> 1674     1 0.249
#> 1675     1 0.000
#> 1676     2 0.000
#> 1677     1 0.000
#> 1678     1 0.249
#> 1679     1 0.000
#> 1680     2 0.000
#> 1681     1 0.000
#> 1682     1 0.000
#> 1683     1 0.000
#> 1684     1 1.000
#> 1685     1 0.249
#> 1686     1 0.000
#> 1687     1 0.000
#> 1688     1 0.253
#> 1689     1 0.000
#> 1690     1 0.000
#> 1691     1 0.000
#> 1692     1 0.000
#> 1693     1 0.000
#> 1694     1 0.249
#> 1695     1 0.000
#> 1696     1 0.000
#> 1697     1 0.249
#> 1698     1 0.000
#> 1699     1 0.000
#> 1700     1 0.000
#> 1701     1 0.000
#> 1702     1 0.000
#> 1703     1 0.000
#> 1704     1 0.000
#> 1705     1 0.000
#> 1706     1 0.000
#> 1707     1 1.000
#> 1708     1 0.000
#> 1709     1 0.000
#> 1710     1 0.502
#> 1711     1 0.000
#> 1712     1 0.000
#> 1713     1 0.000
#> 1714     1 0.000
#> 1715     1 0.000
#> 1716     1 0.000
#> 1717     1 0.000
#> 1718     1 0.000
#> 1719     1 1.000
#> 1720     1 0.000
#> 1721     1 0.000
#> 1722     1 0.249
#> 1723     1 1.000
#> 1724     1 0.751
#> 1725     1 0.253
#> 1726     1 0.249
#> 1727     1 0.000
#> 1728     1 0.000
#> 1729     1 1.000
#> 1730     1 0.000
#> 1731     1 0.000
#> 1732     1 0.498
#> 1733     1 0.249
#> 1734     2 0.000
#> 1735     1 0.000
#> 1736     1 0.000
#> 1737     1 0.000
#> 1738     1 0.249
#> 1739     1 0.000
#> 1740     1 0.000
#> 1741     1 0.000
#> 1742     1 0.000
#> 1743     1 0.000
#> 1744     1 0.000
#> 1745     1 0.498
#> 1746     1 0.000
#> 1747     1 0.000
#> 1748     1 0.249
#> 1749     1 0.000
#> 1750     1 0.000
#> 1751     1 0.000
#> 1752     1 0.000
#> 1753     2 0.000
#> 1754     1 0.000
#> 1755     2 0.000
#> 1756     1 0.000
#> 1757     1 0.000
#> 1758     1 0.000
#> 1759     1 1.000
#> 1760     1 0.000
#> 1761     2 0.000
#> 1762     1 0.000
#> 1763     1 0.000
#> 1764     1 0.249
#> 1765     1 0.249
#> 1766     2 0.000
#> 1767     1 0.000
#> 1768     1 0.253
#> 1769     1 0.000
#> 1770     2 0.000
#> 1771     1 0.000
#> 1772     1 0.000
#> 1773     1 0.000
#> 1774     1 0.000
#> 1775     1 0.000
#> 1776     1 0.249
#> 1777     1 0.000
#> 1778     1 0.000
#> 1779     1 0.000
#> 1780     1 0.249
#> 1781     1 0.000
#> 1782     1 0.000
#> 1783     1 0.000
#> 1784     1 0.000
#> 1785     1 0.000
#> 1786     1 0.000
#> 1787     1 0.000
#> 1788     1 0.000
#> 1789     1 0.000
#> 1790     1 1.000
#> 1791     1 0.249
#> 1792     1 0.000
#> 1793     1 0.000
#> 1794     2 0.000
#> 1795     2 0.000
#> 1796     1 0.000
#> 1797     1 0.000
#> 1798     1 0.253
#> 1799     2 0.000
#> 1800     1 0.249
#> 1801     1 0.249
#> 1802     1 0.000
#> 1803     1 0.000
#> 1804     1 0.000
#> 1805     1 0.249
#> 1806     1 0.253
#> 1807     2 0.000
#> 1808     2 0.000
#> 1809     2 0.249
#> 1810     1 0.000
#> 1811     2 0.249
#> 1812     1 0.000
#> 1813     1 0.000
#> 1814     1 0.249
#> 1815     1 0.000
#> 1816     1 0.000
#> 1817     1 0.000
#> 1818     1 0.249
#> 1819     1 1.000
#> 1820     1 0.000
#> 1821     1 0.000
#> 1822     1 0.000
#> 1823     1 0.000
#> 1824     1 0.000
#> 1825     1 0.502
#> 1826     1 0.000
#> 1827     1 0.000
#> 1828     1 0.000
#> 1829     1 0.000
#> 1830     2 0.000
#> 1831     1 0.249
#> 1832     1 0.751
#> 1833     2 0.000
#> 1834     1 0.000
#> 1835     1 0.000
#> 1836     2 0.000
#> 1837     2 0.000
#> 1838     1 0.000
#> 1839     1 0.000
#> 1840     1 0.000
#> 1841     1 0.000
#> 1842     1 0.000
#> 1843     2 0.000
#> 1844     1 0.253
#> 1845     1 0.000
#> 1846     1 0.747
#> 1847     1 0.000
#> 1848     1 0.000
#> 1849     1 0.000
#> 1850     1 0.000
#> 1851     1 0.000
#> 1852     1 0.249
#> 1853     1 0.000
#> 1854     1 0.000
#> 1855     1 0.000
#> 1856     1 0.000
#> 1857     1 0.000
#> 1858     1 0.249
#> 1859     1 0.000
#> 1860     1 0.000
#> 1861     1 0.000
#> 1862     1 0.000
#> 1863     1 0.000
#> 1864     2 1.000
#> 1865     2 0.000
#> 1866     2 1.000
#> 1867     1 1.000
#> 1868     1 0.249
#> 1869     2 0.000
#> 1870     1 0.000
#> 1871     1 0.249
#> 1872     1 1.000
#> 1873     1 0.000
#> 1874     1 0.000
#> 1875     1 0.000
#> 1876     1 0.000
#> 1877     2 0.000
#> 1878     1 0.502
#> 1879     1 0.000
#> 1880     1 0.000
#> 1881     2 0.000
#> 1882     1 0.000
#> 1883     1 0.000
#> 1884     1 0.000
#> 1885     1 0.000
#> 1886     1 0.000
#> 1887     1 0.000
#> 1888     1 0.000
#> 1889     1 0.000
#> 1890     1 0.000
#> 1891     1 0.000
#> 1892     2 0.000
#> 1893     1 0.000
#> 1894     1 0.000
#> 1895     1 0.000
#> 1896     1 0.000
#> 1897     1 0.000
#> 1898     1 0.000
#> 1899     1 0.000
#> 1900     1 0.000
#> 1901     1 0.249
#> 1902     1 0.000
#> 1903     1 0.000
#> 1904     1 0.000
#> 1905     1 0.000
#> 1906     1 0.000
#> 1907     2 1.000
#> 1908     1 0.000
#> 1909     1 0.000
#> 1910     1 0.249
#> 1911     1 0.000
#> 1912     1 0.000
#> 1913     1 0.249
#> 1914     1 0.000
#> 1915     1 0.498
#> 1916     1 0.000
#> 1917     1 0.000
#> 1918     1 0.000
#> 1919     1 0.000
#> 1920     2 1.000
#> 1921     2 0.000
#> 1922     1 0.000
#> 1923     1 0.249
#> 1924     1 0.249
#> 1925     1 0.000
#> 1926     1 0.000
#> 1927     1 0.000
#> 1928     1 0.000
#> 1929     1 0.000
#> 1930     2 0.000
#> 1931     1 0.000
#> 1932     1 0.000
#> 1933     2 0.000
#> 1934     1 0.000
#> 1935     1 0.000
#> 1936     2 0.751
#> 1937     1 0.000
#> 1938     1 0.000
#> 1939     1 0.000
#> 1940     1 0.249
#> 1941     1 0.000
#> 1942     1 0.000
#> 1943     1 0.000
#> 1944     1 0.000
#> 1945     2 1.000
#> 1946     2 0.502
#> 1947     2 1.000
#> 1948     1 0.000
#> 1949     1 0.000
#> 1950     1 0.000
#> 1951     1 0.000
#> 1952     1 0.000
#> 1953     1 0.751
#> 1954     2 0.000
#> 1955     1 0.000
#> 1956     1 0.000
#> 1957     2 0.000
#> 1958     1 0.000
#> 1959     2 0.249
#> 1960     1 0.249
#> 1961     2 0.000
#> 1962     1 0.000
#> 1963     1 0.000
#> 1964     2 0.000
#> 1965     1 0.000
#> 1966     1 0.000
#> 1967     2 0.000
#> 1968     1 0.249
#> 1969     1 0.502
#> 1970     1 0.000
#> 1971     1 0.000
#> 1972     2 0.000
#> 1973     1 0.000
#> 1974     1 0.000
#> 1975     2 0.000
#> 1976     2 0.498
#> 1977     1 0.249
#> 1978     2 0.000
#> 1979     1 0.249
#> 1980     2 0.000
#> 1981     1 0.000
#> 1982     1 0.000
#> 1983     2 1.000
#> 1984     2 0.000
#> 1985     2 0.000
#> 1986     2 0.249
#> 1987     2 0.000
#> 1988     2 0.000
#> 1989     2 0.000
#> 1990     2 0.000
#> 1991     2 0.000
#> 1992     2 0.000
#> 1993     2 0.000
#> 1994     2 0.000
#> 1995     2 0.249
#> 1996     2 0.000
#> 1997     2 0.000
#> 1998     2 0.000
#> 1999     2 0.000
#> 2000     2 0.000
#> 2001     2 0.000
#> 2002     2 0.000
#> 2003     2 0.751
#> 2004     2 0.000
#> 2005     2 0.000
#> 2006     2 0.000
#> 2007     2 0.000
#> 2008     2 0.000
#> 2009     2 0.000
#> 2010     2 0.249
#> 2011     2 0.000
#> 2012     2 0.000
#> 2013     2 0.000
#> 2014     2 0.000
#> 2015     1 0.751
#> 2016     2 0.000
#> 2017     2 0.000
#> 2018     2 0.000
#> 2019     2 0.000
#> 2020     2 0.000
#> 2021     2 0.000
#> 2022     2 0.000
#> 2023     2 0.000
#> 2024     2 0.000
#> 2025     2 0.000
#> 2026     1 1.000
#> 2027     2 0.000
#> 2028     2 0.000
#> 2029     2 0.000
#> 2030     2 0.000
#> 2031     2 0.000
#> 2032     2 0.000
#> 2033     2 0.253
#> 2034     2 0.000
#> 2035     2 0.000
#> 2036     2 0.000
#> 2037     2 0.249
#> 2038     2 0.000
#> 2039     2 0.000
#> 2040     2 0.000
#> 2041     2 0.000
#> 2042     1 1.000
#> 2043     2 0.000
#> 2044     2 0.000
#> 2045     2 0.000
#> 2046     2 0.000
#> 2047     2 0.000
#> 2048     2 0.000
#> 2049     2 0.000
#> 2050     1 1.000
#> 2051     2 0.000
#> 2052     2 1.000
#> 2053     2 0.000
#> 2054     2 0.249
#> 2055     2 0.000
#> 2056     2 0.000
#> 2057     2 0.000
#> 2058     2 0.000
#> 2059     1 1.000
#> 2060     2 0.000
#> 2061     2 0.249
#> 2062     2 0.000
#> 2063     2 0.000
#> 2064     2 0.000
#> 2065     2 0.000
#> 2066     2 0.000
#> 2067     2 0.249
#> 2068     2 0.000
#> 2069     2 0.000
#> 2070     2 0.000
#> 2071     2 0.000
#> 2072     2 0.000
#> 2073     2 0.000
#> 2074     2 0.000
#> 2075     2 0.000
#> 2076     2 0.000
#> 2077     2 0.000
#> 2078     2 0.000
#> 2079     2 0.000
#> 2080     2 1.000
#> 2081     2 0.000
#> 2082     2 0.000
#> 2083     2 0.000
#> 2084     2 0.000
#> 2085     2 0.000
#> 2086     2 0.000
#> 2087     2 0.000
#> 2088     2 0.000
#> 2089     2 0.000
#> 2090     2 0.000
#> 2091     2 0.000
#> 2092     2 0.000
#> 2093     2 0.000
#> 2094     2 0.000
#> 2095     2 0.000
#> 2096     2 0.000
#> 2097     2 0.000
#> 2098     2 0.000
#> 2099     2 0.000
#> 2100     2 0.249
#> 2101     2 0.000
#> 2102     2 0.000
#> 2103     2 0.000
#> 2104     2 0.000
#> 2105     2 0.000
#> 2106     2 0.000
#> 2107     2 0.000
#> 2108     2 0.000
#> 2109     2 0.000
#> 2110     2 0.000
#> 2111     2 0.000
#> 2112     2 0.000
#> 2113     2 0.000
#> 2114     2 0.000
#> 2115     2 0.000
#> 2116     2 0.000
#> 2117     2 0.000
#> 2118     2 0.000
#> 2119     2 0.000
#> 2120     2 0.000
#> 2121     2 0.000
#> 2122     2 0.000
#> 2123     2 0.000
#> 2124     2 0.000
#> 2125     1 1.000
#> 2126     2 0.000
#> 2127     2 0.000
#> 2128     2 0.249
#> 2129     2 0.000
#> 2130     2 0.000
#> 2131     2 0.000
#> 2132     2 0.000
#> 2133     2 0.000
#> 2134     2 0.000
#> 2135     2 0.498
#> 2136     2 0.000
#> 2137     2 0.000
#> 2138     2 0.249
#> 2139     2 0.000
#> 2140     2 0.000
#> 2141     2 0.000
#> 2142     2 0.000
#> 2143     2 0.000
#> 2144     2 0.000
#> 2145     2 0.000
#> 2146     2 0.000
#> 2147     2 0.000
#> 2148     2 0.000
#> 2149     2 0.000
#> 2150     2 0.000
#> 2151     2 0.000
#> 2152     2 0.000
#> 2153     2 0.000
#> 2154     2 0.000
#> 2155     2 0.000
#> 2156     2 0.249
#> 2157     2 0.000
#> 2158     2 0.000
#> 2159     2 0.000
#> 2160     2 0.000
#> 2161     2 0.000
#> 2162     2 0.000
#> 2163     2 0.000
#> 2164     2 0.000
#> 2165     2 0.000
#> 2166     2 0.000
#> 2167     2 0.000
#> 2168     2 0.000
#> 2169     2 0.000
#> 2170     2 0.000
#> 2171     2 0.000
#> 2172     2 0.000
#> 2173     2 0.000
#> 2174     1 1.000
#> 2175     2 0.000
#> 2176     2 0.000
#> 2177     2 0.000
#> 2178     2 0.000
#> 2179     2 0.000
#> 2180     2 0.000
#> 2181     2 0.000
#> 2182     2 0.000
#> 2183     2 0.249
#> 2184     2 0.000
#> 2185     2 0.000
#> 2186     2 0.000
#> 2187     2 0.000
#> 2188     2 0.000
#> 2189     2 0.000
#> 2190     1 1.000
#> 2191     2 0.000
#> 2192     1 1.000
#> 2193     2 0.000
#> 2194     1 0.000
#> 2195     2 0.000
#> 2196     2 0.000
#> 2197     2 0.000
#> 2198     2 0.249
#> 2199     2 0.000
#> 2200     2 0.000
#> 2201     2 0.000
#> 2202     2 0.000
#> 2203     2 0.000
#> 2204     2 0.000
#> 2205     2 0.000
#> 2206     2 0.000
#> 2207     2 0.000
#> 2208     2 0.000
#> 2209     2 0.000
#> 2210     2 0.000
#> 2211     2 0.000
#> 2212     2 0.000
#> 2213     2 0.000
#> 2214     2 0.000
#> 2215     2 0.000
#> 2216     2 0.000
#> 2217     2 0.000
#> 2218     2 0.000
#> 2219     2 0.000
#> 2220     2 0.000
#> 2221     2 0.000
#> 2222     2 0.000
#> 2223     2 0.000
#> 2224     2 0.000
#> 2225     2 0.000
#> 2226     2 0.000
#> 2227     2 0.000
#> 2228     2 0.000
#> 2229     2 0.000
#> 2230     2 0.000
#> 2231     2 0.000
#> 2232     2 0.000
#> 2233     2 0.000
#> 2234     2 0.000
#> 2235     2 0.000
#> 2236     2 0.000
#> 2237     1 1.000
#> 2238     2 0.000
#> 2239     2 0.000
#> 2240     2 0.000
#> 2241     2 0.000
#> 2242     1 1.000
#> 2243     2 0.000
#> 2244     2 0.000
#> 2245     2 0.000
#> 2246     2 0.000
#> 2247     2 0.000
#> 2248     2 0.000
#> 2249     2 0.000
#> 2250     2 0.000
#> 2251     2 0.000
#> 2252     2 0.000
#> 2253     2 0.000
#> 2254     2 0.000
#> 2255     2 0.000
#> 2256     2 0.000
#> 2257     2 0.000
#> 2258     2 0.000
#> 2259     1 1.000
#> 2260     1 1.000
#> 2261     2 0.000
#> 2262     2 0.000
#> 2263     2 0.000
#> 2264     2 0.000
#> 2265     2 0.000
#> 2266     2 0.000
#> 2267     2 0.000
#> 2268     2 0.000
#> 2269     2 0.000
#> 2270     2 0.000
#> 2271     2 0.000
#> 2272     2 0.000
#> 2273     1 1.000
#> 2274     2 0.000
#> 2275     1 0.751
#> 2276     2 0.000
#> 2277     2 0.000
#> 2278     1 1.000
#> 2279     2 0.000
#> 2280     2 0.000
#> 2281     2 0.000
#> 2282     2 0.000
#> 2283     1 1.000
#> 2284     2 0.000
#> 2285     2 0.000
#> 2286     2 0.502
#> 2287     1 1.000
#> 2288     2 0.000
#> 2289     1 1.000
#> 2290     2 0.000
#> 2291     2 0.000
#> 2292     1 1.000
#> 2293     2 0.000
#> 2294     2 0.000
#> 2295     1 1.000
#> 2296     2 0.000
#> 2297     2 0.000
#> 2298     2 0.000
#> 2299     1 1.000
#> 2300     2 0.000
#> 2301     1 0.502
#> 2302     1 1.000
#> 2303     1 1.000
#> 2304     2 0.000
#> 2305     1 0.000
#> 2306     2 0.000
#> 2307     1 1.000
#> 2308     1 0.751
#> 2309     1 1.000
#> 2310     2 0.000
#> 2311     1 0.751
#> 2312     2 0.000
#> 2313     2 0.249
#> 2314     1 1.000
#> 2315     1 1.000
#> 2316     1 0.253
#> 2317     1 1.000
#> 2318     2 0.249
#> 2319     2 0.000
#> 2320     2 0.000
#> 2321     1 1.000
#> 2322     2 0.000
#> 2323     2 0.000
#> 2324     2 0.000
#> 2325     2 0.000
#> 2326     2 0.000
#> 2327     2 0.000
#> 2328     2 0.000
#> 2329     2 0.000
#> 2330     2 0.000
#> 2331     2 0.000
#> 2332     2 0.000
#> 2333     2 0.000
#> 2334     2 0.000
#> 2335     2 0.000
#> 2336     1 0.751
#> 2337     1 1.000
#> 2338     1 1.000
#> 2339     2 0.000
#> 2340     1 1.000
#> 2341     1 1.000
#> 2342     1 1.000
#> 2343     2 0.000
#> 2344     2 0.000
#> 2345     2 0.000
#> 2346     2 0.000
#> 2347     2 0.000
#> 2348     2 0.000
#> 2349     2 0.000
#> 2350     2 0.000
#> 2351     2 1.000
#> 2352     2 0.000
#> 2353     2 0.000
#> 2354     2 0.000
#> 2355     2 0.000
#> 2356     2 0.000
#> 2357     1 1.000
#> 2358     2 0.000
#> 2359     2 0.000
#> 2360     2 0.000
#> 2361     2 0.000
#> 2362     2 0.000
#> 2363     2 0.000
#> 2364     2 0.000
#> 2365     2 0.000
#> 2366     2 0.000
#> 2367     2 0.000
#> 2368     2 0.000
#> 2369     2 0.000
#> 2370     2 0.000
#> 2371     2 0.000
#> 2372     2 0.000
#> 2373     2 0.000
#> 2374     2 0.000
#> 2375     2 0.000
#> 2376     2 0.000
#> 2377     2 0.000
#> 2378     2 0.000
#> 2379     2 0.000
#> 2380     2 0.000
#> 2381     2 0.000
#> 2382     2 0.000
#> 2383     2 0.000
#> 2384     2 0.000
#> 2385     2 0.000
#> 2386     2 0.000
#> 2387     2 0.000
#> 2388     2 0.000
#> 2389     2 0.000
#> 2390     2 0.000
#> 2391     2 0.000
#> 2392     2 0.000
#> 2393     2 0.000
#> 2394     2 0.000
#> 2395     2 0.000
#> 2396     2 0.000
#> 2397     2 0.000
#> 2398     2 0.498
#> 2399     1 0.747
#> 2400     2 0.000
#> 2401     1 1.000
#> 2402     1 1.000
#> 2403     1 1.000
#> 2404     2 0.000
#> 2405     2 0.000
#> 2406     2 0.000
#> 2407     2 0.000
#> 2408     2 0.000
#> 2409     2 0.000
#> 2410     2 0.000
#> 2411     2 0.000
#> 2412     2 0.000
#> 2413     2 0.000
#> 2414     1 1.000
#> 2415     2 0.000
#> 2416     2 0.000
#> 2417     2 0.000
#> 2418     2 0.000
#> 2419     2 0.000
#> 2420     1 0.253
#> 2421     2 0.000
#> 2422     2 0.000
#> 2423     1 1.000
#> 2424     2 0.000
#> 2425     2 0.000
#> 2426     2 0.000
#> 2427     2 0.000
#> 2428     2 0.000
#> 2429     2 0.000
#> 2430     2 0.000
#> 2431     2 0.000
#> 2432     2 0.000
#> 2433     1 1.000
#> 2434     2 0.000
#> 2435     1 1.000
#> 2436     2 0.000
#> 2437     1 1.000
#> 2438     1 1.000
#> 2439     1 1.000
#> 2440     1 1.000
#> 2441     1 1.000
#> 2442     1 1.000
#> 2443     1 1.000
#> 2444     1 1.000
#> 2445     1 1.000
#> 2446     2 0.000
#> 2447     2 0.000
#> 2448     2 0.000
#> 2449     2 0.000
#> 2450     2 0.000
#> 2451     2 0.000
#> 2452     2 0.000
#> 2453     2 0.000
#> 2454     2 0.747
#> 2455     2 0.000
#> 2456     2 0.000
#> 2457     2 0.000
#> 2458     2 0.000
#> 2459     2 0.000
#> 2460     2 0.000
#> 2461     2 0.000
#> 2462     2 0.000
#> 2463     2 0.000
#> 2464     2 0.000
#> 2465     2 0.000
#> 2466     2 0.000
#> 2467     2 0.000
#> 2468     2 0.000
#> 2469     2 0.000
#> 2470     2 0.000
#> 2471     1 1.000
#> 2472     2 0.000
#> 2473     2 0.000
#> 2474     2 0.000
#> 2475     2 0.000
#> 2476     2 0.502
#> 2477     2 0.000
#> 2478     2 0.498
#> 2479     2 0.000
#> 2480     2 0.000
#> 2481     2 0.751
#> 2482     2 0.000
#> 2483     2 0.000
#> 2484     2 0.000
#> 2485     2 0.253
#> 2486     2 0.000
#> 2487     2 0.000
#> 2488     2 0.000
#> 2489     2 0.000
#> 2490     2 0.000
#> 2491     2 0.249
#> 2492     2 0.000
#> 2493     2 0.000
#> 2494     2 0.000
#> 2495     2 0.000
#> 2496     2 0.000
#> 2497     2 0.000
#> 2498     2 0.000
#> 2499     2 0.000
#> 2500     2 0.000
#> 2501     2 0.000
#> 2502     2 0.000
#> 2503     2 0.000
#> 2504     2 0.000
#> 2505     2 0.000
#> 2506     2 0.000
#> 2507     2 0.000
#> 2508     2 0.000
#> 2509     2 0.000
#> 2510     2 0.000
#> 2511     2 0.000
#> 2512     2 0.000
#> 2513     2 0.000
#> 2514     2 0.000
#> 2515     2 0.000
#> 2516     2 0.000
#> 2517     2 0.000
#> 2518     2 0.000
#> 2519     2 0.000
#> 2520     2 0.000
#> 2521     2 0.000
#> 2522     2 0.000
#> 2523     2 0.000
#> 2524     2 0.249
#> 2525     2 0.000
#> 2526     2 0.000
#> 2527     2 0.000
#> 2528     2 0.000
#> 2529     2 0.000
#> 2530     2 0.000
#> 2531     2 0.000
#> 2532     2 0.000
#> 2533     2 0.502
#> 2534     1 1.000
#> 2535     2 0.000
#> 2536     2 0.000
#> 2537     2 0.000
#> 2538     2 0.000
#> 2539     2 0.000
#> 2540     2 0.000
#> 2541     2 0.000
#> 2542     2 0.000
#> 2543     2 0.000
#> 2544     2 0.000
#> 2545     2 0.000
#> 2546     2 0.000
#> 2547     2 0.000
#> 2548     2 0.000
#> 2549     1 1.000
#> 2550     2 0.000
#> 2551     1 1.000
#> 2552     1 1.000
#> 2553     1 0.502
#> 2554     1 1.000
#> 2555     2 0.000
#> 2556     1 1.000
#> 2557     2 0.000
#> 2558     1 1.000
#> 2559     2 0.000
#> 2560     2 0.000
#> 2561     2 0.000
#> 2562     2 0.000
#> 2563     1 1.000
#> 2564     2 0.000
#> 2565     2 0.000
#> 2566     2 0.000
#> 2567     2 0.000
#> 2568     2 0.000
#> 2569     2 0.000
#> 2570     2 0.000
#> 2571     2 0.000
#> 2572     1 0.751
#> 2573     1 1.000
#> 2574     1 1.000
#> 2575     1 1.000
#> 2576     1 1.000
#> 2577     2 0.000
#> 2578     2 0.000
#> 2579     2 0.000
#> 2580     2 0.000
#> 2581     2 0.000
#> 2582     2 0.000
#> 2583     2 0.000
#> 2584     2 0.000
#> 2585     2 0.000
#> 2586     2 0.000
#> 2587     2 0.000
#> 2588     1 1.000
#> 2589     2 0.000
#> 2590     2 0.000
#> 2591     2 0.000
#> 2592     2 0.000
#> 2593     2 1.000
#> 2594     2 0.000
#> 2595     2 0.000
#> 2596     2 0.000
#> 2597     2 0.000
#> 2598     2 0.000
#> 2599     2 0.000
#> 2600     2 0.000
#> 2601     2 0.000
#> 2602     2 0.000
#> 2603     2 0.000
#> 2604     2 0.249
#> 2605     2 0.000
#> 2606     2 0.000
#> 2607     2 0.000
#> 2608     2 0.000
#> 2609     2 0.747
#> 2610     1 1.000
#> 2611     2 0.000
#> 2612     2 0.000
#> 2613     2 0.000
#> 2614     2 0.000
#> 2615     2 0.000
#> 2616     1 1.000
#> 2617     2 0.000
#> 2618     2 0.000
#> 2619     2 0.000
#> 2620     2 0.000
#> 2621     2 0.249
#> 2622     2 0.000
#> 2623     1 0.502
#> 2624     2 0.000
#> 2625     2 0.000
#> 2626     1 1.000
#> 2627     1 1.000
#> 2628     1 0.751
#> 2629     1 1.000
#> 2630     2 0.249
#> 2631     2 0.000
#> 2632     2 0.000
#> 2633     2 0.000
#> 2634     2 0.000
#> 2635     2 1.000
#> 2636     2 0.000
#> 2637     2 0.000
#> 2638     2 0.000
#> 2639     2 0.000
#> 2640     2 0.000
#> 2641     2 0.000
#> 2642     1 1.000
#> 2643     2 0.000
#> 2644     2 0.000
#> 2645     2 0.000
#> 2646     2 0.000
#> 2647     2 0.000
#> 2648     2 0.000
#> 2649     2 0.000
#> 2650     2 0.000
#> 2651     1 0.000
#> 2652     2 0.000
#> 2653     2 0.000
#> 2654     2 0.000
#> 2655     2 0.000
#> 2656     2 0.000
#> 2657     2 0.000
#> 2658     2 0.000
#> 2659     2 0.000
#> 2660     2 0.000
#> 2661     2 0.000
#> 2662     2 0.000
#> 2663     2 0.000
#> 2664     1 1.000
#> 2665     1 1.000
#> 2666     2 0.000
#> 2667     2 0.000
#> 2668     2 0.000
#> 2669     2 0.000
#> 2670     1 1.000
#> 2671     2 0.000
#> 2672     1 1.000
#> 2673     1 1.000
#> 2674     2 0.000
#> 2675     2 0.000
#> 2676     2 0.000
#> 2677     2 0.000
#> 2678     1 1.000
#> 2679     1 1.000
#> 2680     1 1.000
#> 2681     1 1.000
#> 2682     2 0.000
#> 2683     1 1.000
#> 2684     1 1.000
#> 2685     1 0.000
#> 2686     2 0.000
#> 2687     2 0.000
#> 2688     2 0.000
#> 2689     2 0.000
#> 2690     2 0.000
#> 2691     2 0.000
#> 2692     2 0.000
#> 2693     2 0.000
#> 2694     2 0.000
#> 2695     1 0.751
#> 2696     2 0.000
#> 2697     2 0.000
#> 2698     2 0.000
#> 2699     2 0.000
#> 2700     1 1.000
#> 2701     2 0.000
#> 2702     2 0.000
#> 2703     1 1.000
#> 2704     2 0.000
#> 2705     2 0.000
#> 2706     2 0.000
#> 2707     1 1.000
#> 2708     2 0.000
#> 2709     1 1.000
#> 2710     1 0.751
#> 2711     2 0.000
#> 2712     1 1.000
#> 2713     1 1.000
#> 2714     2 0.000
#> 2715     2 0.000
#> 2716     2 0.000
#> 2717     1 1.000
#> 2718     1 0.751
#> 2719     2 0.000
#> 2720     1 1.000
#> 2721     2 0.000
#> 2722     2 0.000
#> 2723     1 1.000
#> 2724     2 0.000
#> 2725     1 1.000
#> 2726     1 1.000
#> 2727     1 1.000
#> 2728     1 1.000
#> 2729     1 1.000
#> 2730     2 0.000
#> 2731     2 0.000
#> 2732     2 0.000
#> 2733     1 1.000
#> 2734     2 0.249
#> 2735     1 1.000
#> 2736     1 0.751
#> 2737     1 1.000
#> 2738     1 1.000
#> 2739     1 0.751
#> 2740     1 1.000
#> 2741     1 1.000
#> 2742     1 1.000
#> 2743     2 0.000
#> 2744     2 0.000
#> 2745     2 0.000
#> 2746     1 1.000
#> 2747     1 1.000
#> 2748     1 1.000
#> 2749     1 1.000
#> 2750     1 1.000
#> 2751     1 1.000
#> 2752     1 1.000
#> 2753     2 0.000
#> 2754     2 0.000
#> 2755     1 1.000
#> 2756     2 1.000
#> 2757     1 0.253
#> 2758     2 1.000
#> 2759     2 0.249
#> 2760     2 0.249
#> 2761     2 1.000
#> 2762     2 0.249
#> 2763     2 0.751
#> 2764     2 1.000
#> 2765     2 0.000
#> 2766     1 1.000
#> 2767     1 1.000
#> 2768     2 0.000
#> 2769     2 0.000
#> 2770     2 0.000
#> 2771     2 0.000
#> 2772     2 0.000
#> 2773     2 0.249
#> 2774     2 0.000
#> 2775     2 0.000
#> 2776     2 0.249
#> 2777     2 0.000
#> 2778     2 0.000
#> 2779     2 0.000
#> 2780     2 0.000
#> 2781     2 0.000
#> 2782     2 0.000
#> 2783     2 0.000
#> 2784     2 0.000
#> 2785     2 0.249
#> 2786     2 0.000
#> 2787     2 0.000
#> 2788     2 0.000
#> 2789     2 0.000
#> 2790     1 0.751
#> 2791     1 0.751
#> 2792     2 0.000
#> 2793     2 0.000
#> 2794     2 0.000
#> 2795     2 0.000
#> 2796     2 0.000
#> 2797     2 0.000
#> 2798     2 0.000
#> 2799     2 0.249
#> 2800     2 0.000
#> 2801     2 0.000
#> 2802     2 0.000
#> 2803     2 0.000
#> 2804     2 0.000
#> 2805     2 0.249
#> 2806     2 0.000
#> 2807     2 0.000
#> 2808     2 0.000
#> 2809     2 0.502
#> 2810     2 0.000
#> 2811     2 0.000
#> 2812     2 0.249
#> 2813     2 0.000
#> 2814     2 0.000
#> 2815     2 0.000
#> 2816     2 0.000
#> 2817     2 0.000
#> 2818     1 0.751
#> 2819     1 1.000
#> 2820     1 1.000
#> 2821     2 0.000
#> 2822     2 0.000
#> 2823     2 0.000
#> 2824     2 0.000
#> 2825     2 0.249
#> 2826     2 0.249
#> 2827     2 0.000
#> 2828     2 0.000
#> 2829     2 0.000
#> 2830     2 0.000
#> 2831     2 0.000
#> 2832     2 0.000
#> 2833     2 0.000
#> 2834     2 0.000
#> 2835     2 0.000
#> 2836     2 0.000
#> 2837     2 0.000
#> 2838     2 0.000
#> 2839     2 0.000
#> 2840     2 0.000
#> 2841     2 0.000
#> 2842     2 0.000
#> 2843     2 0.249
#> 2844     2 0.000
#> 2845     2 0.000
#> 2846     2 0.249
#> 2847     2 0.000
#> 2848     2 0.000
#> 2849     2 0.000
#> 2850     2 0.000
#> 2851     2 0.498
#> 2852     2 0.000
#> 2853     1 1.000
#> 2854     2 0.000
#> 2855     1 0.751
#> 2856     2 0.000
#> 2857     2 0.000
#> 2858     1 1.000
#> 2859     2 0.000
#> 2860     2 0.000
#> 2861     2 0.000
#> 2862     2 0.000
#> 2863     2 0.000
#> 2864     2 0.000
#> 2865     2 0.000
#> 2866     2 0.000
#> 2867     2 0.000
#> 2868     2 0.000
#> 2869     2 0.000
#> 2870     2 0.000
#> 2871     2 0.000
#> 2872     2 0.000
#> 2873     2 0.000
#> 2874     2 0.000
#> 2875     2 0.000
#> 2876     2 0.000
#> 2877     2 0.000
#> 2878     2 0.000
#> 2879     1 1.000
#> 2880     2 0.000
#> 2881     2 0.000

show/hide code output

get_classes(res, k = 3)
#>      class     p
#> 1        1 0.249
#> 2        1 0.249
#> 3        2 0.000
#> 4        3 1.000
#> 5        1 0.747
#> 6        1 0.000
#> 7        3 0.000
#> 8        1 1.000
#> 9        1 1.000
#> 10       1 0.253
#> 11       1 1.000
#> 12       1 1.000
#> 13       3 1.000
#> 14       1 0.747
#> 15       1 1.000
#> 16       1 1.000
#> 17       1 1.000
#> 18       1 1.000
#> 19       3 0.000
#> 20       1 1.000
#> 21       3 1.000
#> 22       1 0.000
#> 23       1 1.000
#> 24       3 0.000
#> 25       1 1.000
#> 26       3 1.000
#> 27       3 0.000
#> 28       3 0.000
#> 29       1 0.000
#> 30       3 0.000
#> 31       3 0.000
#> 32       1 1.000
#> 33       3 0.000
#> 34       3 1.000
#> 35       3 0.498
#> 36       1 1.000
#> 37       1 1.000
#> 38       1 1.000
#> 39       3 0.000
#> 40       3 0.000
#> 41       1 0.498
#> 42       2 0.000
#> 43       1 1.000
#> 44       3 0.000
#> 45       1 1.000
#> 46       1 1.000
#> 47       3 0.000
#> 48       3 0.000
#> 49       3 0.000
#> 50       1 0.249
#> 51       3 0.000
#> 52       1 1.000
#> 53       1 1.000
#> 54       1 1.000
#> 55       1 0.000
#> 56       2 1.000
#> 57       2 1.000
#> 58       1 0.000
#> 59       1 1.000
#> 60       3 0.000
#> 61       3 0.000
#> 62       1 0.502
#> 63       1 1.000
#> 64       2 1.000
#> 65       3 0.000
#> 66       1 1.000
#> 67       1 0.000
#> 68       1 0.000
#> 69       3 0.000
#> 70       1 0.498
#> 71       3 1.000
#> 72       3 1.000
#> 73       3 0.000
#> 74       1 1.000
#> 75       1 1.000
#> 76       1 0.000
#> 77       1 0.000
#> 78       1 1.000
#> 79       2 1.000
#> 80       1 1.000
#> 81       1 0.000
#> 82       3 1.000
#> 83       1 1.000
#> 84       1 0.249
#> 85       1 0.000
#> 86       2 1.000
#> 87       1 1.000
#> 88       1 1.000
#> 89       1 1.000
#> 90       1 0.000
#> 91       3 0.000
#> 92       1 0.000
#> 93       2 0.000
#> 94       1 0.000
#> 95       1 1.000
#> 96       1 1.000
#> 97       1 1.000
#> 98       1 0.000
#> 99       1 0.747
#> 100      3 1.000
#> 101      1 1.000
#> 102      1 1.000
#> 103      1 0.000
#> 104      1 1.000
#> 105      1 0.000
#> 106      3 1.000
#> 107      2 0.000
#> 108      1 0.000
#> 109      1 0.000
#> 110      1 0.000
#> 111      1 1.000
#> 112      1 1.000
#> 113      1 0.751
#> 114      1 0.000
#> 115      1 0.000
#> 116      2 0.000
#> 117      2 1.000
#> 118      3 1.000
#> 119      1 0.000
#> 120      3 0.498
#> 121      3 1.000
#> 122      3 0.000
#> 123      2 0.253
#> 124      2 0.751
#> 125      2 1.000
#> 126      2 0.000
#> 127      1 0.000
#> 128      1 0.000
#> 129      1 0.000
#> 130      1 0.000
#> 131      1 0.000
#> 132      1 0.000
#> 133      1 0.502
#> 134      3 1.000
#> 135      1 0.000
#> 136      2 0.498
#> 137      1 1.000
#> 138      1 1.000
#> 139      3 1.000
#> 140      1 0.000
#> 141      1 0.000
#> 142      1 0.000
#> 143      1 0.000
#> 144      1 0.000
#> 145      1 0.000
#> 146      2 0.000
#> 147      1 1.000
#> 148      2 1.000
#> 149      1 1.000
#> 150      3 1.000
#> 151      3 0.249
#> 152      3 0.000
#> 153      1 1.000
#> 154      3 0.249
#> 155      3 0.000
#> 156      1 1.000
#> 157      3 0.000
#> 158      2 1.000
#> 159      3 0.000
#> 160      3 0.751
#> 161      3 1.000
#> 162      1 1.000
#> 163      3 0.000
#> 164      3 1.000
#> 165      2 1.000
#> 166      1 1.000
#> 167      3 0.000
#> 168      3 0.000
#> 169      1 1.000
#> 170      1 1.000
#> 171      3 0.000
#> 172      3 0.000
#> 173      3 0.000
#> 174      2 1.000
#> 175      2 0.502
#> 176      3 0.000
#> 177      3 0.000
#> 178      1 1.000
#> 179      3 0.000
#> 180      3 0.000
#> 181      3 0.000
#> 182      3 0.000
#> 183      3 1.000
#> 184      3 0.000
#> 185      3 1.000
#> 186      3 0.000
#> 187      3 1.000
#> 188      3 0.000
#> 189      3 0.000
#> 190      2 1.000
#> 191      3 1.000
#> 192      1 1.000
#> 193      3 0.000
#> 194      3 0.000
#> 195      3 0.000
#> 196      3 1.000
#> 197      3 0.000
#> 198      3 0.000
#> 199      3 0.000
#> 200      3 0.000
#> 201      3 0.000
#> 202      3 1.000
#> 203      3 0.000
#> 204      3 0.000
#> 205      3 0.000
#> 206      3 0.000
#> 207      3 1.000
#> 208      3 0.000
#> 209      3 0.253
#> 210      2 1.000
#> 211      3 0.000
#> 212      2 0.249
#> 213      3 0.000
#> 214      3 0.000
#> 215      3 0.000
#> 216      3 0.000
#> 217      3 1.000
#> 218      2 1.000
#> 219      3 0.000
#> 220      1 1.000
#> 221      3 0.000
#> 222      3 0.000
#> 223      3 0.000
#> 224      3 0.000
#> 225      3 0.000
#> 226      3 0.000
#> 227      3 0.000
#> 228      3 0.000
#> 229      1 1.000
#> 230      2 0.751
#> 231      3 0.000
#> 232      3 0.000
#> 233      3 0.000
#> 234      3 0.000
#> 235      2 1.000
#> 236      3 0.000
#> 237      3 0.000
#> 238      3 0.000
#> 239      3 0.000
#> 240      3 0.000
#> 241      3 0.000
#> 242      3 1.000
#> 243      3 0.000
#> 244      1 1.000
#> 245      3 0.000
#> 246      3 0.000
#> 247      3 0.000
#> 248      2 1.000
#> 249      3 0.000
#> 250      3 0.000
#> 251      1 0.747
#> 252      3 0.000
#> 253      3 0.000
#> 254      3 0.000
#> 255      3 0.000
#> 256      3 0.000
#> 257      1 1.000
#> 258      3 0.000
#> 259      3 0.000
#> 260      3 0.000
#> 261      1 0.000
#> 262      3 0.000
#> 263      1 1.000
#> 264      1 1.000
#> 265      1 1.000
#> 266      3 0.000
#> 267      1 1.000
#> 268      1 1.000
#> 269      1 0.502
#> 270      3 0.000
#> 271      1 1.000
#> 272      1 1.000
#> 273      3 1.000
#> 274      3 0.000
#> 275      1 1.000
#> 276      3 1.000
#> 277      3 0.000
#> 278      3 0.000
#> 279      3 1.000
#> 280      3 0.000
#> 281      2 1.000
#> 282      1 1.000
#> 283      3 1.000
#> 284      3 1.000
#> 285      3 0.000
#> 286      2 1.000
#> 287      3 0.000
#> 288      3 0.000
#> 289      3 0.000
#> 290      3 0.000
#> 291      3 0.000
#> 292      3 0.000
#> 293      3 0.000
#> 294      3 0.000
#> 295      3 0.000
#> 296      3 0.000
#> 297      3 0.000
#> 298      3 0.000
#> 299      2 1.000
#> 300      3 0.000
#> 301      2 0.000
#> 302      3 0.000
#> 303      3 0.000
#> 304      2 0.249
#> 305      3 1.000
#> 306      2 1.000
#> 307      2 1.000
#> 308      3 0.000
#> 309      2 1.000
#> 310      3 0.000
#> 311      3 0.000
#> 312      3 0.000
#> 313      2 1.000
#> 314      3 0.000
#> 315      3 0.000
#> 316      3 0.000
#> 317      1 0.000
#> 318      3 0.253
#> 319      3 0.253
#> 320      1 1.000
#> 321      3 0.000
#> 322      1 1.000
#> 323      3 0.000
#> 324      3 1.000
#> 325      3 0.000
#> 326      1 0.747
#> 327      3 0.751
#> 328      3 0.000
#> 329      3 0.000
#> 330      3 0.000
#> 331      3 0.000
#> 332      1 1.000
#> 333      1 0.498
#> 334      1 1.000
#> 335      1 1.000
#> 336      2 0.000
#> 337      2 0.000
#> 338      1 0.000
#> 339      3 1.000
#> 340      1 1.000
#> 341      3 0.000
#> 342      3 0.000
#> 343      2 0.000
#> 344      3 0.000
#> 345      3 0.000
#> 346      3 0.000
#> 347      2 1.000
#> 348      3 0.502
#> 349      3 0.000
#> 350      2 0.249
#> 351      3 1.000
#> 352      1 1.000
#> 353      3 0.000
#> 354      3 1.000
#> 355      3 0.000
#> 356      3 1.000
#> 357      3 0.000
#> 358      3 0.000
#> 359      3 0.000
#> 360      3 0.000
#> 361      3 0.249
#> 362      3 0.000
#> 363      3 0.000
#> 364      3 0.000
#> 365      3 0.498
#> 366      3 0.000
#> 367      3 0.253
#> 368      3 0.000
#> 369      3 0.000
#> 370      3 0.000
#> 371      3 0.249
#> 372      3 0.000
#> 373      3 0.000
#> 374      3 0.000
#> 375      3 0.000
#> 376      3 0.000
#> 377      3 0.000
#> 378      3 0.000
#> 379      3 0.000
#> 380      3 0.000
#> 381      1 1.000
#> 382      1 1.000
#> 383      2 1.000
#> 384      3 1.000
#> 385      1 1.000
#> 386      1 1.000
#> 387      1 1.000
#> 388      3 0.000
#> 389      3 1.000
#> 390      3 0.751
#> 391      1 1.000
#> 392      3 0.751
#> 393      1 1.000
#> 394      3 1.000
#> 395      2 1.000
#> 396      3 0.000
#> 397      3 0.000
#> 398      3 1.000
#> 399      1 1.000
#> 400      1 0.751
#> 401      3 0.000
#> 402      1 1.000
#> 403      1 0.000
#> 404      3 1.000
#> 405      1 1.000
#> 406      2 1.000
#> 407      1 1.000
#> 408      3 0.000
#> 409      1 1.000
#> 410      1 1.000
#> 411      3 0.000
#> 412      3 0.000
#> 413      2 1.000
#> 414      1 1.000
#> 415      1 1.000
#> 416      1 1.000
#> 417      1 1.000
#> 418      1 1.000
#> 419      3 1.000
#> 420      1 0.751
#> 421      1 0.000
#> 422      1 1.000
#> 423      1 1.000
#> 424      3 0.000
#> 425      2 0.000
#> 426      1 1.000
#> 427      1 1.000
#> 428      1 1.000
#> 429      1 1.000
#> 430      1 1.000
#> 431      1 0.000
#> 432      2 0.000
#> 433      1 1.000
#> 434      2 0.000
#> 435      1 0.000
#> 436      2 1.000
#> 437      1 1.000
#> 438      2 1.000
#> 439      1 0.751
#> 440      2 1.000
#> 441      2 0.000
#> 442      3 1.000
#> 443      3 1.000
#> 444      3 0.502
#> 445      3 1.000
#> 446      1 0.253
#> 447      1 1.000
#> 448      3 0.000
#> 449      3 0.000
#> 450      3 0.000
#> 451      3 0.751
#> 452      1 1.000
#> 453      3 1.000
#> 454      1 1.000
#> 455      1 1.000
#> 456      3 1.000
#> 457      1 1.000
#> 458      1 1.000
#> 459      3 0.000
#> 460      3 0.000
#> 461      3 0.000
#> 462      3 0.000
#> 463      3 1.000
#> 464      3 0.000
#> 465      3 0.000
#> 466      3 0.000
#> 467      3 0.000
#> 468      3 0.000
#> 469      3 1.000
#> 470      3 0.000
#> 471      3 0.000
#> 472      3 0.000
#> 473      3 0.000
#> 474      3 0.000
#> 475      3 0.000
#> 476      3 0.000
#> 477      3 1.000
#> 478      3 0.000
#> 479      3 0.000
#> 480      3 0.000
#> 481      3 0.000
#> 482      3 1.000
#> 483      3 0.000
#> 484      1 1.000
#> 485      2 1.000
#> 486      3 0.000
#> 487      3 0.502
#> 488      3 0.000
#> 489      2 1.000
#> 490      2 1.000
#> 491      2 1.000
#> 492      3 0.000
#> 493      3 0.000
#> 494      2 0.751
#> 495      3 0.000
#> 496      1 1.000
#> 497      2 1.000
#> 498      2 0.249
#> 499      1 1.000
#> 500      3 0.000
#> 501      2 1.000
#> 502      1 1.000
#> 503      3 0.000
#> 504      3 0.000
#> 505      3 0.000
#> 506      2 0.747
#> 507      1 1.000
#> 508      3 1.000
#> 509      3 0.498
#> 510      3 0.000
#> 511      3 0.000
#> 512      2 1.000
#> 513      3 1.000
#> 514      3 1.000
#> 515      1 1.000
#> 516      1 0.747
#> 517      2 1.000
#> 518      3 0.000
#> 519      3 0.000
#> 520      3 0.000
#> 521      1 0.249
#> 522      1 0.000
#> 523      1 1.000
#> 524      3 0.000
#> 525      3 0.000
#> 526      3 0.000
#> 527      3 0.000
#> 528      1 1.000
#> 529      1 0.000
#> 530      2 0.000
#> 531      2 1.000
#> 532      2 1.000
#> 533      1 1.000
#> 534      2 1.000
#> 535      1 0.751
#> 536      1 1.000
#> 537      1 0.502
#> 538      2 0.249
#> 539      1 0.000
#> 540      3 1.000
#> 541      1 1.000
#> 542      2 1.000
#> 543      1 0.249
#> 544      1 1.000
#> 545      2 0.000
#> 546      1 0.000
#> 547      1 0.249
#> 548      1 1.000
#> 549      3 1.000
#> 550      1 1.000
#> 551      1 1.000
#> 552      1 1.000
#> 553      1 1.000
#> 554      1 1.000
#> 555      1 1.000
#> 556      1 0.000
#> 557      1 1.000
#> 558      3 1.000
#> 559      3 0.000
#> 560      1 0.000
#> 561      3 0.000
#> 562      1 1.000
#> 563      3 0.747
#> 564      3 0.000
#> 565      1 1.000
#> 566      1 1.000
#> 567      1 1.000
#> 568      2 1.000
#> 569      3 0.000
#> 570      1 1.000
#> 571      1 0.000
#> 572      2 1.000
#> 573      3 0.000
#> 574      3 0.000
#> 575      1 1.000
#> 576      3 0.000
#> 577      1 1.000
#> 578      1 1.000
#> 579      1 1.000
#> 580      2 0.000
#> 581      1 1.000
#> 582      1 1.000
#> 583      1 1.000
#> 584      1 0.249
#> 585      3 0.000
#> 586      1 1.000
#> 587      3 1.000
#> 588      1 1.000
#> 589      1 0.000
#> 590      1 0.000
#> 591      1 0.000
#> 592      3 0.751
#> 593      1 1.000
#> 594      3 0.000
#> 595      3 0.000
#> 596      3 1.000
#> 597      1 1.000
#> 598      3 1.000
#> 599      3 1.000
#> 600      1 1.000
#> 601      1 0.249
#> 602      1 0.000
#> 603      1 1.000
#> 604      3 0.000
#> 605      1 1.000
#> 606      1 1.000
#> 607      2 0.000
#> 608      1 0.751
#> 609      1 1.000
#> 610      1 1.000
#> 611      1 0.249
#> 612      1 0.502
#> 613      1 1.000
#> 614      1 1.000
#> 615      1 0.000
#> 616      2 0.000
#> 617      3 0.000
#> 618      3 1.000
#> 619      1 1.000
#> 620      3 1.000
#> 621      3 1.000
#> 622      3 0.000
#> 623      1 1.000
#> 624      3 0.000
#> 625      1 1.000
#> 626      3 0.000
#> 627      3 0.000
#> 628      3 0.000
#> 629      3 0.000
#> 630      3 0.000
#> 631      1 1.000
#> 632      1 1.000
#> 633      3 0.000
#> 634      1 1.000
#> 635      3 0.000
#> 636      2 0.751
#> 637      3 0.000
#> 638      1 1.000
#> 639      1 0.751
#> 640      1 1.000
#> 641      1 1.000
#> 642      3 0.000
#> 643      3 0.502
#> 644      1 1.000
#> 645      3 1.000
#> 646      3 0.000
#> 647      1 1.000
#> 648      1 1.000
#> 649      2 0.502
#> 650      1 1.000
#> 651      1 1.000
#> 652      1 1.000
#> 653      1 1.000
#> 654      1 1.000
#> 655      3 0.000
#> 656      1 1.000
#> 657      1 1.000
#> 658      1 1.000
#> 659      3 1.000
#> 660      3 0.751
#> 661      3 0.000
#> 662      1 1.000
#> 663      2 0.000
#> 664      1 1.000
#> 665      1 1.000
#> 666      3 0.000
#> 667      3 0.000
#> 668      3 0.747
#> 669      3 1.000
#> 670      3 1.000
#> 671      2 0.502
#> 672      1 1.000
#> 673      2 0.502
#> 674      3 0.751
#> 675      3 0.000
#> 676      2 0.000
#> 677      3 0.000
#> 678      3 1.000
#> 679      2 0.000
#> 680      1 1.000
#> 681      3 0.000
#> 682      3 0.502
#> 683      3 0.000
#> 684      3 0.253
#> 685      3 0.000
#> 686      3 0.000
#> 687      3 0.000
#> 688      3 0.000
#> 689      3 0.000
#> 690      3 0.000
#> 691      3 0.000
#> 692      1 1.000
#> 693      3 0.000
#> 694      3 0.000
#> 695      2 0.000
#> 696      3 0.000
#> 697      3 1.000
#> 698      1 1.000
#> 699      3 0.000
#> 700      1 0.502
#> 701      3 0.000
#> 702      1 1.000
#> 703      1 1.000
#> 704      3 0.000
#> 705      3 0.000
#> 706      2 0.751
#> 707      2 0.000
#> 708      1 1.000
#> 709      3 1.000
#> 710      1 0.249
#> 711      3 1.000
#> 712      2 0.249
#> 713      1 0.249
#> 714      1 1.000
#> 715      1 1.000
#> 716      1 1.000
#> 717      1 0.498
#> 718      1 1.000
#> 719      2 0.747
#> 720      3 1.000
#> 721      3 1.000
#> 722      2 1.000
#> 723      2 0.000
#> 724      1 1.000
#> 725      2 0.751
#> 726      3 1.000
#> 727      3 1.000
#> 728      3 0.000
#> 729      1 1.000
#> 730      1 1.000
#> 731      3 0.000
#> 732      1 1.000
#> 733      1 1.000
#> 734      3 0.000
#> 735      1 1.000
#> 736      1 1.000
#> 737      1 0.249
#> 738      1 1.000
#> 739      1 1.000
#> 740      3 0.502
#> 741      1 1.000
#> 742      1 1.000
#> 743      1 1.000
#> 744      3 0.000
#> 745      3 1.000
#> 746      1 1.000
#> 747      3 0.000
#> 748      3 0.000
#> 749      3 0.000
#> 750      3 0.000
#> 751      3 0.000
#> 752      1 1.000
#> 753      3 1.000
#> 754      1 1.000
#> 755      1 1.000
#> 756      1 1.000
#> 757      3 1.000
#> 758      1 1.000
#> 759      3 1.000
#> 760      3 1.000
#> 761      2 1.000
#> 762      2 1.000
#> 763      1 1.000
#> 764      1 1.000
#> 765      3 1.000
#> 766      1 1.000
#> 767      1 1.000
#> 768      1 1.000
#> 769      1 1.000
#> 770      1 0.249
#> 771      3 0.000
#> 772      1 1.000
#> 773      1 1.000
#> 774      3 1.000
#> 775      1 1.000
#> 776      2 0.249
#> 777      1 0.498
#> 778      1 1.000
#> 779      2 0.751
#> 780      1 1.000
#> 781      3 1.000
#> 782      1 1.000
#> 783      1 1.000
#> 784      1 1.000
#> 785      1 1.000
#> 786      1 1.000
#> 787      3 0.000
#> 788      1 0.000
#> 789      3 0.249
#> 790      3 0.000
#> 791      1 1.000
#> 792      1 1.000
#> 793      3 0.000
#> 794      2 0.249
#> 795      1 1.000
#> 796      3 0.000
#> 797      1 1.000
#> 798      1 1.000
#> 799      2 0.000
#> 800      3 1.000
#> 801      3 0.000
#> 802      2 0.000
#> 803      3 0.000
#> 804      3 1.000
#> 805      3 0.000
#> 806      2 0.000
#> 807      3 1.000
#> 808      1 1.000
#> 809      3 0.502
#> 810      1 0.751
#> 811      1 1.000
#> 812      1 0.000
#> 813      3 0.249
#> 814      3 0.751
#> 815      1 0.000
#> 816      1 0.000
#> 817      1 1.000
#> 818      1 1.000
#> 819      1 0.000
#> 820      2 0.000
#> 821      1 0.000
#> 822      1 0.751
#> 823      1 0.000
#> 824      1 0.000
#> 825      1 1.000
#> 826      1 1.000
#> 827      1 1.000
#> 828      1 0.747
#> 829      1 1.000
#> 830      1 1.000
#> 831      1 0.498
#> 832      1 0.249
#> 833      1 0.000
#> 834      1 0.000
#> 835      1 0.000
#> 836      1 0.000
#> 837      1 0.000
#> 838      1 0.000
#> 839      1 0.249
#> 840      1 0.000
#> 841      1 1.000
#> 842      1 0.498
#> 843      1 0.000
#> 844      1 0.000
#> 845      1 0.000
#> 846      1 0.000
#> 847      1 1.000
#> 848      1 0.000
#> 849      3 1.000
#> 850      1 0.000
#> 851      1 0.000
#> 852      2 0.000
#> 853      3 0.747
#> 854      2 0.249
#> 855      1 0.000
#> 856      1 0.000
#> 857      1 0.000
#> 858      1 0.502
#> 859      3 1.000
#> 860      1 0.498
#> 861      1 1.000
#> 862      3 1.000
#> 863      1 0.000
#> 864      1 0.000
#> 865      1 0.253
#> 866      1 0.000
#> 867      1 0.000
#> 868      1 0.000
#> 869      1 1.000
#> 870      3 0.000
#> 871      1 1.000
#> 872      1 1.000
#> 873      1 0.249
#> 874      1 0.000
#> 875      1 1.000
#> 876      1 0.502
#> 877      1 0.000
#> 878      1 1.000
#> 879      1 0.249
#> 880      1 0.000
#> 881      1 0.253
#> 882      1 1.000
#> 883      1 0.253
#> 884      1 0.751
#> 885      1 0.000
#> 886      2 0.502
#> 887      1 0.000
#> 888      3 1.000
#> 889      1 1.000
#> 890      3 1.000
#> 891      1 1.000
#> 892      3 1.000
#> 893      1 1.000
#> 894      1 0.000
#> 895      1 1.000
#> 896      2 0.000
#> 897      2 0.502
#> 898      1 0.000
#> 899      1 0.000
#> 900      1 0.000
#> 901      1 0.000
#> 902      1 0.249
#> 903      3 0.000
#> 904      1 0.000
#> 905      1 1.000
#> 906      1 1.000
#> 907      1 0.000
#> 908      1 1.000
#> 909      1 1.000
#> 910      1 0.751
#> 911      1 0.751
#> 912      1 0.747
#> 913      1 0.000
#> 914      1 0.249
#> 915      1 1.000
#> 916      1 1.000
#> 917      1 0.000
#> 918      1 0.000
#> 919      1 0.000
#> 920      1 0.000
#> 921      1 0.000
#> 922      1 0.000
#> 923      1 0.000
#> 924      1 0.751
#> 925      1 1.000
#> 926      1 0.000
#> 927      1 0.000
#> 928      1 0.000
#> 929      2 0.751
#> 930      1 0.000
#> 931      1 0.000
#> 932      1 0.000
#> 933      1 0.498
#> 934      1 0.000
#> 935      2 0.253
#> 936      3 1.000
#> 937      1 0.000
#> 938      2 1.000
#> 939      1 1.000
#> 940      1 0.000
#> 941      1 1.000
#> 942      1 0.000
#> 943      1 0.751
#> 944      1 0.000
#> 945      1 0.249
#> 946      1 0.498
#> 947      1 0.751
#> 948      1 1.000
#> 949      1 0.000
#> 950      1 0.249
#> 951      1 0.000
#> 952      1 0.000
#> 953      1 0.249
#> 954      3 1.000
#> 955      1 0.000
#> 956      2 1.000
#> 957      1 0.000
#> 958      1 0.000
#> 959      1 0.000
#> 960      2 1.000
#> 961      2 0.751
#> 962      1 1.000
#> 963      1 0.000
#> 964      2 1.000
#> 965      3 0.000
#> 966      1 1.000
#> 967      1 0.747
#> 968      1 0.000
#> 969      1 1.000
#> 970      3 0.000
#> 971      1 0.000
#> 972      1 0.000
#> 973      2 1.000
#> 974      1 1.000
#> 975      1 0.000
#> 976      1 0.249
#> 977      1 0.000
#> 978      1 1.000
#> 979      1 0.000
#> 980      1 0.249
#> 981      3 1.000
#> 982      3 1.000
#> 983      2 1.000
#> 984      2 1.000
#> 985      3 1.000
#> 986      1 1.000
#> 987      1 1.000
#> 988      1 1.000
#> 989      1 1.000
#> 990      3 0.000
#> 991      3 1.000
#> 992      1 0.249
#> 993      1 1.000
#> 994      1 1.000
#> 995      3 1.000
#> 996      1 1.000
#> 997      1 0.498
#> 998      3 1.000
#> 999      3 0.751
#> 1000     1 0.000
#> 1001     2 0.000
#> 1002     1 0.000
#> 1003     1 0.000
#> 1004     1 0.249
#> 1005     1 0.000
#> 1006     1 0.751
#> 1007     1 1.000
#> 1008     1 0.000
#> 1009     1 0.000
#> 1010     1 0.000
#> 1011     1 0.000
#> 1012     1 0.249
#> 1013     1 0.253
#> 1014     2 1.000
#> 1015     1 0.000
#> 1016     2 1.000
#> 1017     1 0.000
#> 1018     1 0.751
#> 1019     1 0.000
#> 1020     1 0.502
#> 1021     1 1.000
#> 1022     1 1.000
#> 1023     1 1.000
#> 1024     1 1.000
#> 1025     1 1.000
#> 1026     3 0.000
#> 1027     1 0.000
#> 1028     1 1.000
#> 1029     1 0.751
#> 1030     1 1.000
#> 1031     1 0.000
#> 1032     1 0.249
#> 1033     1 1.000
#> 1034     1 0.000
#> 1035     1 1.000
#> 1036     3 1.000
#> 1037     1 0.249
#> 1038     3 0.000
#> 1039     1 1.000
#> 1040     2 0.000
#> 1041     1 0.000
#> 1042     1 1.000
#> 1043     3 0.000
#> 1044     1 0.502
#> 1045     1 1.000
#> 1046     1 0.000
#> 1047     3 0.000
#> 1048     1 0.000
#> 1049     1 0.000
#> 1050     1 0.000
#> 1051     1 1.000
#> 1052     1 0.502
#> 1053     1 0.751
#> 1054     1 0.000
#> 1055     1 0.000
#> 1056     1 0.000
#> 1057     1 0.000
#> 1058     1 0.000
#> 1059     1 0.000
#> 1060     1 0.000
#> 1061     1 0.000
#> 1062     1 0.000
#> 1063     1 0.000
#> 1064     1 0.000
#> 1065     1 0.000
#> 1066     1 0.000
#> 1067     1 0.000
#> 1068     1 0.000
#> 1069     1 0.000
#> 1070     1 0.000
#> 1071     1 0.000
#> 1072     1 0.000
#> 1073     1 1.000
#> 1074     1 0.000
#> 1075     3 0.000
#> 1076     1 0.000
#> 1077     1 0.000
#> 1078     1 0.000
#> 1079     1 0.502
#> 1080     1 0.000
#> 1081     1 0.000
#> 1082     1 0.000
#> 1083     3 0.000
#> 1084     1 0.000
#> 1085     1 0.000
#> 1086     1 0.000
#> 1087     1 0.000
#> 1088     3 0.000
#> 1089     1 0.000
#> 1090     1 0.000
#> 1091     1 0.000
#> 1092     1 0.000
#> 1093     1 0.000
#> 1094     1 1.000
#> 1095     1 0.000
#> 1096     1 0.000
#> 1097     1 0.000
#> 1098     1 0.000
#> 1099     1 0.000
#> 1100     1 0.000
#> 1101     1 1.000
#> 1102     1 0.000
#> 1103     1 0.000
#> 1104     1 1.000
#> 1105     1 0.000
#> 1106     1 0.000
#> 1107     1 0.000
#> 1108     1 0.000
#> 1109     1 0.000
#> 1110     3 0.000
#> 1111     1 0.000
#> 1112     1 0.000
#> 1113     1 0.000
#> 1114     1 0.000
#> 1115     1 0.000
#> 1116     1 1.000
#> 1117     1 0.000
#> 1118     3 0.000
#> 1119     1 0.000
#> 1120     1 0.000
#> 1121     1 0.253
#> 1122     3 0.000
#> 1123     1 0.502
#> 1124     1 0.000
#> 1125     1 0.000
#> 1126     1 0.000
#> 1127     1 0.000
#> 1128     3 0.000
#> 1129     1 0.000
#> 1130     1 0.000
#> 1131     1 0.000
#> 1132     1 0.000
#> 1133     1 1.000
#> 1134     1 0.000
#> 1135     3 0.000
#> 1136     1 0.000
#> 1137     1 0.000
#> 1138     1 0.000
#> 1139     1 0.000
#> 1140     1 0.000
#> 1141     2 0.000
#> 1142     1 0.000
#> 1143     1 0.000
#> 1144     1 1.000
#> 1145     3 0.000
#> 1146     1 0.000
#> 1147     1 0.000
#> 1148     1 0.000
#> 1149     1 0.000
#> 1150     1 0.000
#> 1151     1 0.000
#> 1152     1 0.000
#> 1153     1 0.000
#> 1154     1 0.000
#> 1155     1 0.000
#> 1156     1 0.000
#> 1157     1 0.000
#> 1158     1 0.000
#> 1159     1 0.000
#> 1160     1 0.000
#> 1161     1 0.000
#> 1162     1 0.747
#> 1163     1 1.000
#> 1164     1 0.000
#> 1165     1 0.000
#> 1166     1 0.000
#> 1167     1 0.000
#> 1168     1 0.249
#> 1169     1 0.000
#> 1170     1 0.000
#> 1171     1 0.000
#> 1172     3 0.000
#> 1173     1 0.000
#> 1174     1 0.000
#> 1175     1 1.000
#> 1176     1 0.498
#> 1177     1 0.000
#> 1178     1 0.000
#> 1179     1 0.000
#> 1180     1 0.000
#> 1181     2 1.000
#> 1182     1 0.000
#> 1183     1 0.000
#> 1184     1 0.000
#> 1185     2 0.000
#> 1186     1 0.000
#> 1187     1 0.000
#> 1188     1 0.000
#> 1189     1 1.000
#> 1190     1 0.000
#> 1191     1 0.000
#> 1192     1 0.000
#> 1193     1 0.000
#> 1194     1 0.000
#> 1195     1 0.000
#> 1196     1 0.000
#> 1197     1 0.000
#> 1198     1 0.000
#> 1199     1 0.000
#> 1200     1 0.000
#> 1201     1 0.000
#> 1202     1 0.000
#> 1203     1 0.000
#> 1204     1 0.000
#> 1205     1 0.000
#> 1206     1 0.000
#> 1207     1 0.000
#> 1208     1 1.000
#> 1209     1 0.000
#> 1210     1 0.000
#> 1211     1 0.000
#> 1212     1 0.000
#> 1213     1 0.000
#> 1214     1 0.000
#> 1215     2 1.000
#> 1216     1 0.000
#> 1217     3 1.000
#> 1218     3 0.000
#> 1219     1 0.000
#> 1220     1 0.000
#> 1221     1 1.000
#> 1222     1 0.000
#> 1223     1 0.000
#> 1224     2 0.249
#> 1225     1 0.000
#> 1226     2 0.000
#> 1227     1 0.000
#> 1228     1 0.000
#> 1229     1 0.000
#> 1230     1 0.000
#> 1231     1 0.000
#> 1232     1 0.000
#> 1233     1 0.000
#> 1234     1 1.000
#> 1235     1 0.000
#> 1236     1 1.000
#> 1237     1 1.000
#> 1238     3 0.000
#> 1239     1 0.000
#> 1240     1 0.000
#> 1241     3 0.000
#> 1242     3 1.000
#> 1243     3 0.000
#> 1244     1 0.000
#> 1245     1 0.000
#> 1246     1 0.000
#> 1247     1 1.000
#> 1248     1 1.000
#> 1249     1 0.000
#> 1250     1 0.000
#> 1251     1 1.000
#> 1252     1 0.000
#> 1253     1 1.000
#> 1254     1 0.000
#> 1255     1 1.000
#> 1256     2 1.000
#> 1257     2 1.000
#> 1258     2 0.000
#> 1259     2 0.000
#> 1260     1 0.751
#> 1261     1 0.000
#> 1262     1 1.000
#> 1263     1 0.000
#> 1264     1 0.000
#> 1265     3 1.000
#> 1266     1 0.000
#> 1267     1 0.000
#> 1268     1 1.000
#> 1269     1 0.249
#> 1270     1 1.000
#> 1271     1 1.000
#> 1272     1 0.751
#> 1273     3 1.000
#> 1274     1 0.000
#> 1275     1 0.000
#> 1276     1 0.000
#> 1277     3 0.000
#> 1278     2 0.249
#> 1279     3 0.000
#> 1280     3 0.000
#> 1281     3 0.000
#> 1282     1 0.751
#> 1283     3 0.000
#> 1284     1 1.000
#> 1285     1 1.000
#> 1286     1 0.000
#> 1287     1 0.000
#> 1288     1 1.000
#> 1289     3 0.000
#> 1290     3 0.000
#> 1291     1 1.000
#> 1292     3 0.000
#> 1293     1 1.000
#> 1294     1 1.000
#> 1295     2 0.000
#> 1296     3 0.000
#> 1297     1 0.502
#> 1298     1 1.000
#> 1299     1 0.000
#> 1300     1 0.000
#> 1301     1 0.249
#> 1302     1 0.000
#> 1303     1 0.502
#> 1304     1 0.000
#> 1305     1 1.000
#> 1306     1 0.000
#> 1307     1 0.000
#> 1308     1 0.000
#> 1309     1 0.000
#> 1310     1 0.000
#> 1311     1 0.000
#> 1312     1 0.747
#> 1313     2 0.000
#> 1314     3 1.000
#> 1315     2 0.000
#> 1316     1 0.000
#> 1317     3 0.000
#> 1318     2 0.751
#> 1319     1 0.249
#> 1320     1 0.000
#> 1321     1 0.751
#> 1322     1 0.000
#> 1323     1 0.000
#> 1324     1 0.249
#> 1325     1 0.000
#> 1326     1 0.253
#> 1327     3 0.000
#> 1328     1 0.000
#> 1329     1 0.000
#> 1330     1 0.000
#> 1331     1 0.000
#> 1332     2 0.000
#> 1333     1 1.000
#> 1334     3 1.000
#> 1335     1 1.000
#> 1336     3 0.000
#> 1337     1 0.000
#> 1338     1 0.000
#> 1339     1 0.000
#> 1340     1 0.751
#> 1341     1 0.751
#> 1342     1 0.000
#> 1343     2 0.498
#> 1344     1 1.000
#> 1345     1 0.000
#> 1346     2 1.000
#> 1347     2 0.000
#> 1348     2 0.000
#> 1349     1 0.502
#> 1350     1 0.751
#> 1351     1 0.000
#> 1352     1 0.000
#> 1353     2 0.498
#> 1354     2 1.000
#> 1355     1 0.751
#> 1356     1 0.000
#> 1357     1 0.751
#> 1358     1 1.000
#> 1359     1 0.000
#> 1360     1 0.000
#> 1361     2 0.249
#> 1362     2 1.000
#> 1363     1 0.000
#> 1364     1 0.498
#> 1365     3 1.000
#> 1366     3 0.000
#> 1367     1 0.000
#> 1368     3 0.000
#> 1369     1 1.000
#> 1370     3 0.000
#> 1371     3 0.000
#> 1372     3 0.000
#> 1373     3 0.000
#> 1374     1 1.000
#> 1375     3 0.000
#> 1376     1 0.751
#> 1377     1 0.502
#> 1378     1 0.000
#> 1379     1 0.249
#> 1380     1 0.000
#> 1381     1 0.000
#> 1382     1 0.498
#> 1383     1 0.249
#> 1384     1 0.000
#> 1385     1 0.000
#> 1386     1 1.000
#> 1387     1 0.000
#> 1388     1 0.000
#> 1389     1 0.253
#> 1390     1 0.000
#> 1391     1 0.000
#> 1392     3 1.000
#> 1393     1 0.000
#> 1394     1 0.000
#> 1395     2 0.000
#> 1396     1 0.000
#> 1397     2 0.000
#> 1398     2 0.000
#> 1399     2 0.000
#> 1400     1 0.000
#> 1401     2 0.000
#> 1402     1 0.000
#> 1403     1 0.000
#> 1404     1 0.000
#> 1405     1 0.000
#> 1406     3 0.000
#> 1407     2 0.000
#> 1408     1 0.000
#> 1409     1 0.000
#> 1410     3 0.000
#> 1411     1 0.000
#> 1412     1 0.000
#> 1413     1 0.000
#> 1414     1 0.000
#> 1415     1 0.000
#> 1416     1 0.000
#> 1417     1 0.000
#> 1418     1 0.000
#> 1419     3 0.000
#> 1420     1 0.000
#> 1421     1 0.000
#> 1422     3 0.253
#> 1423     1 0.000
#> 1424     1 0.000
#> 1425     1 0.000
#> 1426     1 0.747
#> 1427     1 0.000
#> 1428     1 0.000
#> 1429     3 0.253
#> 1430     3 1.000
#> 1431     1 0.000
#> 1432     1 1.000
#> 1433     1 0.000
#> 1434     3 1.000
#> 1435     1 0.000
#> 1436     1 0.000
#> 1437     1 0.000
#> 1438     1 0.000
#> 1439     1 0.000
#> 1440     1 0.000
#> 1441     1 0.000
#> 1442     1 0.000
#> 1443     1 0.253
#> 1444     1 0.000
#> 1445     1 0.000
#> 1446     1 0.000
#> 1447     1 0.000
#> 1448     1 0.000
#> 1449     2 0.000
#> 1450     1 0.000
#> 1451     3 0.000
#> 1452     2 0.000
#> 1453     1 0.000
#> 1454     1 0.000
#> 1455     2 0.000
#> 1456     1 0.000
#> 1457     1 0.000
#> 1458     1 0.000
#> 1459     2 1.000
#> 1460     1 0.000
#> 1461     1 0.000
#> 1462     1 0.000
#> 1463     1 0.000
#> 1464     1 0.000
#> 1465     1 0.000
#> 1466     1 0.000
#> 1467     1 0.000
#> 1468     1 1.000
#> 1469     1 1.000
#> 1470     1 1.000
#> 1471     1 0.000
#> 1472     3 0.000
#> 1473     1 0.000
#> 1474     3 0.000
#> 1475     3 1.000
#> 1476     3 0.000
#> 1477     1 1.000
#> 1478     2 0.000
#> 1479     1 0.000
#> 1480     2 0.000
#> 1481     1 0.000
#> 1482     1 0.000
#> 1483     1 1.000
#> 1484     1 0.498
#> 1485     1 0.000
#> 1486     1 0.000
#> 1487     1 0.000
#> 1488     3 1.000
#> 1489     1 1.000
#> 1490     1 0.000
#> 1491     1 0.000
#> 1492     1 0.000
#> 1493     1 0.000
#> 1494     1 0.000
#> 1495     2 0.000
#> 1496     1 0.000
#> 1497     1 0.000
#> 1498     1 0.000
#> 1499     1 0.000
#> 1500     2 0.000
#> 1501     1 0.000
#> 1502     1 0.000
#> 1503     1 0.000
#> 1504     1 0.751
#> 1505     1 0.000
#> 1506     3 1.000
#> 1507     1 0.000
#> 1508     2 1.000
#> 1509     1 0.000
#> 1510     2 0.000
#> 1511     1 0.000
#> 1512     1 0.000
#> 1513     1 0.000
#> 1514     1 0.000
#> 1515     1 0.000
#> 1516     1 0.000
#> 1517     1 0.000
#> 1518     2 0.000
#> 1519     3 1.000
#> 1520     2 0.000
#> 1521     2 0.000
#> 1522     2 0.000
#> 1523     1 0.000
#> 1524     2 0.000
#> 1525     1 0.000
#> 1526     1 0.000
#> 1527     3 1.000
#> 1528     1 1.000
#> 1529     1 0.000
#> 1530     1 0.000
#> 1531     1 0.000
#> 1532     1 0.000
#> 1533     1 0.751
#> 1534     2 0.000
#> 1535     1 1.000
#> 1536     2 0.000
#> 1537     1 1.000
#> 1538     1 1.000
#> 1539     1 0.000
#> 1540     1 0.000
#> 1541     1 0.000
#> 1542     1 0.000
#> 1543     1 0.000
#> 1544     1 0.000
#> 1545     1 0.000
#> 1546     1 0.000
#> 1547     1 0.000
#> 1548     1 0.000
#> 1549     1 0.000
#> 1550     1 0.000
#> 1551     3 0.253
#> 1552     1 0.000
#> 1553     1 0.751
#> 1554     1 0.000
#> 1555     1 0.000
#> 1556     1 0.000
#> 1557     1 0.000
#> 1558     2 0.000
#> 1559     2 0.000
#> 1560     1 0.000
#> 1561     1 0.000
#> 1562     1 0.000
#> 1563     1 0.000
#> 1564     3 0.249
#> 1565     2 1.000
#> 1566     1 1.000
#> 1567     1 0.751
#> 1568     3 0.000
#> 1569     1 0.000
#> 1570     1 0.000
#> 1571     1 0.000
#> 1572     2 1.000
#> 1573     2 0.000
#> 1574     1 0.000
#> 1575     2 0.000
#> 1576     3 1.000
#> 1577     3 0.502
#> 1578     2 0.000
#> 1579     2 0.502
#> 1580     2 1.000
#> 1581     3 0.000
#> 1582     2 0.000
#> 1583     3 0.000
#> 1584     2 0.000
#> 1585     3 0.000
#> 1586     3 0.000
#> 1587     3 0.000
#> 1588     3 0.000
#> 1589     3 0.000
#> 1590     3 0.751
#> 1591     1 0.000
#> 1592     3 0.000
#> 1593     3 0.000
#> 1594     2 0.498
#> 1595     3 0.000
#> 1596     2 0.000
#> 1597     2 0.000
#> 1598     2 0.000
#> 1599     1 0.502
#> 1600     2 0.000
#> 1601     1 0.000
#> 1602     3 1.000
#> 1603     1 0.502
#> 1604     2 0.000
#> 1605     2 0.000
#> 1606     1 0.751
#> 1607     1 1.000
#> 1608     2 0.000
#> 1609     2 1.000
#> 1610     2 1.000
#> 1611     3 0.000
#> 1612     3 0.249
#> 1613     3 0.000
#> 1614     3 0.000
#> 1615     3 0.000
#> 1616     3 0.000
#> 1617     3 0.000
#> 1618     2 0.000
#> 1619     1 0.249
#> 1620     2 0.000
#> 1621     2 0.000
#> 1622     2 0.000
#> 1623     1 0.000
#> 1624     3 0.000
#> 1625     1 0.000
#> 1626     2 0.249
#> 1627     1 0.000
#> 1628     1 0.751
#> 1629     1 0.000
#> 1630     1 1.000
#> 1631     1 0.000
#> 1632     1 0.000
#> 1633     3 0.502
#> 1634     1 0.000
#> 1635     2 0.253
#> 1636     1 0.000
#> 1637     1 0.000
#> 1638     1 0.000
#> 1639     2 0.000
#> 1640     1 0.000
#> 1641     1 0.000
#> 1642     1 1.000
#> 1643     1 0.000
#> 1644     2 0.000
#> 1645     1 0.000
#> 1646     1 0.000
#> 1647     1 0.000
#> 1648     1 0.000
#> 1649     1 0.249
#> 1650     1 0.000
#> 1651     1 0.000
#> 1652     1 0.000
#> 1653     1 0.000
#> 1654     3 0.751
#> 1655     1 0.000
#> 1656     1 0.000
#> 1657     1 0.000
#> 1658     1 0.000
#> 1659     1 1.000
#> 1660     1 0.000
#> 1661     1 0.000
#> 1662     1 0.000
#> 1663     1 0.000
#> 1664     1 0.000
#> 1665     1 0.000
#> 1666     1 0.000
#> 1667     1 0.000
#> 1668     1 0.000
#> 1669     1 0.249
#> 1670     1 0.000
#> 1671     1 0.000
#> 1672     1 0.000
#> 1673     1 0.000
#> 1674     1 0.000
#> 1675     1 0.000
#> 1676     2 1.000
#> 1677     1 0.000
#> 1678     1 0.751
#> 1679     1 0.000
#> 1680     2 0.000
#> 1681     1 0.000
#> 1682     1 0.000
#> 1683     1 0.000
#> 1684     1 0.502
#> 1685     1 0.000
#> 1686     1 0.498
#> 1687     1 0.000
#> 1688     1 0.000
#> 1689     1 1.000
#> 1690     1 0.747
#> 1691     1 0.000
#> 1692     1 0.000
#> 1693     3 1.000
#> 1694     1 0.000
#> 1695     1 0.000
#> 1696     1 0.000
#> 1697     1 0.000
#> 1698     1 1.000
#> 1699     1 0.000
#> 1700     1 0.000
#> 1701     1 1.000
#> 1702     1 0.000
#> 1703     3 1.000
#> 1704     1 0.000
#> 1705     1 0.000
#> 1706     1 0.000
#> 1707     3 1.000
#> 1708     1 0.000
#> 1709     1 0.000
#> 1710     1 0.000
#> 1711     1 0.000
#> 1712     3 1.000
#> 1713     1 0.000
#> 1714     1 0.000
#> 1715     1 0.249
#> 1716     1 0.000
#> 1717     1 0.000
#> 1718     1 0.000
#> 1719     3 1.000
#> 1720     3 1.000
#> 1721     1 0.000
#> 1722     1 0.000
#> 1723     1 0.000
#> 1724     1 0.000
#> 1725     1 0.000
#> 1726     1 0.000
#> 1727     1 0.000
#> 1728     3 0.000
#> 1729     1 0.000
#> 1730     3 0.000
#> 1731     3 0.000
#> 1732     1 0.000
#> 1733     1 0.000
#> 1734     2 0.000
#> 1735     1 0.000
#> 1736     1 0.000
#> 1737     1 1.000
#> 1738     1 1.000
#> 1739     1 1.000
#> 1740     1 0.498
#> 1741     1 0.000
#> 1742     1 0.000
#> 1743     1 0.502
#> 1744     1 0.000
#> 1745     1 0.000
#> 1746     1 0.000
#> 1747     1 0.751
#> 1748     1 1.000
#> 1749     3 0.249
#> 1750     1 1.000
#> 1751     3 0.000
#> 1752     1 0.000
#> 1753     2 0.000
#> 1754     1 0.000
#> 1755     2 0.000
#> 1756     1 0.000
#> 1757     1 1.000
#> 1758     1 0.000
#> 1759     1 0.249
#> 1760     3 0.000
#> 1761     2 0.000
#> 1762     1 0.000
#> 1763     1 1.000
#> 1764     1 1.000
#> 1765     1 0.000
#> 1766     2 0.000
#> 1767     3 0.000
#> 1768     1 0.000
#> 1769     1 0.000
#> 1770     2 1.000
#> 1771     1 0.000
#> 1772     1 0.000
#> 1773     1 0.000
#> 1774     1 0.000
#> 1775     1 0.000
#> 1776     1 0.000
#> 1777     1 1.000
#> 1778     1 0.000
#> 1779     1 0.000
#> 1780     1 0.000
#> 1781     3 0.000
#> 1782     1 0.000
#> 1783     1 0.000
#> 1784     1 0.000
#> 1785     1 0.249
#> 1786     1 0.747
#> 1787     3 0.253
#> 1788     1 1.000
#> 1789     1 0.000
#> 1790     3 1.000
#> 1791     1 0.000
#> 1792     3 0.000
#> 1793     3 0.000
#> 1794     3 0.747
#> 1795     2 1.000
#> 1796     1 1.000
#> 1797     1 0.000
#> 1798     3 0.000
#> 1799     2 0.000
#> 1800     1 0.000
#> 1801     1 0.000
#> 1802     1 0.000
#> 1803     1 1.000
#> 1804     3 0.751
#> 1805     1 0.000
#> 1806     1 0.000
#> 1807     2 0.000
#> 1808     2 0.000
#> 1809     2 0.000
#> 1810     3 1.000
#> 1811     2 0.747
#> 1812     1 0.000
#> 1813     1 0.000
#> 1814     1 1.000
#> 1815     1 0.000
#> 1816     1 0.000
#> 1817     1 0.000
#> 1818     1 0.000
#> 1819     1 0.000
#> 1820     1 0.000
#> 1821     3 0.000
#> 1822     1 0.000
#> 1823     1 1.000
#> 1824     1 0.000
#> 1825     1 0.000
#> 1826     1 0.000
#> 1827     1 0.000
#> 1828     1 0.000
#> 1829     1 0.000
#> 1830     2 0.000
#> 1831     1 0.000
#> 1832     1 0.000
#> 1833     3 0.249
#> 1834     1 0.249
#> 1835     1 0.747
#> 1836     2 0.000
#> 1837     2 0.000
#> 1838     1 0.000
#> 1839     1 0.000
#> 1840     1 0.000
#> 1841     1 0.000
#> 1842     1 0.000
#> 1843     2 0.249
#> 1844     1 0.000
#> 1845     1 0.000
#> 1846     1 0.000
#> 1847     1 0.000
#> 1848     1 0.000
#> 1849     1 0.249
#> 1850     1 0.000
#> 1851     1 0.000
#> 1852     3 0.000
#> 1853     1 0.498
#> 1854     1 0.000
#> 1855     1 1.000
#> 1856     1 0.000
#> 1857     1 1.000
#> 1858     1 0.747
#> 1859     3 0.000
#> 1860     1 0.000
#> 1861     3 0.000
#> 1862     1 0.000
#> 1863     1 0.000
#> 1864     3 0.000
#> 1865     2 1.000
#> 1866     3 0.000
#> 1867     3 1.000
#> 1868     3 0.498
#> 1869     2 0.000
#> 1870     1 0.000
#> 1871     1 0.000
#> 1872     3 1.000
#> 1873     3 0.751
#> 1874     1 0.249
#> 1875     1 1.000
#> 1876     1 0.249
#> 1877     2 0.000
#> 1878     1 0.000
#> 1879     1 0.498
#> 1880     1 0.000
#> 1881     2 0.000
#> 1882     1 1.000
#> 1883     1 0.000
#> 1884     1 0.000
#> 1885     1 1.000
#> 1886     3 0.751
#> 1887     1 0.000
#> 1888     3 0.000
#> 1889     1 1.000
#> 1890     1 1.000
#> 1891     1 1.000
#> 1892     2 0.000
#> 1893     1 0.000
#> 1894     1 0.000
#> 1895     1 0.000
#> 1896     3 1.000
#> 1897     1 0.000
#> 1898     1 1.000
#> 1899     1 0.000
#> 1900     3 0.000
#> 1901     1 1.000
#> 1902     3 0.000
#> 1903     1 1.000
#> 1904     3 1.000
#> 1905     1 0.249
#> 1906     1 0.000
#> 1907     3 0.000
#> 1908     1 1.000
#> 1909     1 1.000
#> 1910     1 0.000
#> 1911     1 1.000
#> 1912     1 1.000
#> 1913     1 1.000
#> 1914     1 0.000
#> 1915     3 0.000
#> 1916     1 1.000
#> 1917     1 0.000
#> 1918     1 0.751
#> 1919     1 0.000
#> 1920     3 0.000
#> 1921     2 1.000
#> 1922     1 1.000
#> 1923     3 0.000
#> 1924     3 0.000
#> 1925     1 0.498
#> 1926     3 0.000
#> 1927     1 1.000
#> 1928     1 0.249
#> 1929     1 1.000
#> 1930     2 0.000
#> 1931     3 1.000
#> 1932     1 1.000
#> 1933     2 0.000
#> 1934     1 1.000
#> 1935     3 0.249
#> 1936     2 0.000
#> 1937     3 0.000
#> 1938     1 0.751
#> 1939     1 1.000
#> 1940     3 0.000
#> 1941     3 0.000
#> 1942     1 0.000
#> 1943     3 1.000
#> 1944     1 1.000
#> 1945     3 0.000
#> 1946     2 0.000
#> 1947     3 0.000
#> 1948     3 1.000
#> 1949     1 1.000
#> 1950     3 0.000
#> 1951     3 1.000
#> 1952     1 1.000
#> 1953     1 0.000
#> 1954     2 0.502
#> 1955     1 1.000
#> 1956     1 1.000
#> 1957     2 0.000
#> 1958     3 0.000
#> 1959     2 0.747
#> 1960     3 1.000
#> 1961     2 0.498
#> 1962     3 0.000
#> 1963     3 1.000
#> 1964     2 0.249
#> 1965     1 1.000
#> 1966     3 0.000
#> 1967     2 0.000
#> 1968     3 0.000
#> 1969     3 1.000
#> 1970     3 0.000
#> 1971     1 1.000
#> 1972     2 0.000
#> 1973     3 0.000
#> 1974     3 0.000
#> 1975     2 0.000
#> 1976     3 0.000
#> 1977     1 1.000
#> 1978     2 0.498
#> 1979     3 1.000
#> 1980     2 0.502
#> 1981     3 0.000
#> 1982     3 0.000
#> 1983     3 1.000
#> 1984     2 0.000
#> 1985     2 0.000
#> 1986     2 0.000
#> 1987     2 0.000
#> 1988     2 0.000
#> 1989     2 0.000
#> 1990     2 0.000
#> 1991     2 0.000
#> 1992     2 0.000
#> 1993     2 0.000
#> 1994     2 0.000
#> 1995     2 0.000
#> 1996     2 0.000
#> 1997     2 0.000
#> 1998     2 0.000
#> 1999     2 0.000
#> 2000     2 0.000
#> 2001     2 0.000
#> 2002     2 0.000
#> 2003     2 0.000
#> 2004     2 0.000
#> 2005     2 0.000
#> 2006     2 0.000
#> 2007     2 0.000
#> 2008     2 0.498
#> 2009     2 0.000
#> 2010     2 0.000
#> 2011     2 0.000
#> 2012     2 0.000
#> 2013     2 0.502
#> 2014     2 0.000
#> 2015     1 0.000
#> 2016     2 0.000
#> 2017     2 0.000
#> 2018     3 1.000
#> 2019     2 0.498
#> 2020     2 0.000
#> 2021     2 0.502
#> 2022     2 0.502
#> 2023     2 1.000
#> 2024     2 0.751
#> 2025     2 1.000
#> 2026     3 0.249
#> 2027     2 0.000
#> 2028     2 1.000
#> 2029     2 1.000
#> 2030     2 0.000
#> 2031     2 1.000
#> 2032     2 1.000
#> 2033     2 0.502
#> 2034     2 0.000
#> 2035     2 0.000
#> 2036     2 0.000
#> 2037     2 0.000
#> 2038     2 0.498
#> 2039     2 0.000
#> 2040     2 0.000
#> 2041     2 1.000
#> 2042     3 1.000
#> 2043     2 0.000
#> 2044     2 0.000
#> 2045     2 0.000
#> 2046     2 0.000
#> 2047     2 0.000
#> 2048     2 0.000
#> 2049     2 0.000
#> 2050     1 0.000
#> 2051     2 0.000
#> 2052     2 0.000
#> 2053     2 0.000
#> 2054     2 0.000
#> 2055     2 0.000
#> 2056     2 0.000
#> 2057     2 0.000
#> 2058     2 0.000
#> 2059     3 1.000
#> 2060     2 0.000
#> 2061     2 0.000
#> 2062     2 1.000
#> 2063     2 0.000
#> 2064     2 0.000
#> 2065     2 0.000
#> 2066     2 0.000
#> 2067     2 0.000
#> 2068     2 0.249
#> 2069     2 0.000
#> 2070     2 0.000
#> 2071     2 0.000
#> 2072     2 0.000
#> 2073     2 0.000
#> 2074     2 0.751
#> 2075     2 0.000
#> 2076     2 0.000
#> 2077     2 0.000
#> 2078     2 0.751
#> 2079     2 0.000
#> 2080     2 0.000
#> 2081     2 0.000
#> 2082     2 1.000
#> 2083     2 0.000
#> 2084     2 0.000
#> 2085     2 0.000
#> 2086     2 0.000
#> 2087     2 0.000
#> 2088     2 0.000
#> 2089     2 0.000
#> 2090     2 0.000
#> 2091     2 0.000
#> 2092     2 0.000
#> 2093     2 0.000
#> 2094     2 0.498
#> 2095     2 0.000
#> 2096     2 0.000
#> 2097     2 0.000
#> 2098     2 0.502
#> 2099     2 0.249
#> 2100     2 1.000
#> 2101     2 0.000
#> 2102     2 0.000
#> 2103     2 0.000
#> 2104     2 0.000
#> 2105     2 0.000
#> 2106     2 0.000
#> 2107     2 0.000
#> 2108     2 0.000
#> 2109     2 0.000
#> 2110     2 0.000
#> 2111     2 0.000
#> 2112     2 0.000
#> 2113     2 0.000
#> 2114     2 0.000
#> 2115     2 0.000
#> 2116     2 0.000
#> 2117     2 0.000
#> 2118     2 1.000
#> 2119     2 0.000
#> 2120     2 0.000
#> 2121     2 0.000
#> 2122     2 0.000
#> 2123     2 0.000
#> 2124     2 0.000
#> 2125     1 0.751
#> 2126     2 0.000
#> 2127     2 0.000
#> 2128     1 1.000
#> 2129     2 0.000
#> 2130     2 0.000
#> 2131     2 0.000
#> 2132     2 0.249
#> 2133     2 0.000
#> 2134     2 0.000
#> 2135     2 0.000
#> 2136     2 0.000
#> 2137     2 0.000
#> 2138     2 0.000
#> 2139     2 0.000
#> 2140     2 0.000
#> 2141     2 0.000
#> 2142     2 0.751
#> 2143     2 0.498
#> 2144     2 0.000
#> 2145     2 0.000
#> 2146     2 0.000
#> 2147     2 0.498
#> 2148     2 0.000
#> 2149     2 0.249
#> 2150     2 0.000
#> 2151     2 0.000
#> 2152     2 0.498
#> 2153     2 0.000
#> 2154     2 0.000
#> 2155     2 1.000
#> 2156     2 0.000
#> 2157     2 0.000
#> 2158     2 0.751
#> 2159     2 0.249
#> 2160     2 0.000
#> 2161     2 0.000
#> 2162     2 0.000
#> 2163     2 0.000
#> 2164     2 0.249
#> 2165     2 0.000
#> 2166     2 0.000
#> 2167     2 0.000
#> 2168     2 0.000
#> 2169     2 0.000
#> 2170     2 0.000
#> 2171     2 0.000
#> 2172     2 0.000
#> 2173     2 0.000
#> 2174     3 1.000
#> 2175     2 0.498
#> 2176     2 0.000
#> 2177     2 0.000
#> 2178     2 0.000
#> 2179     2 0.000
#> 2180     2 0.000
#> 2181     2 0.000
#> 2182     2 0.000
#> 2183     2 0.000
#> 2184     2 0.498
#> 2185     2 0.000
#> 2186     2 1.000
#> 2187     2 0.000
#> 2188     2 0.000
#> 2189     2 0.249
#> 2190     1 1.000
#> 2191     2 0.000
#> 2192     1 1.000
#> 2193     2 0.000
#> 2194     3 0.000
#> 2195     2 0.000
#> 2196     3 1.000
#> 2197     2 1.000
#> 2198     2 0.000
#> 2199     2 0.000
#> 2200     2 0.000
#> 2201     2 0.000
#> 2202     2 0.000
#> 2203     2 0.000
#> 2204     2 0.000
#> 2205     2 0.000
#> 2206     2 0.000
#> 2207     2 0.000
#> 2208     2 0.000
#> 2209     2 0.000
#> 2210     2 0.000
#> 2211     2 0.000
#> 2212     2 0.000
#> 2213     2 0.000
#> 2214     2 0.000
#> 2215     2 0.253
#> 2216     2 0.747
#> 2217     2 0.000
#> 2218     2 0.000
#> 2219     2 0.000
#> 2220     2 0.000
#> 2221     2 0.000
#> 2222     2 0.000
#> 2223     2 0.000
#> 2224     2 0.000
#> 2225     2 0.000
#> 2226     2 0.000
#> 2227     2 0.000
#> 2228     2 0.000
#> 2229     2 0.000
#> 2230     2 0.000
#> 2231     2 0.000
#> 2232     2 0.000
#> 2233     2 0.249
#> 2234     2 0.000
#> 2235     2 0.000
#> 2236     2 0.000
#> 2237     3 1.000
#> 2238     2 0.000
#> 2239     2 0.000
#> 2240     3 1.000
#> 2241     2 0.498
#> 2242     3 1.000
#> 2243     2 0.502
#> 2244     2 0.000
#> 2245     2 0.000
#> 2246     2 0.000
#> 2247     2 0.000
#> 2248     2 1.000
#> 2249     2 1.000
#> 2250     2 0.000
#> 2251     2 0.000
#> 2252     3 1.000
#> 2253     2 0.000
#> 2254     2 0.000
#> 2255     2 0.000
#> 2256     2 0.000
#> 2257     2 0.000
#> 2258     2 0.000
#> 2259     1 1.000
#> 2260     3 1.000
#> 2261     2 0.000
#> 2262     2 0.000
#> 2263     2 0.000
#> 2264     2 0.000
#> 2265     2 0.000
#> 2266     3 1.000
#> 2267     2 0.000
#> 2268     2 0.000
#> 2269     3 1.000
#> 2270     2 0.000
#> 2271     2 0.000
#> 2272     2 0.000
#> 2273     1 0.498
#> 2274     2 0.253
#> 2275     1 0.253
#> 2276     2 0.000
#> 2277     2 0.000
#> 2278     3 1.000
#> 2279     2 0.498
#> 2280     2 0.000
#> 2281     2 0.000
#> 2282     2 0.000
#> 2283     1 0.000
#> 2284     2 0.000
#> 2285     2 0.000
#> 2286     2 0.000
#> 2287     1 0.000
#> 2288     3 1.000
#> 2289     3 1.000
#> 2290     2 0.000
#> 2291     2 0.000
#> 2292     3 1.000
#> 2293     2 0.000
#> 2294     2 0.000
#> 2295     1 0.000
#> 2296     2 0.000
#> 2297     2 0.000
#> 2298     2 1.000
#> 2299     1 0.000
#> 2300     3 1.000
#> 2301     1 0.000
#> 2302     1 0.000
#> 2303     1 0.000
#> 2304     2 0.253
#> 2305     1 0.000
#> 2306     2 0.747
#> 2307     1 1.000
#> 2308     1 0.000
#> 2309     1 0.000
#> 2310     2 0.000
#> 2311     1 0.000
#> 2312     3 1.000
#> 2313     2 0.000
#> 2314     1 0.000
#> 2315     1 0.000
#> 2316     1 0.000
#> 2317     1 0.000
#> 2318     2 0.000
#> 2319     2 0.000
#> 2320     2 0.000
#> 2321     1 0.253
#> 2322     2 0.000
#> 2323     2 0.000
#> 2324     3 1.000
#> 2325     2 0.000
#> 2326     2 0.000
#> 2327     2 0.000
#> 2328     2 0.000
#> 2329     2 0.000
#> 2330     2 0.000
#> 2331     2 0.000
#> 2332     2 0.249
#> 2333     2 0.000
#> 2334     2 0.000
#> 2335     3 0.249
#> 2336     1 0.000
#> 2337     1 0.000
#> 2338     3 1.000
#> 2339     2 0.000
#> 2340     1 0.000
#> 2341     3 0.498
#> 2342     3 1.000
#> 2343     2 0.000
#> 2344     2 0.747
#> 2345     2 0.000
#> 2346     2 0.000
#> 2347     2 0.000
#> 2348     2 0.000
#> 2349     2 0.000
#> 2350     2 0.000
#> 2351     3 1.000
#> 2352     2 1.000
#> 2353     2 0.253
#> 2354     2 0.000
#> 2355     2 0.000
#> 2356     2 0.000
#> 2357     3 1.000
#> 2358     2 0.000
#> 2359     2 0.000
#> 2360     2 0.000
#> 2361     2 0.000
#> 2362     2 0.000
#> 2363     2 0.000
#> 2364     2 0.000
#> 2365     2 0.000
#> 2366     2 0.000
#> 2367     2 0.000
#> 2368     2 0.000
#> 2369     2 0.000
#> 2370     2 0.000
#> 2371     2 0.000
#> 2372     2 0.000
#> 2373     2 0.000
#> 2374     2 0.000
#> 2375     2 0.000
#> 2376     2 0.000
#> 2377     2 0.000
#> 2378     2 0.000
#> 2379     2 0.249
#> 2380     2 0.000
#> 2381     2 0.000
#> 2382     2 0.000
#> 2383     2 0.000
#> 2384     2 0.000
#> 2385     2 0.000
#> 2386     2 0.000
#> 2387     2 0.000
#> 2388     2 0.000
#> 2389     2 0.249
#> 2390     2 1.000
#> 2391     2 0.000
#> 2392     2 0.000
#> 2393     2 0.000
#> 2394     2 0.000
#> 2395     2 0.000
#> 2396     2 0.000
#> 2397     2 0.502
#> 2398     2 0.751
#> 2399     3 1.000
#> 2400     2 0.000
#> 2401     1 0.249
#> 2402     1 1.000
#> 2403     1 0.000
#> 2404     2 0.000
#> 2405     2 0.000
#> 2406     2 0.000
#> 2407     2 0.000
#> 2408     2 0.000
#> 2409     2 0.249
#> 2410     2 0.751
#> 2411     2 0.000
#> 2412     2 0.000
#> 2413     2 0.249
#> 2414     1 1.000
#> 2415     2 0.000
#> 2416     2 0.000
#> 2417     2 0.000
#> 2418     2 0.000
#> 2419     2 0.000
#> 2420     1 0.000
#> 2421     2 0.000
#> 2422     2 0.000
#> 2423     3 1.000
#> 2424     2 1.000
#> 2425     2 0.000
#> 2426     2 0.000
#> 2427     2 0.000
#> 2428     2 0.000
#> 2429     2 0.249
#> 2430     2 0.249
#> 2431     2 0.000
#> 2432     2 0.000
#> 2433     1 0.000
#> 2434     3 1.000
#> 2435     1 0.000
#> 2436     2 0.000
#> 2437     3 1.000
#> 2438     3 1.000
#> 2439     3 1.000
#> 2440     1 0.000
#> 2441     1 1.000
#> 2442     1 0.000
#> 2443     3 1.000
#> 2444     3 1.000
#> 2445     3 1.000
#> 2446     2 0.249
#> 2447     2 0.000
#> 2448     2 0.000
#> 2449     2 0.000
#> 2450     2 0.000
#> 2451     2 0.498
#> 2452     2 0.751
#> 2453     2 0.747
#> 2454     2 0.000
#> 2455     2 0.249
#> 2456     2 0.747
#> 2457     2 0.000
#> 2458     2 1.000
#> 2459     2 0.000
#> 2460     2 0.000
#> 2461     2 0.249
#> 2462     2 1.000
#> 2463     2 0.000
#> 2464     2 1.000
#> 2465     2 0.249
#> 2466     2 0.000
#> 2467     2 0.751
#> 2468     2 0.747
#> 2469     2 0.000
#> 2470     2 0.000
#> 2471     3 0.747
#> 2472     2 0.000
#> 2473     2 0.000
#> 2474     2 0.000
#> 2475     2 0.249
#> 2476     2 1.000
#> 2477     2 0.000
#> 2478     2 0.249
#> 2479     2 0.249
#> 2480     2 1.000
#> 2481     2 0.000
#> 2482     2 0.249
#> 2483     2 1.000
#> 2484     2 0.249
#> 2485     2 0.747
#> 2486     2 0.751
#> 2487     2 0.747
#> 2488     2 1.000
#> 2489     2 1.000
#> 2490     2 1.000
#> 2491     2 1.000
#> 2492     2 0.000
#> 2493     2 0.000
#> 2494     2 0.000
#> 2495     2 0.249
#> 2496     2 0.000
#> 2497     2 0.000
#> 2498     2 0.000
#> 2499     2 0.249
#> 2500     2 0.000
#> 2501     2 0.000
#> 2502     2 0.000
#> 2503     2 0.000
#> 2504     2 0.000
#> 2505     2 0.000
#> 2506     2 0.000
#> 2507     2 0.000
#> 2508     3 1.000
#> 2509     3 0.751
#> 2510     2 0.000
#> 2511     3 1.000
#> 2512     2 0.000
#> 2513     2 1.000
#> 2514     2 0.000
#> 2515     2 0.000
#> 2516     2 0.000
#> 2517     2 0.498
#> 2518     2 0.000
#> 2519     2 0.249
#> 2520     2 0.000
#> 2521     2 0.000
#> 2522     2 0.000
#> 2523     2 0.498
#> 2524     2 0.498
#> 2525     2 0.000
#> 2526     2 0.000
#> 2527     2 0.000
#> 2528     2 0.249
#> 2529     2 1.000
#> 2530     2 0.498
#> 2531     2 0.000
#> 2532     2 0.000
#> 2533     2 0.000
#> 2534     1 1.000
#> 2535     2 0.000
#> 2536     3 0.253
#> 2537     2 0.000
#> 2538     2 0.000
#> 2539     2 0.000
#> 2540     2 0.000
#> 2541     2 0.000
#> 2542     2 0.000
#> 2543     2 0.000
#> 2544     2 0.000
#> 2545     2 0.000
#> 2546     2 0.000
#> 2547     2 0.000
#> 2548     2 0.751
#> 2549     1 0.000
#> 2550     2 0.000
#> 2551     3 1.000
#> 2552     3 1.000
#> 2553     1 0.000
#> 2554     1 0.000
#> 2555     2 0.249
#> 2556     3 0.751
#> 2557     2 0.498
#> 2558     1 0.498
#> 2559     2 0.000
#> 2560     2 0.000
#> 2561     3 0.502
#> 2562     2 0.498
#> 2563     3 1.000
#> 2564     2 0.000
#> 2565     2 0.000
#> 2566     3 0.000
#> 2567     2 0.000
#> 2568     2 0.000
#> 2569     2 0.000
#> 2570     2 0.253
#> 2571     2 0.000
#> 2572     1 0.000
#> 2573     1 0.000
#> 2574     1 0.000
#> 2575     3 1.000
#> 2576     3 1.000
#> 2577     2 0.000
#> 2578     2 0.000
#> 2579     2 0.000
#> 2580     2 0.000
#> 2581     2 0.000
#> 2582     2 0.000
#> 2583     2 0.000
#> 2584     2 0.000
#> 2585     2 0.000
#> 2586     2 0.000
#> 2587     2 0.000
#> 2588     1 1.000
#> 2589     2 0.000
#> 2590     2 0.000
#> 2591     2 0.000
#> 2592     2 0.000
#> 2593     2 0.000
#> 2594     2 0.000
#> 2595     2 0.000
#> 2596     2 0.000
#> 2597     2 0.000
#> 2598     2 0.000
#> 2599     2 0.000
#> 2600     2 0.000
#> 2601     2 0.000
#> 2602     2 0.000
#> 2603     2 0.000
#> 2604     2 0.000
#> 2605     2 0.000
#> 2606     2 0.000
#> 2607     2 0.000
#> 2608     2 0.000
#> 2609     3 1.000
#> 2610     1 1.000
#> 2611     2 0.000
#> 2612     2 0.000
#> 2613     2 0.000
#> 2614     2 0.000
#> 2615     2 0.000
#> 2616     3 1.000
#> 2617     2 0.000
#> 2618     2 0.000
#> 2619     2 1.000
#> 2620     2 0.000
#> 2621     2 0.000
#> 2622     2 0.000
#> 2623     1 0.000
#> 2624     2 0.000
#> 2625     2 0.000
#> 2626     2 1.000
#> 2627     1 0.000
#> 2628     1 0.000
#> 2629     1 0.000
#> 2630     2 0.751
#> 2631     2 0.000
#> 2632     2 0.000
#> 2633     2 0.000
#> 2634     2 0.000
#> 2635     2 0.000
#> 2636     2 0.000
#> 2637     2 0.751
#> 2638     2 0.000
#> 2639     2 1.000
#> 2640     2 0.751
#> 2641     2 0.000
#> 2642     3 1.000
#> 2643     2 0.751
#> 2644     2 0.000
#> 2645     2 0.000
#> 2646     2 0.000
#> 2647     2 0.000
#> 2648     2 0.000
#> 2649     3 1.000
#> 2650     2 0.000
#> 2651     1 0.000
#> 2652     2 0.000
#> 2653     2 0.000
#> 2654     2 0.498
#> 2655     2 0.249
#> 2656     2 0.000
#> 2657     2 0.000
#> 2658     2 0.000
#> 2659     2 0.249
#> 2660     2 0.000
#> 2661     2 0.000
#> 2662     2 0.000
#> 2663     2 0.000
#> 2664     3 1.000
#> 2665     3 1.000
#> 2666     2 0.000
#> 2667     3 1.000
#> 2668     2 0.000
#> 2669     2 0.000
#> 2670     3 1.000
#> 2671     2 0.000
#> 2672     1 0.000
#> 2673     3 1.000
#> 2674     2 1.000
#> 2675     3 1.000
#> 2676     2 0.751
#> 2677     2 0.000
#> 2678     3 0.751
#> 2679     1 0.000
#> 2680     1 0.000
#> 2681     1 0.000
#> 2682     2 0.000
#> 2683     1 0.000
#> 2684     1 0.000
#> 2685     1 0.000
#> 2686     2 0.000
#> 2687     2 0.000
#> 2688     2 0.000
#> 2689     2 0.000
#> 2690     3 1.000
#> 2691     2 0.498
#> 2692     2 0.000
#> 2693     2 0.000
#> 2694     2 0.000
#> 2695     1 0.000
#> 2696     2 0.000
#> 2697     3 0.000
#> 2698     2 0.498
#> 2699     2 0.000
#> 2700     3 1.000
#> 2701     2 0.498
#> 2702     2 0.000
#> 2703     1 0.000
#> 2704     2 0.502
#> 2705     2 0.747
#> 2706     3 0.498
#> 2707     1 0.000
#> 2708     2 1.000
#> 2709     1 0.000
#> 2710     1 0.000
#> 2711     2 1.000
#> 2712     1 0.000
#> 2713     1 0.000
#> 2714     2 0.000
#> 2715     2 0.249
#> 2716     2 0.000
#> 2717     1 0.000
#> 2718     1 0.000
#> 2719     2 0.249
#> 2720     1 0.000
#> 2721     2 0.000
#> 2722     2 1.000
#> 2723     1 0.000
#> 2724     2 0.000
#> 2725     3 1.000
#> 2726     1 0.000
#> 2727     3 1.000
#> 2728     1 1.000
#> 2729     1 0.000
#> 2730     3 1.000
#> 2731     2 0.502
#> 2732     2 0.498
#> 2733     3 1.000
#> 2734     2 0.000
#> 2735     3 1.000
#> 2736     1 0.249
#> 2737     1 0.000
#> 2738     3 1.000
#> 2739     1 1.000
#> 2740     3 1.000
#> 2741     1 0.000
#> 2742     1 0.751
#> 2743     2 0.000
#> 2744     2 0.747
#> 2745     2 0.000
#> 2746     1 0.249
#> 2747     1 0.000
#> 2748     1 0.000
#> 2749     1 0.751
#> 2750     3 1.000
#> 2751     1 0.000
#> 2752     1 0.000
#> 2753     2 0.000
#> 2754     2 0.000
#> 2755     3 1.000
#> 2756     3 1.000
#> 2757     1 0.000
#> 2758     2 0.249
#> 2759     2 0.498
#> 2760     2 0.747
#> 2761     2 0.498
#> 2762     2 0.751
#> 2763     2 0.747
#> 2764     2 0.747
#> 2765     2 0.000
#> 2766     1 0.000
#> 2767     1 0.502
#> 2768     2 0.000
#> 2769     2 0.000
#> 2770     2 0.000
#> 2771     2 0.498
#> 2772     2 0.000
#> 2773     2 0.249
#> 2774     2 0.249
#> 2775     2 0.498
#> 2776     2 1.000
#> 2777     2 0.249
#> 2778     2 0.498
#> 2779     2 0.000
#> 2780     2 1.000
#> 2781     2 0.498
#> 2782     2 0.000
#> 2783     2 0.000
#> 2784     2 0.249
#> 2785     2 0.000
#> 2786     2 0.000
#> 2787     2 0.000
#> 2788     2 0.000
#> 2789     2 0.000
#> 2790     1 0.000
#> 2791     1 0.000
#> 2792     2 0.000
#> 2793     2 0.000
#> 2794     2 0.000
#> 2795     2 1.000
#> 2796     2 1.000
#> 2797     2 0.249
#> 2798     2 0.000
#> 2799     2 0.498
#> 2800     2 0.249
#> 2801     2 0.000
#> 2802     2 1.000
#> 2803     2 0.000
#> 2804     2 0.498
#> 2805     2 0.000
#> 2806     2 0.000
#> 2807     2 0.000
#> 2808     2 0.000
#> 2809     2 0.000
#> 2810     2 0.751
#> 2811     2 0.498
#> 2812     2 0.000
#> 2813     2 1.000
#> 2814     2 0.000
#> 2815     2 0.498
#> 2816     2 0.747
#> 2817     2 0.000
#> 2818     1 0.000
#> 2819     1 0.249
#> 2820     1 0.000
#> 2821     2 0.000
#> 2822     2 0.000
#> 2823     2 0.000
#> 2824     2 0.747
#> 2825     2 0.751
#> 2826     2 0.249
#> 2827     2 0.249
#> 2828     2 1.000
#> 2829     2 0.249
#> 2830     2 0.498
#> 2831     2 1.000
#> 2832     2 0.000
#> 2833     2 1.000
#> 2834     2 0.000
#> 2835     2 0.000
#> 2836     2 0.000
#> 2837     2 0.000
#> 2838     2 0.000
#> 2839     2 0.000
#> 2840     2 0.249
#> 2841     2 0.000
#> 2842     2 0.000
#> 2843     2 0.000
#> 2844     2 0.000
#> 2845     2 0.000
#> 2846     2 0.000
#> 2847     2 0.249
#> 2848     2 0.000
#> 2849     2 0.249
#> 2850     2 0.000
#> 2851     2 0.498
#> 2852     2 0.000
#> 2853     3 1.000
#> 2854     2 0.000
#> 2855     1 0.000
#> 2856     2 1.000
#> 2857     2 0.747
#> 2858     1 0.000
#> 2859     2 0.000
#> 2860     2 0.000
#> 2861     2 0.000
#> 2862     2 0.000
#> 2863     2 0.000
#> 2864     2 0.000
#> 2865     2 0.747
#> 2866     2 0.498
#> 2867     2 0.000
#> 2868     2 0.000
#> 2869     2 0.000
#> 2870     2 0.000
#> 2871     2 0.000
#> 2872     2 0.000
#> 2873     2 1.000
#> 2874     2 0.000
#> 2875     2 0.249
#> 2876     2 0.000
#> 2877     2 0.000
#> 2878     2 0.249
#> 2879     1 0.000
#> 2880     2 0.000
#> 2881     2 0.000

show/hide code output

get_classes(res, k = 4)
#>      class     p
#> 1        1 0.000
#> 2        1 0.253
#> 3        2 1.000
#> 4        3 1.000
#> 5        1 1.000
#> 6        1 0.000
#> 7        3 0.000
#> 8        1 1.000
#> 9        1 1.000
#> 10       1 0.000
#> 11       1 1.000
#> 12       1 1.000
#> 13       3 1.000
#> 14       1 0.502
#> 15       1 1.000
#> 16       1 1.000
#> 17       1 1.000
#> 18       1 1.000
#> 19       3 0.000
#> 20       1 1.000
#> 21       3 1.000
#> 22       1 0.000
#> 23       1 1.000
#> 24       3 0.000
#> 25       1 1.000
#> 26       3 1.000
#> 27       3 0.000
#> 28       3 0.000
#> 29       1 0.000
#> 30       3 0.000
#> 31       3 0.000
#> 32       1 1.000
#> 33       3 0.000
#> 34       3 1.000
#> 35       3 1.000
#> 36       1 1.000
#> 37       1 1.000
#> 38       1 1.000
#> 39       3 0.000
#> 40       3 0.000
#> 41       1 0.751
#> 42       2 0.498
#> 43       1 1.000
#> 44       3 0.000
#> 45       1 1.000
#> 46       1 1.000
#> 47       3 0.000
#> 48       3 0.000
#> 49       3 0.000
#> 50       1 0.000
#> 51       3 0.000
#> 52       1 1.000
#> 53       1 1.000
#> 54       1 1.000
#> 55       1 0.000
#> 56       2 1.000
#> 57       2 1.000
#> 58       1 1.000
#> 59       1 1.000
#> 60       3 0.000
#> 61       3 0.000
#> 62       1 0.747
#> 63       1 1.000
#> 64       2 0.751
#> 65       3 0.000
#> 66       1 1.000
#> 67       1 0.000
#> 68       1 0.000
#> 69       3 0.000
#> 70       1 0.249
#> 71       4 0.000
#> 72       3 1.000
#> 73       3 0.000
#> 74       1 1.000
#> 75       1 1.000
#> 76       1 1.000
#> 77       1 1.000
#> 78       1 1.000
#> 79       2 1.000
#> 80       1 1.000
#> 81       4 0.000
#> 82       1 1.000
#> 83       1 1.000
#> 84       4 0.000
#> 85       1 0.751
#> 86       2 1.000
#> 87       1 1.000
#> 88       1 1.000
#> 89       1 1.000
#> 90       1 0.751
#> 91       3 0.249
#> 92       1 1.000
#> 93       2 1.000
#> 94       1 0.000
#> 95       1 0.751
#> 96       1 1.000
#> 97       1 1.000
#> 98       1 1.000
#> 99       4 0.000
#> 100      3 1.000
#> 101      1 1.000
#> 102      1 1.000
#> 103      1 0.000
#> 104      1 1.000
#> 105      1 0.000
#> 106      3 1.000
#> 107      2 0.249
#> 108      1 1.000
#> 109      4 0.000
#> 110      1 1.000
#> 111      1 1.000
#> 112      1 1.000
#> 113      1 1.000
#> 114      4 0.000
#> 115      1 1.000
#> 116      2 0.000
#> 117      2 1.000
#> 118      3 1.000
#> 119      1 1.000
#> 120      3 0.498
#> 121      3 1.000
#> 122      3 0.000
#> 123      2 0.000
#> 124      2 0.751
#> 125      2 1.000
#> 126      2 1.000
#> 127      1 1.000
#> 128      1 0.000
#> 129      1 0.000
#> 130      1 1.000
#> 131      1 0.000
#> 132      1 1.000
#> 133      1 0.751
#> 134      4 0.751
#> 135      1 1.000
#> 136      2 0.000
#> 137      1 1.000
#> 138      1 1.000
#> 139      3 1.000
#> 140      1 0.000
#> 141      1 0.249
#> 142      1 0.000
#> 143      1 0.000
#> 144      1 0.000
#> 145      1 0.000
#> 146      2 0.249
#> 147      1 1.000
#> 148      2 1.000
#> 149      1 1.000
#> 150      3 0.751
#> 151      4 1.000
#> 152      3 0.000
#> 153      1 1.000
#> 154      4 1.000
#> 155      3 0.000
#> 156      1 1.000
#> 157      3 0.000
#> 158      2 1.000
#> 159      3 0.253
#> 160      3 1.000
#> 161      3 1.000
#> 162      1 1.000
#> 163      3 0.000
#> 164      3 1.000
#> 165      2 1.000
#> 166      1 1.000
#> 167      3 0.000
#> 168      3 0.000
#> 169      3 1.000
#> 170      1 1.000
#> 171      3 0.000
#> 172      3 0.000
#> 173      3 0.000
#> 174      2 1.000
#> 175      2 1.000
#> 176      3 0.000
#> 177      3 0.000
#> 178      1 1.000
#> 179      3 0.000
#> 180      3 0.000
#> 181      3 0.000
#> 182      3 0.000
#> 183      3 1.000
#> 184      3 0.000
#> 185      3 1.000
#> 186      3 0.000
#> 187      1 1.000
#> 188      3 0.000
#> 189      3 0.000
#> 190      2 1.000
#> 191      3 1.000
#> 192      1 1.000
#> 193      3 0.000
#> 194      3 0.000
#> 195      3 0.000
#> 196      1 1.000
#> 197      3 0.000
#> 198      3 0.000
#> 199      3 0.000
#> 200      3 0.000
#> 201      3 0.000
#> 202      3 1.000
#> 203      3 0.000
#> 204      3 0.000
#> 205      3 0.000
#> 206      3 0.000
#> 207      1 1.000
#> 208      3 0.000
#> 209      3 1.000
#> 210      2 1.000
#> 211      3 0.000
#> 212      4 0.000
#> 213      3 0.000
#> 214      3 0.000
#> 215      3 0.751
#> 216      3 0.000
#> 217      3 1.000
#> 218      2 1.000
#> 219      3 0.000
#> 220      1 1.000
#> 221      4 0.249
#> 222      3 0.000
#> 223      3 0.000
#> 224      3 0.000
#> 225      3 0.000
#> 226      3 0.000
#> 227      3 0.000
#> 228      3 0.000
#> 229      1 1.000
#> 230      2 1.000
#> 231      3 0.000
#> 232      3 1.000
#> 233      3 0.000
#> 234      3 0.000
#> 235      2 1.000
#> 236      3 0.000
#> 237      3 0.000
#> 238      3 0.000
#> 239      3 0.000
#> 240      3 0.000
#> 241      3 0.000
#> 242      3 1.000
#> 243      3 0.000
#> 244      1 1.000
#> 245      3 0.000
#> 246      3 0.000
#> 247      3 0.000
#> 248      2 1.000
#> 249      3 0.000
#> 250      3 0.000
#> 251      1 1.000
#> 252      3 0.000
#> 253      3 0.751
#> 254      3 0.000
#> 255      3 0.498
#> 256      3 0.000
#> 257      1 1.000
#> 258      3 0.000
#> 259      3 0.000
#> 260      3 0.000
#> 261      1 0.747
#> 262      3 1.000
#> 263      1 1.000
#> 264      1 1.000
#> 265      1 1.000
#> 266      3 0.000
#> 267      1 1.000
#> 268      1 1.000
#> 269      4 0.498
#> 270      3 0.000
#> 271      1 1.000
#> 272      1 1.000
#> 273      1 1.000
#> 274      3 0.000
#> 275      1 1.000
#> 276      1 1.000
#> 277      3 0.000
#> 278      3 0.000
#> 279      3 1.000
#> 280      3 0.000
#> 281      2 1.000
#> 282      1 1.000
#> 283      4 0.000
#> 284      3 1.000
#> 285      3 0.000
#> 286      2 1.000
#> 287      3 0.000
#> 288      3 0.000
#> 289      3 0.000
#> 290      3 0.253
#> 291      3 0.000
#> 292      3 0.000
#> 293      3 0.000
#> 294      3 0.000
#> 295      3 0.000
#> 296      3 0.000
#> 297      3 0.000
#> 298      3 0.000
#> 299      2 1.000
#> 300      3 0.000
#> 301      2 0.000
#> 302      3 1.000
#> 303      3 0.000
#> 304      2 0.249
#> 305      1 1.000
#> 306      2 0.751
#> 307      2 1.000
#> 308      3 0.000
#> 309      2 1.000
#> 310      3 0.000
#> 311      3 0.000
#> 312      3 0.000
#> 313      2 1.000
#> 314      3 0.000
#> 315      3 0.000
#> 316      3 0.000
#> 317      1 0.000
#> 318      3 0.502
#> 319      3 1.000
#> 320      1 1.000
#> 321      3 0.000
#> 322      1 1.000
#> 323      3 0.000
#> 324      3 1.000
#> 325      3 0.000
#> 326      1 0.747
#> 327      3 1.000
#> 328      3 0.000
#> 329      3 0.000
#> 330      3 0.000
#> 331      3 0.000
#> 332      1 1.000
#> 333      1 0.249
#> 334      1 1.000
#> 335      1 1.000
#> 336      2 0.000
#> 337      2 0.000
#> 338      1 1.000
#> 339      3 1.000
#> 340      1 1.000
#> 341      3 0.000
#> 342      3 0.000
#> 343      2 0.000
#> 344      3 0.000
#> 345      3 0.000
#> 346      3 0.000
#> 347      2 0.751
#> 348      4 1.000
#> 349      4 1.000
#> 350      2 0.502
#> 351      3 1.000
#> 352      1 1.000
#> 353      3 0.000
#> 354      1 1.000
#> 355      3 0.000
#> 356      1 1.000
#> 357      3 0.000
#> 358      3 0.000
#> 359      3 0.000
#> 360      3 0.000
#> 361      4 1.000
#> 362      3 0.000
#> 363      3 0.000
#> 364      3 0.000
#> 365      4 1.000
#> 366      3 0.000
#> 367      3 1.000
#> 368      3 0.000
#> 369      3 0.000
#> 370      3 0.000
#> 371      3 1.000
#> 372      3 0.000
#> 373      3 0.000
#> 374      3 0.000
#> 375      3 0.000
#> 376      3 0.000
#> 377      3 0.000
#> 378      3 0.000
#> 379      3 0.000
#> 380      3 0.000
#> 381      1 1.000
#> 382      1 1.000
#> 383      2 1.000
#> 384      4 0.000
#> 385      1 1.000
#> 386      1 1.000
#> 387      1 1.000
#> 388      3 0.000
#> 389      4 0.000
#> 390      4 0.249
#> 391      1 1.000
#> 392      3 1.000
#> 393      1 1.000
#> 394      4 0.253
#> 395      2 0.498
#> 396      3 0.000
#> 397      3 0.000
#> 398      1 1.000
#> 399      1 1.000
#> 400      1 0.747
#> 401      3 0.000
#> 402      1 0.751
#> 403      4 0.000
#> 404      1 1.000
#> 405      1 1.000
#> 406      2 1.000
#> 407      1 1.000
#> 408      3 0.751
#> 409      1 1.000
#> 410      1 1.000
#> 411      3 0.000
#> 412      3 0.000
#> 413      2 1.000
#> 414      1 1.000
#> 415      1 1.000
#> 416      1 1.000
#> 417      1 1.000
#> 418      1 1.000
#> 419      4 1.000
#> 420      1 1.000
#> 421      4 1.000
#> 422      1 0.747
#> 423      1 1.000
#> 424      3 0.000
#> 425      2 1.000
#> 426      1 1.000
#> 427      1 1.000
#> 428      1 1.000
#> 429      1 1.000
#> 430      1 1.000
#> 431      1 1.000
#> 432      2 1.000
#> 433      1 1.000
#> 434      2 1.000
#> 435      1 0.000
#> 436      2 1.000
#> 437      1 1.000
#> 438      2 1.000
#> 439      3 1.000
#> 440      2 1.000
#> 441      2 1.000
#> 442      3 1.000
#> 443      3 1.000
#> 444      3 1.000
#> 445      3 1.000
#> 446      1 0.000
#> 447      1 1.000
#> 448      3 0.000
#> 449      3 0.000
#> 450      3 0.000
#> 451      3 1.000
#> 452      1 1.000
#> 453      3 1.000
#> 454      1 1.000
#> 455      1 1.000
#> 456      3 1.000
#> 457      1 1.000
#> 458      1 1.000
#> 459      3 0.000
#> 460      3 0.000
#> 461      3 0.000
#> 462      3 0.000
#> 463      1 1.000
#> 464      3 1.000
#> 465      3 0.000
#> 466      3 0.000
#> 467      3 0.000
#> 468      3 0.000
#> 469      3 1.000
#> 470      3 0.000
#> 471      3 0.000
#> 472      3 0.000
#> 473      3 0.000
#> 474      3 0.000
#> 475      3 0.000
#> 476      3 0.000
#> 477      3 1.000
#> 478      3 0.000
#> 479      3 0.000
#> 480      3 0.000
#> 481      3 0.000
#> 482      3 1.000
#> 483      3 0.000
#> 484      1 1.000
#> 485      2 0.747
#> 486      3 0.000
#> 487      3 1.000
#> 488      3 0.000
#> 489      2 1.000
#> 490      2 1.000
#> 491      2 1.000
#> 492      3 0.000
#> 493      3 0.000
#> 494      2 1.000
#> 495      3 0.000
#> 496      1 1.000
#> 497      2 1.000
#> 498      2 0.502
#> 499      1 1.000
#> 500      3 0.000
#> 501      2 1.000
#> 502      1 1.000
#> 503      3 0.000
#> 504      3 0.000
#> 505      3 0.000
#> 506      2 0.000
#> 507      1 1.000
#> 508      1 1.000
#> 509      3 1.000
#> 510      3 0.000
#> 511      3 0.000
#> 512      2 1.000
#> 513      3 1.000
#> 514      3 1.000
#> 515      1 1.000
#> 516      1 1.000
#> 517      2 1.000
#> 518      3 0.000
#> 519      3 0.000
#> 520      3 0.000
#> 521      1 0.000
#> 522      1 1.000
#> 523      1 1.000
#> 524      3 0.000
#> 525      3 0.000
#> 526      3 0.000
#> 527      3 0.000
#> 528      1 1.000
#> 529      1 0.249
#> 530      4 0.000
#> 531      2 1.000
#> 532      2 1.000
#> 533      1 1.000
#> 534      2 0.751
#> 535      1 0.751
#> 536      1 1.000
#> 537      1 0.249
#> 538      2 0.747
#> 539      1 0.000
#> 540      3 1.000
#> 541      1 1.000
#> 542      2 1.000
#> 543      1 0.000
#> 544      1 1.000
#> 545      2 1.000
#> 546      1 0.000
#> 547      1 0.751
#> 548      1 1.000
#> 549      3 1.000
#> 550      1 1.000
#> 551      1 1.000
#> 552      1 1.000
#> 553      1 0.498
#> 554      1 1.000
#> 555      1 1.000
#> 556      4 0.000
#> 557      1 1.000
#> 558      1 1.000
#> 559      3 0.000
#> 560      4 0.249
#> 561      3 0.249
#> 562      1 1.000
#> 563      3 0.747
#> 564      4 0.249
#> 565      1 1.000
#> 566      1 1.000
#> 567      1 1.000
#> 568      2 0.751
#> 569      3 0.000
#> 570      1 1.000
#> 571      1 0.000
#> 572      2 0.751
#> 573      3 0.000
#> 574      3 0.000
#> 575      1 1.000
#> 576      3 0.000
#> 577      1 1.000
#> 578      1 1.000
#> 579      1 1.000
#> 580      2 0.000
#> 581      1 1.000
#> 582      1 1.000
#> 583      1 1.000
#> 584      4 0.000
#> 585      3 0.000
#> 586      1 1.000
#> 587      4 0.000
#> 588      1 1.000
#> 589      1 0.000
#> 590      4 1.000
#> 591      1 1.000
#> 592      3 1.000
#> 593      1 1.000
#> 594      3 0.000
#> 595      3 0.000
#> 596      4 0.000
#> 597      1 1.000
#> 598      3 1.000
#> 599      1 1.000
#> 600      1 0.751
#> 601      1 0.000
#> 602      4 0.000
#> 603      1 1.000
#> 604      3 0.000
#> 605      1 1.000
#> 606      1 1.000
#> 607      2 0.000
#> 608      1 0.253
#> 609      1 1.000
#> 610      1 1.000
#> 611      1 0.000
#> 612      1 0.502
#> 613      1 1.000
#> 614      1 1.000
#> 615      1 0.000
#> 616      2 1.000
#> 617      3 0.000
#> 618      3 1.000
#> 619      1 1.000
#> 620      3 1.000
#> 621      1 1.000
#> 622      3 0.000
#> 623      1 1.000
#> 624      3 0.000
#> 625      1 1.000
#> 626      3 0.000
#> 627      3 0.000
#> 628      3 0.000
#> 629      3 0.000
#> 630      3 1.000
#> 631      1 1.000
#> 632      1 1.000
#> 633      3 0.000
#> 634      1 1.000
#> 635      3 0.000
#> 636      2 0.249
#> 637      3 0.751
#> 638      1 1.000
#> 639      1 1.000
#> 640      1 0.751
#> 641      1 1.000
#> 642      3 0.000
#> 643      3 0.249
#> 644      1 1.000
#> 645      3 1.000
#> 646      3 0.000
#> 647      1 1.000
#> 648      1 1.000
#> 649      2 0.498
#> 650      1 1.000
#> 651      1 1.000
#> 652      1 1.000
#> 653      1 1.000
#> 654      1 1.000
#> 655      3 0.000
#> 656      1 1.000
#> 657      1 1.000
#> 658      1 1.000
#> 659      3 1.000
#> 660      3 1.000
#> 661      3 0.000
#> 662      1 1.000
#> 663      2 1.000
#> 664      1 1.000
#> 665      1 1.000
#> 666      3 0.000
#> 667      3 0.000
#> 668      3 1.000
#> 669      3 1.000
#> 670      1 1.000
#> 671      2 0.253
#> 672      1 1.000
#> 673      2 0.498
#> 674      3 1.000
#> 675      3 0.000
#> 676      4 0.000
#> 677      3 0.000
#> 678      3 1.000
#> 679      2 0.253
#> 680      1 1.000
#> 681      3 0.498
#> 682      3 1.000
#> 683      3 0.000
#> 684      3 0.747
#> 685      3 0.000
#> 686      3 0.000
#> 687      3 0.000
#> 688      3 0.000
#> 689      3 0.000
#> 690      3 0.000
#> 691      3 0.000
#> 692      1 1.000
#> 693      3 0.000
#> 694      3 0.000
#> 695      2 0.000
#> 696      3 0.000
#> 697      3 1.000
#> 698      1 1.000
#> 699      3 0.000
#> 700      4 0.000
#> 701      3 0.000
#> 702      1 1.000
#> 703      1 1.000
#> 704      3 0.000
#> 705      3 0.000
#> 706      2 1.000
#> 707      2 0.000
#> 708      1 1.000
#> 709      1 1.000
#> 710      4 0.000
#> 711      3 1.000
#> 712      2 0.000
#> 713      1 0.253
#> 714      1 1.000
#> 715      1 1.000
#> 716      1 1.000
#> 717      1 0.747
#> 718      1 1.000
#> 719      2 1.000
#> 720      1 1.000
#> 721      3 1.000
#> 722      2 1.000
#> 723      2 1.000
#> 724      1 1.000
#> 725      2 1.000
#> 726      1 1.000
#> 727      3 1.000
#> 728      3 0.000
#> 729      1 1.000
#> 730      1 1.000
#> 731      3 0.000
#> 732      1 1.000
#> 733      1 0.751
#> 734      3 0.000
#> 735      1 1.000
#> 736      1 1.000
#> 737      1 0.498
#> 738      1 1.000
#> 739      1 1.000
#> 740      3 1.000
#> 741      1 1.000
#> 742      1 1.000
#> 743      1 1.000
#> 744      3 0.000
#> 745      3 1.000
#> 746      1 0.751
#> 747      3 1.000
#> 748      3 0.000
#> 749      3 0.000
#> 750      3 0.000
#> 751      3 0.000
#> 752      1 1.000
#> 753      1 1.000
#> 754      1 1.000
#> 755      1 1.000
#> 756      1 1.000
#> 757      3 1.000
#> 758      1 1.000
#> 759      1 1.000
#> 760      3 0.000
#> 761      2 1.000
#> 762      2 1.000
#> 763      1 1.000
#> 764      1 1.000
#> 765      3 1.000
#> 766      1 1.000
#> 767      1 1.000
#> 768      1 1.000
#> 769      1 1.000
#> 770      1 0.000
#> 771      3 0.000
#> 772      1 1.000
#> 773      1 1.000
#> 774      3 0.751
#> 775      1 1.000
#> 776      2 0.249
#> 777      1 0.751
#> 778      1 1.000
#> 779      2 1.000
#> 780      1 1.000
#> 781      3 1.000
#> 782      1 1.000
#> 783      1 1.000
#> 784      1 1.000
#> 785      1 1.000
#> 786      1 1.000
#> 787      3 0.000
#> 788      1 0.000
#> 789      3 1.000
#> 790      3 0.000
#> 791      1 1.000
#> 792      1 1.000
#> 793      3 0.000
#> 794      2 0.498
#> 795      1 1.000
#> 796      3 0.000
#> 797      1 1.000
#> 798      1 0.502
#> 799      2 1.000
#> 800      1 1.000
#> 801      3 0.000
#> 802      2 0.000
#> 803      3 0.000
#> 804      3 1.000
#> 805      3 0.751
#> 806      2 1.000
#> 807      3 1.000
#> 808      1 1.000
#> 809      3 1.000
#> 810      1 0.751
#> 811      1 1.000
#> 812      1 1.000
#> 813      3 0.000
#> 814      3 0.249
#> 815      1 0.000
#> 816      4 0.000
#> 817      1 1.000
#> 818      1 1.000
#> 819      1 1.000
#> 820      2 0.000
#> 821      1 0.000
#> 822      1 0.751
#> 823      1 0.000
#> 824      1 0.502
#> 825      1 0.751
#> 826      1 1.000
#> 827      1 0.751
#> 828      1 1.000
#> 829      1 1.000
#> 830      1 1.000
#> 831      1 0.747
#> 832      1 0.000
#> 833      1 0.498
#> 834      1 0.000
#> 835      1 0.000
#> 836      1 0.000
#> 837      1 0.498
#> 838      1 0.000
#> 839      1 0.000
#> 840      1 0.000
#> 841      1 1.000
#> 842      1 0.249
#> 843      1 0.000
#> 844      1 0.000
#> 845      1 0.000
#> 846      1 0.751
#> 847      1 1.000
#> 848      1 0.000
#> 849      4 0.253
#> 850      1 0.751
#> 851      4 1.000
#> 852      2 1.000
#> 853      3 0.751
#> 854      2 0.000
#> 855      1 0.000
#> 856      4 0.000
#> 857      4 0.000
#> 858      4 0.000
#> 859      4 0.253
#> 860      1 0.498
#> 861      1 1.000
#> 862      4 1.000
#> 863      1 0.249
#> 864      1 0.000
#> 865      1 0.253
#> 866      1 0.000
#> 867      1 0.000
#> 868      1 0.000
#> 869      1 0.751
#> 870      3 0.000
#> 871      1 1.000
#> 872      1 1.000
#> 873      1 0.747
#> 874      1 0.000
#> 875      1 1.000
#> 876      1 0.498
#> 877      4 0.000
#> 878      1 1.000
#> 879      1 0.498
#> 880      1 0.000
#> 881      1 0.253
#> 882      1 0.751
#> 883      1 0.000
#> 884      1 0.000
#> 885      1 0.000
#> 886      2 0.751
#> 887      1 0.000
#> 888      3 1.000
#> 889      1 1.000
#> 890      4 0.000
#> 891      1 0.751
#> 892      3 1.000
#> 893      1 1.000
#> 894      1 0.000
#> 895      1 1.000
#> 896      2 0.000
#> 897      2 0.253
#> 898      1 0.000
#> 899      1 0.000
#> 900      1 0.000
#> 901      1 0.000
#> 902      1 0.000
#> 903      3 0.751
#> 904      1 0.000
#> 905      1 1.000
#> 906      1 1.000
#> 907      1 1.000
#> 908      1 1.000
#> 909      1 1.000
#> 910      1 0.249
#> 911      1 1.000
#> 912      1 0.751
#> 913      1 0.000
#> 914      1 0.000
#> 915      1 1.000
#> 916      1 1.000
#> 917      1 0.000
#> 918      1 0.000
#> 919      1 0.000
#> 920      1 0.000
#> 921      1 0.000
#> 922      1 0.000
#> 923      1 0.000
#> 924      1 0.502
#> 925      1 1.000
#> 926      1 0.000
#> 927      1 0.000
#> 928      1 0.249
#> 929      2 0.498
#> 930      1 0.502
#> 931      4 0.253
#> 932      1 0.000
#> 933      1 0.751
#> 934      1 0.249
#> 935      2 0.502
#> 936      4 0.000
#> 937      1 0.000
#> 938      2 1.000
#> 939      1 1.000
#> 940      1 0.000
#> 941      1 0.249
#> 942      4 0.000
#> 943      1 0.751
#> 944      1 0.000
#> 945      1 0.000
#> 946      1 0.751
#> 947      1 0.498
#> 948      1 1.000
#> 949      1 0.000
#> 950      1 0.751
#> 951      1 0.249
#> 952      1 0.000
#> 953      1 0.000
#> 954      1 1.000
#> 955      1 1.000
#> 956      2 1.000
#> 957      4 0.000
#> 958      4 0.000
#> 959      1 0.498
#> 960      2 1.000
#> 961      2 0.498
#> 962      1 1.000
#> 963      1 0.000
#> 964      2 1.000
#> 965      3 0.000
#> 966      1 1.000
#> 967      1 0.498
#> 968      1 1.000
#> 969      1 1.000
#> 970      3 0.249
#> 971      1 0.000
#> 972      1 0.000
#> 973      2 1.000
#> 974      1 1.000
#> 975      1 0.000
#> 976      1 0.000
#> 977      1 0.000
#> 978      1 1.000
#> 979      1 0.000
#> 980      1 0.747
#> 981      4 0.000
#> 982      4 0.000
#> 983      2 1.000
#> 984      2 1.000
#> 985      1 1.000
#> 986      1 1.000
#> 987      1 0.502
#> 988      1 1.000
#> 989      1 1.000
#> 990      3 0.000
#> 991      3 1.000
#> 992      4 0.000
#> 993      1 1.000
#> 994      1 1.000
#> 995      1 1.000
#> 996      1 1.000
#> 997      1 0.249
#> 998      3 1.000
#> 999      3 0.498
#> 1000     1 0.249
#> 1001     2 0.000
#> 1002     1 0.747
#> 1003     1 0.502
#> 1004     1 0.000
#> 1005     1 0.000
#> 1006     1 1.000
#> 1007     1 0.498
#> 1008     1 0.000
#> 1009     1 0.000
#> 1010     1 0.000
#> 1011     1 0.502
#> 1012     1 0.000
#> 1013     1 0.000
#> 1014     2 1.000
#> 1015     1 0.000
#> 1016     2 1.000
#> 1017     1 0.000
#> 1018     1 1.000
#> 1019     1 0.000
#> 1020     1 0.498
#> 1021     1 1.000
#> 1022     1 0.498
#> 1023     1 1.000
#> 1024     1 1.000
#> 1025     1 1.000
#> 1026     3 0.253
#> 1027     4 0.000
#> 1028     1 1.000
#> 1029     1 0.249
#> 1030     1 1.000
#> 1031     1 0.000
#> 1032     1 0.000
#> 1033     1 1.000
#> 1034     1 0.000
#> 1035     1 1.000
#> 1036     3 1.000
#> 1037     1 0.000
#> 1038     3 0.000
#> 1039     1 1.000
#> 1040     2 0.000
#> 1041     1 0.000
#> 1042     1 1.000
#> 1043     3 0.000
#> 1044     1 0.249
#> 1045     1 1.000
#> 1046     1 0.000
#> 1047     3 0.000
#> 1048     1 0.000
#> 1049     1 0.000
#> 1050     1 0.000
#> 1051     1 1.000
#> 1052     1 0.000
#> 1053     1 0.249
#> 1054     1 0.000
#> 1055     1 0.000
#> 1056     1 0.000
#> 1057     1 0.000
#> 1058     1 0.000
#> 1059     1 0.000
#> 1060     1 0.000
#> 1061     1 0.000
#> 1062     1 0.000
#> 1063     1 0.000
#> 1064     1 0.000
#> 1065     1 0.000
#> 1066     1 0.000
#> 1067     1 0.502
#> 1068     1 0.000
#> 1069     1 0.000
#> 1070     1 0.000
#> 1071     1 0.000
#> 1072     1 0.000
#> 1073     1 1.000
#> 1074     1 0.000
#> 1075     3 0.000
#> 1076     1 0.000
#> 1077     1 0.000
#> 1078     1 0.000
#> 1079     1 0.000
#> 1080     1 0.000
#> 1081     1 0.000
#> 1082     1 0.000
#> 1083     3 0.000
#> 1084     1 0.498
#> 1085     1 0.502
#> 1086     1 0.000
#> 1087     1 0.000
#> 1088     3 0.000
#> 1089     1 0.000
#> 1090     1 0.000
#> 1091     1 0.751
#> 1092     1 0.000
#> 1093     1 1.000
#> 1094     1 0.751
#> 1095     1 1.000
#> 1096     1 0.000
#> 1097     1 0.751
#> 1098     1 0.000
#> 1099     1 0.000
#> 1100     1 0.000
#> 1101     4 0.000
#> 1102     1 0.000
#> 1103     1 0.000
#> 1104     1 1.000
#> 1105     1 0.000
#> 1106     1 0.000
#> 1107     1 0.249
#> 1108     1 1.000
#> 1109     1 0.000
#> 1110     3 0.000
#> 1111     1 0.000
#> 1112     1 0.000
#> 1113     1 0.000
#> 1114     1 0.000
#> 1115     1 0.502
#> 1116     1 1.000
#> 1117     1 0.000
#> 1118     3 0.000
#> 1119     1 0.000
#> 1120     4 0.000
#> 1121     1 0.000
#> 1122     3 0.000
#> 1123     1 0.249
#> 1124     1 0.000
#> 1125     1 0.747
#> 1126     1 0.000
#> 1127     1 0.747
#> 1128     3 0.000
#> 1129     1 0.000
#> 1130     1 0.747
#> 1131     1 0.751
#> 1132     1 0.000
#> 1133     1 1.000
#> 1134     1 0.000
#> 1135     3 0.000
#> 1136     1 0.000
#> 1137     1 0.000
#> 1138     1 0.000
#> 1139     1 0.000
#> 1140     1 0.249
#> 1141     2 0.000
#> 1142     1 0.000
#> 1143     1 0.000
#> 1144     1 1.000
#> 1145     3 0.000
#> 1146     1 0.000
#> 1147     1 0.000
#> 1148     1 0.253
#> 1149     1 0.249
#> 1150     4 1.000
#> 1151     1 0.498
#> 1152     1 0.000
#> 1153     1 1.000
#> 1154     1 0.000
#> 1155     1 0.502
#> 1156     1 0.000
#> 1157     1 0.000
#> 1158     1 0.000
#> 1159     1 1.000
#> 1160     1 0.000
#> 1161     1 1.000
#> 1162     1 0.502
#> 1163     1 1.000
#> 1164     1 0.000
#> 1165     1 0.000
#> 1166     1 0.000
#> 1167     1 0.000
#> 1168     1 0.000
#> 1169     1 0.000
#> 1170     1 0.000
#> 1171     1 1.000
#> 1172     3 0.000
#> 1173     1 0.249
#> 1174     1 0.502
#> 1175     1 1.000
#> 1176     1 0.498
#> 1177     1 1.000
#> 1178     1 1.000
#> 1179     1 1.000
#> 1180     1 0.000
#> 1181     2 1.000
#> 1182     1 0.000
#> 1183     4 0.000
#> 1184     1 1.000
#> 1185     2 0.000
#> 1186     1 0.000
#> 1187     1 1.000
#> 1188     1 0.000
#> 1189     1 1.000
#> 1190     1 0.249
#> 1191     1 0.751
#> 1192     1 0.000
#> 1193     1 1.000
#> 1194     1 0.000
#> 1195     1 0.000
#> 1196     1 0.747
#> 1197     1 0.000
#> 1198     1 0.502
#> 1199     1 0.000
#> 1200     1 1.000
#> 1201     1 1.000
#> 1202     4 0.000
#> 1203     1 1.000
#> 1204     1 0.000
#> 1205     1 1.000
#> 1206     1 0.000
#> 1207     1 0.000
#> 1208     3 1.000
#> 1209     1 0.000
#> 1210     1 0.000
#> 1211     1 0.000
#> 1212     1 0.249
#> 1213     1 1.000
#> 1214     4 1.000
#> 1215     2 0.747
#> 1216     1 0.000
#> 1217     4 0.249
#> 1218     3 0.000
#> 1219     1 1.000
#> 1220     1 1.000
#> 1221     1 1.000
#> 1222     1 0.000
#> 1223     1 0.747
#> 1224     2 0.000
#> 1225     1 1.000
#> 1226     2 0.000
#> 1227     1 1.000
#> 1228     1 0.000
#> 1229     1 0.000
#> 1230     4 1.000
#> 1231     1 0.000
#> 1232     1 0.000
#> 1233     1 1.000
#> 1234     1 1.000
#> 1235     1 0.747
#> 1236     1 1.000
#> 1237     1 1.000
#> 1238     3 0.000
#> 1239     4 1.000
#> 1240     1 1.000
#> 1241     3 0.000
#> 1242     4 0.000
#> 1243     3 0.000
#> 1244     1 0.000
#> 1245     1 1.000
#> 1246     1 0.000
#> 1247     1 1.000
#> 1248     1 1.000
#> 1249     1 0.000
#> 1250     1 0.000
#> 1251     1 1.000
#> 1252     1 0.000
#> 1253     1 1.000
#> 1254     1 0.000
#> 1255     1 1.000
#> 1256     2 1.000
#> 1257     2 0.498
#> 1258     2 0.000
#> 1259     2 0.000
#> 1260     1 1.000
#> 1261     1 0.000
#> 1262     1 1.000
#> 1263     1 1.000
#> 1264     1 0.000
#> 1265     3 1.000
#> 1266     4 1.000
#> 1267     1 0.000
#> 1268     1 1.000
#> 1269     1 1.000
#> 1270     1 1.000
#> 1271     1 0.751
#> 1272     1 0.249
#> 1273     4 1.000
#> 1274     1 0.000
#> 1275     1 0.000
#> 1276     1 0.502
#> 1277     3 0.000
#> 1278     2 0.000
#> 1279     3 0.000
#> 1280     3 0.000
#> 1281     3 0.000
#> 1282     1 1.000
#> 1283     3 0.000
#> 1284     1 1.000
#> 1285     1 1.000
#> 1286     1 0.249
#> 1287     1 0.249
#> 1288     1 1.000
#> 1289     3 0.000
#> 1290     3 0.000
#> 1291     1 1.000
#> 1292     3 0.000
#> 1293     1 1.000
#> 1294     1 1.000
#> 1295     2 1.000
#> 1296     3 0.000
#> 1297     1 0.249
#> 1298     4 0.000
#> 1299     1 0.747
#> 1300     1 0.498
#> 1301     1 0.000
#> 1302     1 0.000
#> 1303     1 0.751
#> 1304     1 0.000
#> 1305     1 1.000
#> 1306     1 0.000
#> 1307     1 0.000
#> 1308     1 0.000
#> 1309     1 0.000
#> 1310     1 0.000
#> 1311     1 0.751
#> 1312     1 0.751
#> 1313     2 0.253
#> 1314     1 1.000
#> 1315     4 0.249
#> 1316     1 0.249
#> 1317     3 0.000
#> 1318     2 0.502
#> 1319     1 0.000
#> 1320     1 0.000
#> 1321     1 0.498
#> 1322     1 0.000
#> 1323     1 0.000
#> 1324     1 0.249
#> 1325     1 0.000
#> 1326     1 0.502
#> 1327     3 0.000
#> 1328     1 0.000
#> 1329     1 0.000
#> 1330     1 0.000
#> 1331     1 0.000
#> 1332     2 1.000
#> 1333     1 1.000
#> 1334     3 1.000
#> 1335     1 1.000
#> 1336     3 0.000
#> 1337     1 0.000
#> 1338     1 0.000
#> 1339     1 0.000
#> 1340     1 0.253
#> 1341     1 0.502
#> 1342     1 0.000
#> 1343     2 0.000
#> 1344     1 1.000
#> 1345     1 0.000
#> 1346     2 1.000
#> 1347     2 1.000
#> 1348     2 0.000
#> 1349     1 0.751
#> 1350     1 1.000
#> 1351     1 0.000
#> 1352     1 0.000
#> 1353     2 0.751
#> 1354     2 1.000
#> 1355     1 0.751
#> 1356     1 0.000
#> 1357     1 0.000
#> 1358     1 1.000
#> 1359     1 0.502
#> 1360     1 0.498
#> 1361     2 0.249
#> 1362     2 1.000
#> 1363     1 0.000
#> 1364     1 0.000
#> 1365     3 1.000
#> 1366     3 0.000
#> 1367     1 0.000
#> 1368     3 0.000
#> 1369     1 1.000
#> 1370     3 0.000
#> 1371     3 0.000
#> 1372     3 0.000
#> 1373     3 0.000
#> 1374     1 1.000
#> 1375     3 0.000
#> 1376     1 1.000
#> 1377     4 0.000
#> 1378     1 0.000
#> 1379     1 0.000
#> 1380     1 0.000
#> 1381     1 0.000
#> 1382     1 0.000
#> 1383     1 0.249
#> 1384     1 0.000
#> 1385     1 0.000
#> 1386     1 1.000
#> 1387     1 0.000
#> 1388     1 0.000
#> 1389     1 0.751
#> 1390     1 0.000
#> 1391     1 0.000
#> 1392     4 0.000
#> 1393     1 0.000
#> 1394     1 0.000
#> 1395     2 1.000
#> 1396     1 1.000
#> 1397     2 1.000
#> 1398     2 1.000
#> 1399     2 1.000
#> 1400     1 1.000
#> 1401     4 0.000
#> 1402     1 1.000
#> 1403     1 1.000
#> 1404     1 0.000
#> 1405     1 0.000
#> 1406     3 0.000
#> 1407     2 1.000
#> 1408     1 0.000
#> 1409     1 0.000
#> 1410     3 0.000
#> 1411     1 0.000
#> 1412     1 0.000
#> 1413     1 0.000
#> 1414     1 0.000
#> 1415     1 0.000
#> 1416     1 0.000
#> 1417     1 0.000
#> 1418     1 0.000
#> 1419     3 0.000
#> 1420     1 0.000
#> 1421     1 0.000
#> 1422     3 0.502
#> 1423     1 0.000
#> 1424     1 0.000
#> 1425     1 0.000
#> 1426     1 1.000
#> 1427     1 0.000
#> 1428     1 0.000
#> 1429     3 1.000
#> 1430     1 1.000
#> 1431     1 0.000
#> 1432     1 1.000
#> 1433     1 0.751
#> 1434     3 1.000
#> 1435     1 0.000
#> 1436     1 0.000
#> 1437     1 0.000
#> 1438     1 0.000
#> 1439     1 0.000
#> 1440     1 0.000
#> 1441     1 0.000
#> 1442     1 0.000
#> 1443     1 0.253
#> 1444     1 0.000
#> 1445     1 0.000
#> 1446     1 0.000
#> 1447     1 0.000
#> 1448     1 0.000
#> 1449     2 1.000
#> 1450     1 1.000
#> 1451     3 0.000
#> 1452     2 0.000
#> 1453     1 0.000
#> 1454     1 0.000
#> 1455     2 0.000
#> 1456     1 0.000
#> 1457     1 0.498
#> 1458     1 0.000
#> 1459     2 1.000
#> 1460     1 0.000
#> 1461     1 0.000
#> 1462     1 0.000
#> 1463     4 0.502
#> 1464     1 0.498
#> 1465     1 0.000
#> 1466     1 0.000
#> 1467     1 0.000
#> 1468     1 1.000
#> 1469     1 1.000
#> 1470     1 1.000
#> 1471     1 0.000
#> 1472     3 0.000
#> 1473     1 0.249
#> 1474     3 0.000
#> 1475     3 1.000
#> 1476     3 0.502
#> 1477     1 1.000
#> 1478     2 0.000
#> 1479     1 0.000
#> 1480     2 0.000
#> 1481     1 0.249
#> 1482     1 0.000
#> 1483     1 0.502
#> 1484     1 0.502
#> 1485     1 1.000
#> 1486     1 0.000
#> 1487     1 1.000
#> 1488     3 0.502
#> 1489     4 0.000
#> 1490     1 0.000
#> 1491     4 0.000
#> 1492     1 1.000
#> 1493     1 0.000
#> 1494     1 0.000
#> 1495     4 0.000
#> 1496     1 1.000
#> 1497     1 0.000
#> 1498     1 0.000
#> 1499     1 0.249
#> 1500     2 1.000
#> 1501     1 1.000
#> 1502     4 0.000
#> 1503     1 0.000
#> 1504     1 0.249
#> 1505     1 1.000
#> 1506     3 1.000
#> 1507     4 0.000
#> 1508     2 0.751
#> 1509     1 0.000
#> 1510     2 0.000
#> 1511     1 1.000
#> 1512     1 0.000
#> 1513     1 1.000
#> 1514     1 0.498
#> 1515     1 1.000
#> 1516     1 1.000
#> 1517     1 0.000
#> 1518     2 1.000
#> 1519     4 0.249
#> 1520     2 1.000
#> 1521     2 1.000
#> 1522     4 0.000
#> 1523     4 0.000
#> 1524     2 0.000
#> 1525     4 0.000
#> 1526     1 1.000
#> 1527     3 1.000
#> 1528     4 0.000
#> 1529     1 0.502
#> 1530     1 0.000
#> 1531     4 0.000
#> 1532     1 0.000
#> 1533     1 1.000
#> 1534     2 0.000
#> 1535     1 0.498
#> 1536     2 0.000
#> 1537     1 1.000
#> 1538     1 1.000
#> 1539     1 1.000
#> 1540     1 0.000
#> 1541     1 0.253
#> 1542     1 1.000
#> 1543     1 0.000
#> 1544     1 0.000
#> 1545     1 0.000
#> 1546     1 1.000
#> 1547     1 0.000
#> 1548     1 0.249
#> 1549     1 0.000
#> 1550     1 0.000
#> 1551     3 1.000
#> 1552     1 0.751
#> 1553     1 0.498
#> 1554     1 1.000
#> 1555     1 0.000
#> 1556     1 0.000
#> 1557     4 0.000
#> 1558     2 0.502
#> 1559     2 1.000
#> 1560     1 0.000
#> 1561     1 0.000
#> 1562     1 0.000
#> 1563     4 0.000
#> 1564     4 1.000
#> 1565     2 1.000
#> 1566     1 1.000
#> 1567     3 0.751
#> 1568     3 0.000
#> 1569     1 0.000
#> 1570     1 1.000
#> 1571     1 1.000
#> 1572     2 1.000
#> 1573     2 0.000
#> 1574     4 0.000
#> 1575     2 0.502
#> 1576     3 1.000
#> 1577     3 0.000
#> 1578     2 1.000
#> 1579     2 0.249
#> 1580     2 1.000
#> 1581     3 0.000
#> 1582     2 1.000
#> 1583     3 0.000
#> 1584     2 1.000
#> 1585     3 0.000
#> 1586     3 0.000
#> 1587     3 0.000
#> 1588     3 0.000
#> 1589     3 0.000
#> 1590     3 1.000
#> 1591     1 0.249
#> 1592     3 0.000
#> 1593     3 0.000
#> 1594     2 0.751
#> 1595     3 0.000
#> 1596     2 0.249
#> 1597     2 0.000
#> 1598     2 1.000
#> 1599     1 0.498
#> 1600     2 1.000
#> 1601     1 0.000
#> 1602     3 1.000
#> 1603     1 0.000
#> 1604     2 0.253
#> 1605     2 1.000
#> 1606     1 0.000
#> 1607     1 1.000
#> 1608     2 1.000
#> 1609     2 1.000
#> 1610     2 1.000
#> 1611     3 0.000
#> 1612     3 0.498
#> 1613     3 0.000
#> 1614     3 0.000
#> 1615     3 0.000
#> 1616     3 0.000
#> 1617     3 0.000
#> 1618     2 0.000
#> 1619     1 0.000
#> 1620     2 0.000
#> 1621     2 1.000
#> 1622     2 1.000
#> 1623     4 0.000
#> 1624     3 0.000
#> 1625     1 0.502
#> 1626     2 0.249
#> 1627     1 0.000
#> 1628     1 1.000
#> 1629     1 0.000
#> 1630     1 1.000
#> 1631     1 1.000
#> 1632     1 0.249
#> 1633     3 0.000
#> 1634     1 0.000
#> 1635     2 1.000
#> 1636     1 0.000
#> 1637     1 0.000
#> 1638     1 0.000
#> 1639     2 0.249
#> 1640     1 0.000
#> 1641     1 0.000
#> 1642     1 0.751
#> 1643     1 0.000
#> 1644     4 0.000
#> 1645     1 1.000
#> 1646     1 0.000
#> 1647     1 1.000
#> 1648     1 0.000
#> 1649     1 0.502
#> 1650     1 0.000
#> 1651     4 0.000
#> 1652     1 0.000
#> 1653     1 0.000
#> 1654     3 1.000
#> 1655     1 0.000
#> 1656     1 0.000
#> 1657     1 0.000
#> 1658     1 0.000
#> 1659     1 1.000
#> 1660     1 0.000
#> 1661     1 0.000
#> 1662     1 0.000
#> 1663     1 0.000
#> 1664     1 1.000
#> 1665     1 0.000
#> 1666     1 0.000
#> 1667     1 0.000
#> 1668     1 0.000
#> 1669     1 0.502
#> 1670     1 0.000
#> 1671     1 0.000
#> 1672     1 1.000
#> 1673     1 0.000
#> 1674     1 0.000
#> 1675     1 0.000
#> 1676     4 0.000
#> 1677     1 0.000
#> 1678     1 1.000
#> 1679     1 0.249
#> 1680     2 1.000
#> 1681     1 0.000
#> 1682     1 0.000
#> 1683     1 0.000
#> 1684     4 0.751
#> 1685     1 0.000
#> 1686     1 0.498
#> 1687     1 0.000
#> 1688     1 0.000
#> 1689     1 1.000
#> 1690     1 0.751
#> 1691     1 0.000
#> 1692     1 0.000
#> 1693     3 1.000
#> 1694     1 0.000
#> 1695     1 0.000
#> 1696     1 0.000
#> 1697     1 0.000
#> 1698     1 1.000
#> 1699     1 0.000
#> 1700     1 0.000
#> 1701     1 1.000
#> 1702     1 0.000
#> 1703     3 1.000
#> 1704     1 0.000
#> 1705     1 0.000
#> 1706     1 0.000
#> 1707     4 0.000
#> 1708     1 0.000
#> 1709     1 0.000
#> 1710     1 0.253
#> 1711     1 0.000
#> 1712     3 1.000
#> 1713     1 0.000
#> 1714     1 0.000
#> 1715     1 0.249
#> 1716     1 1.000
#> 1717     1 0.000
#> 1718     1 0.253
#> 1719     4 0.000
#> 1720     3 1.000
#> 1721     1 0.249
#> 1722     1 0.253
#> 1723     1 1.000
#> 1724     1 1.000
#> 1725     1 0.000
#> 1726     1 0.000
#> 1727     1 0.000
#> 1728     3 0.000
#> 1729     1 0.000
#> 1730     3 0.000
#> 1731     3 0.000
#> 1732     1 0.000
#> 1733     1 0.000
#> 1734     2 0.000
#> 1735     1 0.000
#> 1736     1 0.747
#> 1737     1 1.000
#> 1738     1 1.000
#> 1739     1 1.000
#> 1740     1 0.000
#> 1741     1 0.000
#> 1742     1 0.000
#> 1743     1 0.000
#> 1744     1 0.000
#> 1745     1 1.000
#> 1746     1 0.000
#> 1747     1 1.000
#> 1748     1 1.000
#> 1749     3 1.000
#> 1750     1 1.000
#> 1751     3 0.000
#> 1752     1 0.000
#> 1753     2 1.000
#> 1754     1 0.000
#> 1755     2 0.000
#> 1756     1 0.000
#> 1757     1 1.000
#> 1758     1 0.000
#> 1759     4 0.000
#> 1760     3 0.000
#> 1761     2 0.000
#> 1762     1 0.000
#> 1763     1 1.000
#> 1764     1 1.000
#> 1765     1 0.000
#> 1766     2 0.000
#> 1767     3 0.000
#> 1768     1 0.498
#> 1769     1 0.000
#> 1770     2 1.000
#> 1771     1 0.000
#> 1772     1 0.000
#> 1773     1 0.000
#> 1774     1 0.000
#> 1775     1 0.000
#> 1776     1 0.000
#> 1777     1 1.000
#> 1778     1 0.000
#> 1779     1 0.000
#> 1780     1 0.000
#> 1781     3 0.000
#> 1782     1 0.000
#> 1783     1 0.000
#> 1784     1 0.000
#> 1785     1 0.751
#> 1786     1 1.000
#> 1787     3 1.000
#> 1788     1 1.000
#> 1789     1 0.000
#> 1790     4 0.000
#> 1791     1 0.498
#> 1792     3 0.000
#> 1793     3 0.000
#> 1794     3 0.502
#> 1795     2 1.000
#> 1796     1 1.000
#> 1797     1 0.000
#> 1798     3 0.000
#> 1799     2 0.000
#> 1800     1 0.000
#> 1801     1 0.000
#> 1802     1 0.000
#> 1803     1 0.751
#> 1804     3 0.751
#> 1805     1 0.000
#> 1806     1 0.000
#> 1807     2 1.000
#> 1808     2 0.498
#> 1809     2 0.000
#> 1810     4 0.249
#> 1811     2 0.747
#> 1812     1 0.000
#> 1813     1 0.000
#> 1814     1 1.000
#> 1815     1 0.000
#> 1816     1 0.000
#> 1817     1 0.000
#> 1818     1 0.000
#> 1819     1 0.249
#> 1820     1 0.000
#> 1821     3 0.000
#> 1822     1 0.000
#> 1823     1 1.000
#> 1824     1 0.000
#> 1825     1 0.000
#> 1826     1 0.000
#> 1827     1 0.000
#> 1828     1 0.000
#> 1829     1 0.000
#> 1830     2 1.000
#> 1831     1 0.000
#> 1832     1 0.000
#> 1833     3 0.000
#> 1834     1 0.498
#> 1835     1 1.000
#> 1836     2 0.000
#> 1837     2 0.751
#> 1838     1 0.000
#> 1839     1 0.000
#> 1840     1 0.000
#> 1841     1 0.000
#> 1842     1 0.000
#> 1843     2 0.000
#> 1844     1 0.000
#> 1845     1 0.000
#> 1846     4 0.000
#> 1847     1 0.000
#> 1848     1 0.000
#> 1849     1 0.751
#> 1850     1 0.000
#> 1851     1 0.000
#> 1852     3 0.000
#> 1853     1 0.249
#> 1854     1 0.000
#> 1855     1 1.000
#> 1856     1 0.000
#> 1857     1 1.000
#> 1858     1 0.751
#> 1859     3 0.000
#> 1860     1 0.000
#> 1861     3 0.000
#> 1862     1 0.000
#> 1863     1 0.000
#> 1864     3 0.000
#> 1865     2 0.498
#> 1866     3 0.000
#> 1867     4 0.000
#> 1868     3 0.249
#> 1869     2 0.000
#> 1870     1 0.000
#> 1871     1 0.000
#> 1872     4 1.000
#> 1873     3 1.000
#> 1874     1 0.000
#> 1875     1 1.000
#> 1876     1 0.000
#> 1877     2 1.000
#> 1878     1 0.000
#> 1879     1 1.000
#> 1880     1 0.000
#> 1881     2 0.253
#> 1882     1 1.000
#> 1883     1 0.000
#> 1884     1 0.000
#> 1885     1 1.000
#> 1886     3 0.249
#> 1887     1 0.000
#> 1888     3 0.000
#> 1889     1 1.000
#> 1890     1 1.000
#> 1891     1 1.000
#> 1892     2 1.000
#> 1893     1 0.000
#> 1894     1 0.000
#> 1895     1 0.000
#> 1896     3 1.000
#> 1897     1 0.000
#> 1898     1 1.000
#> 1899     1 0.000
#> 1900     3 0.000
#> 1901     1 1.000
#> 1902     3 0.000
#> 1903     1 1.000
#> 1904     3 1.000
#> 1905     1 0.498
#> 1906     1 0.000
#> 1907     3 0.000
#> 1908     1 1.000
#> 1909     1 1.000
#> 1910     1 0.000
#> 1911     1 1.000
#> 1912     1 1.000
#> 1913     1 1.000
#> 1914     1 0.000
#> 1915     3 0.000
#> 1916     1 1.000
#> 1917     1 0.249
#> 1918     1 1.000
#> 1919     1 0.000
#> 1920     3 0.000
#> 1921     2 1.000
#> 1922     1 1.000
#> 1923     3 0.000
#> 1924     3 0.000
#> 1925     1 0.751
#> 1926     3 0.000
#> 1927     1 1.000
#> 1928     1 1.000
#> 1929     1 1.000
#> 1930     2 1.000
#> 1931     3 1.000
#> 1932     1 1.000
#> 1933     2 0.000
#> 1934     1 1.000
#> 1935     3 0.000
#> 1936     2 1.000
#> 1937     3 0.000
#> 1938     1 0.751
#> 1939     1 1.000
#> 1940     3 0.000
#> 1941     3 0.000
#> 1942     1 0.000
#> 1943     3 1.000
#> 1944     1 1.000
#> 1945     3 0.000
#> 1946     2 0.000
#> 1947     3 0.000
#> 1948     3 1.000
#> 1949     1 1.000
#> 1950     3 0.000
#> 1951     3 1.000
#> 1952     1 1.000
#> 1953     1 0.000
#> 1954     2 1.000
#> 1955     1 1.000
#> 1956     1 1.000
#> 1957     2 1.000
#> 1958     3 0.000
#> 1959     2 0.253
#> 1960     4 0.000
#> 1961     2 1.000
#> 1962     3 0.000
#> 1963     3 1.000
#> 1964     2 0.498
#> 1965     1 1.000
#> 1966     3 0.000
#> 1967     2 0.000
#> 1968     3 0.000
#> 1969     4 1.000
#> 1970     3 0.000
#> 1971     1 1.000
#> 1972     2 1.000
#> 1973     3 0.000
#> 1974     3 0.000
#> 1975     2 0.000
#> 1976     3 0.000
#> 1977     1 0.249
#> 1978     2 0.751
#> 1979     3 0.747
#> 1980     2 0.502
#> 1981     3 0.000
#> 1982     3 0.000
#> 1983     3 1.000
#> 1984     2 1.000
#> 1985     2 0.000
#> 1986     2 1.000
#> 1987     2 0.502
#> 1988     2 0.000
#> 1989     2 0.000
#> 1990     2 1.000
#> 1991     2 0.000
#> 1992     2 0.000
#> 1993     4 1.000
#> 1994     2 1.000
#> 1995     2 0.000
#> 1996     2 0.000
#> 1997     4 0.502
#> 1998     4 0.000
#> 1999     2 0.253
#> 2000     2 1.000
#> 2001     2 0.747
#> 2002     2 0.000
#> 2003     2 1.000
#> 2004     2 1.000
#> 2005     2 0.751
#> 2006     2 0.000
#> 2007     2 1.000
#> 2008     2 0.253
#> 2009     2 1.000
#> 2010     2 1.000
#> 2011     2 0.000
#> 2012     2 1.000
#> 2013     2 0.253
#> 2014     2 1.000
#> 2015     4 0.000
#> 2016     2 0.000
#> 2017     2 1.000
#> 2018     3 0.502
#> 2019     2 1.000
#> 2020     2 1.000
#> 2021     2 1.000
#> 2022     2 0.000
#> 2023     2 1.000
#> 2024     2 1.000
#> 2025     2 1.000
#> 2026     3 0.249
#> 2027     2 0.249
#> 2028     2 1.000
#> 2029     2 0.498
#> 2030     2 0.000
#> 2031     2 1.000
#> 2032     2 1.000
#> 2033     2 1.000
#> 2034     2 1.000
#> 2035     2 0.000
#> 2036     2 0.498
#> 2037     2 0.502
#> 2038     2 0.498
#> 2039     2 0.751
#> 2040     2 0.249
#> 2041     2 1.000
#> 2042     3 0.249
#> 2043     2 0.000
#> 2044     2 1.000
#> 2045     2 1.000
#> 2046     2 1.000
#> 2047     2 0.000
#> 2048     2 0.000
#> 2049     2 0.000
#> 2050     4 0.000
#> 2051     2 0.000
#> 2052     2 1.000
#> 2053     2 1.000
#> 2054     2 1.000
#> 2055     2 1.000
#> 2056     2 0.000
#> 2057     2 0.000
#> 2058     2 0.000
#> 2059     4 0.751
#> 2060     2 0.000
#> 2061     2 0.000
#> 2062     2 1.000
#> 2063     2 0.000
#> 2064     2 0.000
#> 2065     2 1.000
#> 2066     2 0.253
#> 2067     2 0.000
#> 2068     2 0.000
#> 2069     2 0.000
#> 2070     2 0.000
#> 2071     2 0.000
#> 2072     2 0.000
#> 2073     2 1.000
#> 2074     2 1.000
#> 2075     2 1.000
#> 2076     2 1.000
#> 2077     2 0.000
#> 2078     2 0.498
#> 2079     2 0.000
#> 2080     2 1.000
#> 2081     2 0.000
#> 2082     2 1.000
#> 2083     2 0.000
#> 2084     4 1.000
#> 2085     2 0.000
#> 2086     2 0.000
#> 2087     2 0.502
#> 2088     2 1.000
#> 2089     2 0.000
#> 2090     2 1.000
#> 2091     2 0.502
#> 2092     2 0.000
#> 2093     2 0.000
#> 2094     2 0.000
#> 2095     2 0.249
#> 2096     2 0.000
#> 2097     2 0.000
#> 2098     2 0.000
#> 2099     2 0.000
#> 2100     4 0.000
#> 2101     2 1.000
#> 2102     2 0.751
#> 2103     2 0.253
#> 2104     2 0.000
#> 2105     2 0.000
#> 2106     2 0.000
#> 2107     2 0.000
#> 2108     2 0.751
#> 2109     2 1.000
#> 2110     2 1.000
#> 2111     4 1.000
#> 2112     2 0.000
#> 2113     2 1.000
#> 2114     2 0.502
#> 2115     2 1.000
#> 2116     2 0.751
#> 2117     2 1.000
#> 2118     2 0.498
#> 2119     2 1.000
#> 2120     2 1.000
#> 2121     2 0.000
#> 2122     2 0.000
#> 2123     2 1.000
#> 2124     2 1.000
#> 2125     4 0.000
#> 2126     2 0.000
#> 2127     2 1.000
#> 2128     4 0.000
#> 2129     2 0.000
#> 2130     2 1.000
#> 2131     2 0.000
#> 2132     2 0.000
#> 2133     2 0.751
#> 2134     2 1.000
#> 2135     2 0.000
#> 2136     2 0.000
#> 2137     2 0.000
#> 2138     2 0.751
#> 2139     2 0.000
#> 2140     2 0.000
#> 2141     2 0.000
#> 2142     2 0.751
#> 2143     2 0.000
#> 2144     2 0.000
#> 2145     2 0.000
#> 2146     2 0.000
#> 2147     2 0.751
#> 2148     2 0.000
#> 2149     2 0.000
#> 2150     2 0.000
#> 2151     2 0.000
#> 2152     2 0.502
#> 2153     2 0.000
#> 2154     2 0.747
#> 2155     2 1.000
#> 2156     2 0.000
#> 2157     2 0.000
#> 2158     2 0.751
#> 2159     2 0.000
#> 2160     2 0.000
#> 2161     2 0.000
#> 2162     2 0.000
#> 2163     2 0.000
#> 2164     2 0.000
#> 2165     2 1.000
#> 2166     2 0.000
#> 2167     2 0.000
#> 2168     2 0.000
#> 2169     2 0.000
#> 2170     2 0.000
#> 2171     2 0.000
#> 2172     2 0.249
#> 2173     2 0.000
#> 2174     3 0.751
#> 2175     2 0.502
#> 2176     2 0.751
#> 2177     2 0.253
#> 2178     2 0.751
#> 2179     2 0.000
#> 2180     2 0.747
#> 2181     2 0.000
#> 2182     2 0.000
#> 2183     2 1.000
#> 2184     2 1.000
#> 2185     2 0.000
#> 2186     2 1.000
#> 2187     2 0.000
#> 2188     2 0.000
#> 2189     2 1.000
#> 2190     4 0.000
#> 2191     2 0.000
#> 2192     4 0.000
#> 2193     4 0.751
#> 2194     3 0.000
#> 2195     2 0.000
#> 2196     4 1.000
#> 2197     2 1.000
#> 2198     2 1.000
#> 2199     2 0.000
#> 2200     2 0.000
#> 2201     2 1.000
#> 2202     2 1.000
#> 2203     2 0.000
#> 2204     2 1.000
#> 2205     2 1.000
#> 2206     2 0.000
#> 2207     2 1.000
#> 2208     2 0.000
#> 2209     2 1.000
#> 2210     4 0.000
#> 2211     2 1.000
#> 2212     2 0.000
#> 2213     2 1.000
#> 2214     2 0.000
#> 2215     2 0.249
#> 2216     2 0.253
#> 2217     2 1.000
#> 2218     2 0.000
#> 2219     2 1.000
#> 2220     2 1.000
#> 2221     2 0.000
#> 2222     2 0.000
#> 2223     2 0.249
#> 2224     2 0.751
#> 2225     2 0.000
#> 2226     2 1.000
#> 2227     2 0.498
#> 2228     2 1.000
#> 2229     2 1.000
#> 2230     2 0.000
#> 2231     2 0.000
#> 2232     2 0.000
#> 2233     2 0.000
#> 2234     2 0.000
#> 2235     2 0.000
#> 2236     2 0.000
#> 2237     4 0.000
#> 2238     2 0.000
#> 2239     2 0.498
#> 2240     4 1.000
#> 2241     2 0.751
#> 2242     4 1.000
#> 2243     2 0.249
#> 2244     2 0.000
#> 2245     2 0.000
#> 2246     2 0.000
#> 2247     2 0.000
#> 2248     4 0.000
#> 2249     4 0.000
#> 2250     2 0.000
#> 2251     2 0.000
#> 2252     3 0.747
#> 2253     2 1.000
#> 2254     2 0.000
#> 2255     4 0.000
#> 2256     4 0.751
#> 2257     2 0.000
#> 2258     2 0.751
#> 2259     4 0.502
#> 2260     3 0.751
#> 2261     2 1.000
#> 2262     2 0.000
#> 2263     2 0.000
#> 2264     2 0.249
#> 2265     2 0.000
#> 2266     3 0.253
#> 2267     2 1.000
#> 2268     2 0.000
#> 2269     3 1.000
#> 2270     2 0.000
#> 2271     2 0.000
#> 2272     2 1.000
#> 2273     4 0.000
#> 2274     2 0.000
#> 2275     4 0.000
#> 2276     2 0.000
#> 2277     2 0.000
#> 2278     3 1.000
#> 2279     3 0.498
#> 2280     4 0.000
#> 2281     2 0.000
#> 2282     2 0.000
#> 2283     4 0.000
#> 2284     2 0.000
#> 2285     2 0.000
#> 2286     2 0.000
#> 2287     4 0.000
#> 2288     3 1.000
#> 2289     4 0.747
#> 2290     2 0.000
#> 2291     2 0.000
#> 2292     3 1.000
#> 2293     2 0.498
#> 2294     2 0.000
#> 2295     4 0.000
#> 2296     2 0.000
#> 2297     2 0.000
#> 2298     4 0.502
#> 2299     1 1.000
#> 2300     4 0.000
#> 2301     4 0.000
#> 2302     4 0.000
#> 2303     4 0.000
#> 2304     2 0.000
#> 2305     4 0.000
#> 2306     2 0.747
#> 2307     4 0.000
#> 2308     4 0.000
#> 2309     4 0.000
#> 2310     2 0.000
#> 2311     4 0.000
#> 2312     4 1.000
#> 2313     2 0.000
#> 2314     4 0.000
#> 2315     4 0.000
#> 2316     4 1.000
#> 2317     1 1.000
#> 2318     2 0.000
#> 2319     4 0.000
#> 2320     2 0.000
#> 2321     4 0.000
#> 2322     2 0.000
#> 2323     2 0.000
#> 2324     3 0.751
#> 2325     2 0.000
#> 2326     2 0.000
#> 2327     2 1.000
#> 2328     2 0.000
#> 2329     4 0.000
#> 2330     2 0.000
#> 2331     2 0.000
#> 2332     2 0.000
#> 2333     2 0.000
#> 2334     2 0.000
#> 2335     3 0.751
#> 2336     4 0.000
#> 2337     4 0.000
#> 2338     3 0.498
#> 2339     2 0.000
#> 2340     4 0.751
#> 2341     3 0.000
#> 2342     3 0.751
#> 2343     2 0.000
#> 2344     2 0.000
#> 2345     2 1.000
#> 2346     2 0.000
#> 2347     2 0.000
#> 2348     2 0.000
#> 2349     2 0.000
#> 2350     2 0.000
#> 2351     4 0.000
#> 2352     2 1.000
#> 2353     2 0.000
#> 2354     2 0.000
#> 2355     2 0.000
#> 2356     2 1.000
#> 2357     4 0.000
#> 2358     2 0.253
#> 2359     2 0.751
#> 2360     2 1.000
#> 2361     2 1.000
#> 2362     2 0.000
#> 2363     2 0.000
#> 2364     2 1.000
#> 2365     2 0.000
#> 2366     2 0.751
#> 2367     2 0.249
#> 2368     2 1.000
#> 2369     2 1.000
#> 2370     2 1.000
#> 2371     2 0.000
#> 2372     2 0.000
#> 2373     2 0.000
#> 2374     2 0.498
#> 2375     2 0.249
#> 2376     2 0.000
#> 2377     2 0.000
#> 2378     2 0.000
#> 2379     2 0.000
#> 2380     2 0.498
#> 2381     2 1.000
#> 2382     2 0.000
#> 2383     2 0.000
#> 2384     2 0.000
#> 2385     2 1.000
#> 2386     2 0.000
#> 2387     2 0.000
#> 2388     2 1.000
#> 2389     2 0.000
#> 2390     4 0.000
#> 2391     2 0.502
#> 2392     2 0.000
#> 2393     2 0.000
#> 2394     2 1.000
#> 2395     2 0.249
#> 2396     2 0.000
#> 2397     2 0.000
#> 2398     2 1.000
#> 2399     4 0.000
#> 2400     2 0.249
#> 2401     4 1.000
#> 2402     3 0.751
#> 2403     1 1.000
#> 2404     2 0.000
#> 2405     2 0.000
#> 2406     2 1.000
#> 2407     2 1.000
#> 2408     2 0.747
#> 2409     2 0.502
#> 2410     2 0.249
#> 2411     2 0.000
#> 2412     2 0.000
#> 2413     2 0.000
#> 2414     4 0.000
#> 2415     2 0.000
#> 2416     2 0.000
#> 2417     2 0.000
#> 2418     2 0.000
#> 2419     4 0.000
#> 2420     1 1.000
#> 2421     2 0.000
#> 2422     2 1.000
#> 2423     3 0.751
#> 2424     2 1.000
#> 2425     2 0.751
#> 2426     2 1.000
#> 2427     2 0.000
#> 2428     4 1.000
#> 2429     2 0.000
#> 2430     2 0.000
#> 2431     2 0.000
#> 2432     2 0.000
#> 2433     4 0.751
#> 2434     3 0.498
#> 2435     1 0.249
#> 2436     2 0.502
#> 2437     4 1.000
#> 2438     3 1.000
#> 2439     3 0.751
#> 2440     4 1.000
#> 2441     4 0.253
#> 2442     1 0.000
#> 2443     3 1.000
#> 2444     3 0.249
#> 2445     4 0.000
#> 2446     2 0.000
#> 2447     2 0.000
#> 2448     2 0.000
#> 2449     2 0.000
#> 2450     2 0.000
#> 2451     2 0.751
#> 2452     2 0.253
#> 2453     2 1.000
#> 2454     2 1.000
#> 2455     2 0.000
#> 2456     2 0.000
#> 2457     2 0.000
#> 2458     2 0.751
#> 2459     2 0.000
#> 2460     2 1.000
#> 2461     2 0.000
#> 2462     2 1.000
#> 2463     2 0.000
#> 2464     2 1.000
#> 2465     2 0.249
#> 2466     2 0.253
#> 2467     2 1.000
#> 2468     2 0.498
#> 2469     2 0.249
#> 2470     2 1.000
#> 2471     3 0.249
#> 2472     2 0.253
#> 2473     2 0.249
#> 2474     2 1.000
#> 2475     2 0.000
#> 2476     2 0.498
#> 2477     2 0.751
#> 2478     2 0.000
#> 2479     2 0.249
#> 2480     2 1.000
#> 2481     2 0.000
#> 2482     2 0.000
#> 2483     2 1.000
#> 2484     2 0.000
#> 2485     2 0.498
#> 2486     2 1.000
#> 2487     2 1.000
#> 2488     2 1.000
#> 2489     2 0.502
#> 2490     2 0.249
#> 2491     2 1.000
#> 2492     2 0.000
#> 2493     2 0.747
#> 2494     2 1.000
#> 2495     2 0.000
#> 2496     2 0.000
#> 2497     2 0.000
#> 2498     2 0.000
#> 2499     2 0.000
#> 2500     2 0.000
#> 2501     2 0.000
#> 2502     2 0.000
#> 2503     2 0.000
#> 2504     2 0.000
#> 2505     2 0.253
#> 2506     2 0.000
#> 2507     2 0.000
#> 2508     4 1.000
#> 2509     3 0.502
#> 2510     2 0.249
#> 2511     4 1.000
#> 2512     2 0.000
#> 2513     2 1.000
#> 2514     2 0.000
#> 2515     2 0.000
#> 2516     2 0.000
#> 2517     2 0.249
#> 2518     2 0.000
#> 2519     2 0.249
#> 2520     2 0.000
#> 2521     2 0.000
#> 2522     2 1.000
#> 2523     2 0.000
#> 2524     2 0.498
#> 2525     2 0.000
#> 2526     2 0.000
#> 2527     2 0.000
#> 2528     2 0.000
#> 2529     2 0.751
#> 2530     2 0.000
#> 2531     2 0.000
#> 2532     2 0.000
#> 2533     2 0.000
#> 2534     4 1.000
#> 2535     2 0.000
#> 2536     3 0.000
#> 2537     2 0.000
#> 2538     2 0.751
#> 2539     2 0.249
#> 2540     4 0.000
#> 2541     2 0.502
#> 2542     2 0.000
#> 2543     2 0.000
#> 2544     2 0.000
#> 2545     2 1.000
#> 2546     2 0.000
#> 2547     2 0.000
#> 2548     2 0.502
#> 2549     4 0.000
#> 2550     2 0.000
#> 2551     4 0.000
#> 2552     4 0.000
#> 2553     4 0.000
#> 2554     4 0.000
#> 2555     2 0.000
#> 2556     3 0.751
#> 2557     2 0.249
#> 2558     4 0.000
#> 2559     2 0.000
#> 2560     2 0.000
#> 2561     3 0.000
#> 2562     2 0.249
#> 2563     4 0.751
#> 2564     2 0.000
#> 2565     2 0.000
#> 2566     3 0.000
#> 2567     2 0.000
#> 2568     2 0.000
#> 2569     2 0.000
#> 2570     2 0.000
#> 2571     2 0.000
#> 2572     4 0.000
#> 2573     4 0.000
#> 2574     4 1.000
#> 2575     4 0.751
#> 2576     4 0.502
#> 2577     2 0.000
#> 2578     2 0.000
#> 2579     2 0.000
#> 2580     2 0.249
#> 2581     2 0.000
#> 2582     2 0.000
#> 2583     2 0.000
#> 2584     2 0.000
#> 2585     2 0.000
#> 2586     2 0.000
#> 2587     2 0.000
#> 2588     4 0.000
#> 2589     2 1.000
#> 2590     2 1.000
#> 2591     4 0.000
#> 2592     2 1.000
#> 2593     2 1.000
#> 2594     2 1.000
#> 2595     2 1.000
#> 2596     2 1.000
#> 2597     2 1.000
#> 2598     2 1.000
#> 2599     2 1.000
#> 2600     2 1.000
#> 2601     2 1.000
#> 2602     2 1.000
#> 2603     2 1.000
#> 2604     2 1.000
#> 2605     2 1.000
#> 2606     4 0.000
#> 2607     2 1.000
#> 2608     2 1.000
#> 2609     4 0.000
#> 2610     4 0.000
#> 2611     2 1.000
#> 2612     2 0.000
#> 2613     2 1.000
#> 2614     2 0.000
#> 2615     2 0.000
#> 2616     4 0.000
#> 2617     2 1.000
#> 2618     2 1.000
#> 2619     4 0.000
#> 2620     4 1.000
#> 2621     2 1.000
#> 2622     2 1.000
#> 2623     4 0.000
#> 2624     2 0.751
#> 2625     2 1.000
#> 2626     4 0.000
#> 2627     4 0.000
#> 2628     4 0.000
#> 2629     1 1.000
#> 2630     4 0.000
#> 2631     2 0.000
#> 2632     2 0.000
#> 2633     2 1.000
#> 2634     2 1.000
#> 2635     2 1.000
#> 2636     2 0.000
#> 2637     2 0.502
#> 2638     2 0.000
#> 2639     2 1.000
#> 2640     2 0.751
#> 2641     2 1.000
#> 2642     3 0.000
#> 2643     2 1.000
#> 2644     4 1.000
#> 2645     2 0.000
#> 2646     2 0.000
#> 2647     2 0.751
#> 2648     2 0.000
#> 2649     3 0.000
#> 2650     2 0.000
#> 2651     1 0.000
#> 2652     2 0.000
#> 2653     2 0.000
#> 2654     2 0.498
#> 2655     2 0.249
#> 2656     2 0.000
#> 2657     4 0.000
#> 2658     2 0.000
#> 2659     2 0.000
#> 2660     2 0.000
#> 2661     2 0.000
#> 2662     2 0.747
#> 2663     2 0.000
#> 2664     3 0.751
#> 2665     4 1.000
#> 2666     2 0.000
#> 2667     3 0.249
#> 2668     2 1.000
#> 2669     2 1.000
#> 2670     4 0.000
#> 2671     2 0.000
#> 2672     1 0.000
#> 2673     4 0.249
#> 2674     2 0.502
#> 2675     3 0.751
#> 2676     4 1.000
#> 2677     2 0.000
#> 2678     3 0.751
#> 2679     1 0.000
#> 2680     4 0.000
#> 2681     1 0.000
#> 2682     2 1.000
#> 2683     1 1.000
#> 2684     1 0.000
#> 2685     1 0.000
#> 2686     2 1.000
#> 2687     2 1.000
#> 2688     2 1.000
#> 2689     2 0.751
#> 2690     3 1.000
#> 2691     2 0.000
#> 2692     2 0.000
#> 2693     2 1.000
#> 2694     2 1.000
#> 2695     4 0.000
#> 2696     2 0.000
#> 2697     3 0.000
#> 2698     2 0.502
#> 2699     2 0.751
#> 2700     4 0.000
#> 2701     2 0.751
#> 2702     2 1.000
#> 2703     1 1.000
#> 2704     2 0.000
#> 2705     2 0.249
#> 2706     3 0.498
#> 2707     4 0.000
#> 2708     2 1.000
#> 2709     4 0.000
#> 2710     4 0.000
#> 2711     2 0.751
#> 2712     1 1.000
#> 2713     4 0.751
#> 2714     4 0.000
#> 2715     2 0.000
#> 2716     2 1.000
#> 2717     4 0.000
#> 2718     4 0.000
#> 2719     4 0.000
#> 2720     4 0.000
#> 2721     2 0.000
#> 2722     2 1.000
#> 2723     4 1.000
#> 2724     2 1.000
#> 2725     4 0.000
#> 2726     1 0.249
#> 2727     4 0.000
#> 2728     4 0.000
#> 2729     1 1.000
#> 2730     4 1.000
#> 2731     2 0.502
#> 2732     2 0.249
#> 2733     4 0.498
#> 2734     2 0.000
#> 2735     4 1.000
#> 2736     4 0.000
#> 2737     4 0.747
#> 2738     4 0.000
#> 2739     1 1.000
#> 2740     4 1.000
#> 2741     1 0.000
#> 2742     3 1.000
#> 2743     2 0.000
#> 2744     2 1.000
#> 2745     2 0.000
#> 2746     4 0.249
#> 2747     1 0.249
#> 2748     4 0.249
#> 2749     4 0.000
#> 2750     4 0.253
#> 2751     4 0.498
#> 2752     1 0.000
#> 2753     2 0.000
#> 2754     2 0.000
#> 2755     4 0.751
#> 2756     4 0.000
#> 2757     4 0.000
#> 2758     2 0.751
#> 2759     2 1.000
#> 2760     2 1.000
#> 2761     2 0.249
#> 2762     2 1.000
#> 2763     2 0.249
#> 2764     2 0.249
#> 2765     2 1.000
#> 2766     4 0.000
#> 2767     4 0.000
#> 2768     2 1.000
#> 2769     2 1.000
#> 2770     2 1.000
#> 2771     2 0.502
#> 2772     2 0.751
#> 2773     2 0.000
#> 2774     2 1.000
#> 2775     2 0.253
#> 2776     2 1.000
#> 2777     2 0.000
#> 2778     2 0.000
#> 2779     2 1.000
#> 2780     2 0.751
#> 2781     2 0.000
#> 2782     2 1.000
#> 2783     2 1.000
#> 2784     2 0.747
#> 2785     2 1.000
#> 2786     4 1.000
#> 2787     2 1.000
#> 2788     4 0.000
#> 2789     2 1.000
#> 2790     4 0.000
#> 2791     4 0.000
#> 2792     2 1.000
#> 2793     4 0.000
#> 2794     4 0.000
#> 2795     2 1.000
#> 2796     2 1.000
#> 2797     2 0.000
#> 2798     2 0.249
#> 2799     2 0.000
#> 2800     2 0.498
#> 2801     2 0.751
#> 2802     2 0.000
#> 2803     2 1.000
#> 2804     2 0.000
#> 2805     2 1.000
#> 2806     2 1.000
#> 2807     2 1.000
#> 2808     2 1.000
#> 2809     2 1.000
#> 2810     2 0.249
#> 2811     2 1.000
#> 2812     2 0.000
#> 2813     2 0.751
#> 2814     2 0.498
#> 2815     2 0.000
#> 2816     2 0.000
#> 2817     4 0.000
#> 2818     4 0.000
#> 2819     4 0.000
#> 2820     4 0.000
#> 2821     2 0.751
#> 2822     2 0.751
#> 2823     4 0.000
#> 2824     2 0.000
#> 2825     2 0.498
#> 2826     2 0.751
#> 2827     2 0.502
#> 2828     2 0.751
#> 2829     2 0.253
#> 2830     2 0.000
#> 2831     2 0.751
#> 2832     2 0.751
#> 2833     2 1.000
#> 2834     2 0.000
#> 2835     2 1.000
#> 2836     2 1.000
#> 2837     2 0.751
#> 2838     2 0.000
#> 2839     2 1.000
#> 2840     2 0.751
#> 2841     2 1.000
#> 2842     2 0.751
#> 2843     2 0.000
#> 2844     2 0.000
#> 2845     2 0.000
#> 2846     2 0.502
#> 2847     2 0.000
#> 2848     2 0.000
#> 2849     2 0.000
#> 2850     2 1.000
#> 2851     2 1.000
#> 2852     2 0.000
#> 2853     4 0.000
#> 2854     4 1.000
#> 2855     4 0.000
#> 2856     4 0.000
#> 2857     2 0.751
#> 2858     4 1.000
#> 2859     2 0.502
#> 2860     2 1.000
#> 2861     2 0.502
#> 2862     2 1.000
#> 2863     2 0.000
#> 2864     2 0.000
#> 2865     2 0.000
#> 2866     2 0.498
#> 2867     2 0.751
#> 2868     2 0.000
#> 2869     2 0.000
#> 2870     2 1.000
#> 2871     2 0.751
#> 2872     2 1.000
#> 2873     2 1.000
#> 2874     2 1.000
#> 2875     2 0.000
#> 2876     2 1.000
#> 2877     2 0.000
#> 2878     2 0.498
#> 2879     4 0.000
#> 2880     2 0.502
#> 2881     2 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans     2168             1.90e-307 2
#> ATC:skmeans     1745             1.06e-316 3
#> ATC:skmeans     1417             6.08e-269 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node01

Parent node: Node0. Child nodes: Node011 , Node012 , Node013 , Node014 , Node021 , Node022 , Node023 , Node031 , Node032 , Node033 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["01"]

A summary of res and all the functions that can be applied to it:

res
#> A 'DownSamplingConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 10389 rows and 500 columns, randomly sampled from 1273 columns.
#>   Top rows (983) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'DownSamplingConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-01-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-01-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2     1           0.995       0.998         0.4763 0.524   0.524
#> 3 3     1           0.969       0.984         0.3815 0.802   0.627
#> 4 4     1           0.972       0.989         0.0869 0.918   0.769

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

get_classes(res, k = 2)
#>      class     p
#> 1        2 1.000
#> 2        2 1.000
#> 3        2 0.000
#> 4        2 1.000
#> 5        1 0.000
#> 6        2 1.000
#> 7        2 1.000
#> 8        2 1.000
#> 9        1 0.000
#> 10       2 1.000
#> 11       2 1.000
#> 12       2 1.000
#> 13       2 1.000
#> 14       2 0.751
#> 15       1 0.000
#> 16       2 1.000
#> 17       1 0.000
#> 18       2 1.000
#> 19       2 1.000
#> 20       2 1.000
#> 21       1 0.751
#> 22       1 1.000
#> 23       2 1.000
#> 24       1 0.000
#> 25       1 0.000
#> 26       1 0.000
#> 27       2 1.000
#> 28       1 0.000
#> 29       1 0.000
#> 30       1 0.000
#> 31       2 1.000
#> 32       1 0.253
#> 33       1 0.000
#> 34       1 0.000
#> 35       1 0.000
#> 36       1 0.000
#> 37       1 0.000
#> 38       2 0.751
#> 39       2 1.000
#> 40       2 1.000
#> 41       1 0.000
#> 42       1 0.000
#> 43       1 0.000
#> 44       1 1.000
#> 45       1 0.000
#> 46       1 0.000
#> 47       1 0.000
#> 48       1 0.000
#> 49       1 0.000
#> 50       1 0.000
#> 51       1 0.000
#> 52       1 0.000
#> 53       1 0.000
#> 54       2 1.000
#> 55       1 0.253
#> 56       1 0.000
#> 57       1 0.000
#> 58       1 0.000
#> 59       1 0.000
#> 60       1 0.000
#> 61       1 0.000
#> 62       1 0.000
#> 63       1 0.000
#> 64       1 1.000
#> 65       1 0.000
#> 66       2 1.000
#> 67       2 1.000
#> 68       2 0.502
#> 69       1 0.000
#> 70       1 0.000
#> 71       1 0.000
#> 72       1 0.000
#> 73       1 0.000
#> 74       1 0.000
#> 75       1 0.000
#> 76       2 1.000
#> 77       1 0.000
#> 78       1 0.000
#> 79       1 0.000
#> 80       2 1.000
#> 81       1 1.000
#> 82       1 0.000
#> 83       1 0.751
#> 84       1 0.000
#> 85       1 0.000
#> 86       1 0.000
#> 87       1 0.000
#> 88       2 1.000
#> 89       2 1.000
#> 90       2 1.000
#> 91       2 1.000
#> 92       1 0.000
#> 93       1 0.000
#> 94       1 0.000
#> 95       1 0.000
#> 96       1 0.000
#> 97       1 0.000
#> 98       1 0.000
#> 99       1 0.000
#> 100      1 0.000
#> 101      1 0.000
#> 102      1 0.000
#> 103      1 0.000
#> 104      1 0.000
#> 105      1 0.000
#> 106      1 0.000
#> 107      1 0.000
#> 108      1 0.000
#> 109      1 0.000
#> 110      1 0.000
#> 111      1 0.000
#> 112      1 0.000
#> 113      1 0.000
#> 114      1 0.000
#> 115      1 0.000
#> 116      1 0.000
#> 117      1 0.000
#> 118      1 0.000
#> 119      1 0.000
#> 120      1 0.000
#> 121      1 0.000
#> 122      1 0.000
#> 123      1 0.000
#> 124      1 0.000
#> 125      1 0.000
#> 126      1 0.000
#> 127      1 0.000
#> 128      1 0.000
#> 129      1 0.000
#> 130      1 0.000
#> 131      1 0.000
#> 132      1 0.000
#> 133      1 0.000
#> 134      1 0.000
#> 135      1 0.000
#> 136      1 0.000
#> 137      1 0.000
#> 138      1 0.000
#> 139      1 0.000
#> 140      1 0.000
#> 141      1 0.000
#> 142      1 0.000
#> 143      1 0.000
#> 144      1 0.000
#> 145      1 0.000
#> 146      1 0.000
#> 147      1 0.000
#> 148      1 0.000
#> 149      1 0.000
#> 150      1 0.000
#> 151      1 0.000
#> 152      1 0.000
#> 153      1 0.000
#> 154      1 0.000
#> 155      1 0.000
#> 156      1 0.000
#> 157      1 0.000
#> 158      1 0.000
#> 159      1 0.000
#> 160      1 0.000
#> 161      1 0.000
#> 162      1 0.000
#> 163      1 0.000
#> 164      1 0.000
#> 165      1 0.000
#> 166      1 0.000
#> 167      1 0.000
#> 168      1 0.000
#> 169      1 0.000
#> 170      1 0.000
#> 171      1 0.000
#> 172      1 0.000
#> 173      1 0.000
#> 174      1 0.000
#> 175      1 0.000
#> 176      1 0.000
#> 177      1 0.000
#> 178      1 0.000
#> 179      1 0.000
#> 180      1 0.000
#> 181      1 0.000
#> 182      1 0.000
#> 183      1 0.000
#> 184      1 0.000
#> 185      1 0.000
#> 186      1 0.000
#> 187      1 0.000
#> 188      1 0.000
#> 189      1 0.000
#> 190      1 0.000
#> 191      1 0.000
#> 192      1 0.000
#> 193      1 0.000
#> 194      1 0.000
#> 195      1 0.000
#> 196      1 0.000
#> 197      1 0.000
#> 198      1 0.000
#> 199      1 0.000
#> 200      1 0.000
#> 201      1 0.000
#> 202      1 0.000
#> 203      1 0.000
#> 204      1 0.000
#> 205      1 0.000
#> 206      1 0.000
#> 207      1 0.000
#> 208      1 0.000
#> 209      1 0.000
#> 210      1 0.000
#> 211      1 0.000
#> 212      1 0.000
#> 213      1 0.000
#> 214      1 0.000
#> 215      1 0.000
#> 216      1 0.000
#> 217      1 0.000
#> 218      1 0.000
#> 219      1 0.000
#> 220      1 0.000
#> 221      1 0.000
#> 222      1 0.000
#> 223      1 0.000
#> 224      1 0.000
#> 225      1 0.000
#> 226      1 0.000
#> 227      1 0.000
#> 228      1 0.000
#> 229      1 0.000
#> 230      1 0.000
#> 231      1 0.000
#> 232      1 0.000
#> 233      1 0.000
#> 234      1 0.000
#> 235      1 0.000
#> 236      1 0.000
#> 237      1 0.000
#> 238      1 0.000
#> 239      1 0.000
#> 240      1 0.000
#> 241      1 0.000
#> 242      1 0.000
#> 243      1 0.000
#> 244      1 0.000
#> 245      1 0.000
#> 246      1 0.000
#> 247      1 0.000
#> 248      1 0.000
#> 249      1 0.000
#> 250      1 0.000
#> 251      1 0.000
#> 252      1 0.000
#> 253      1 0.000
#> 254      1 0.000
#> 255      1 0.000
#> 256      1 0.000
#> 257      1 0.000
#> 258      1 0.000
#> 259      1 0.000
#> 260      1 0.000
#> 261      1 0.000
#> 262      1 0.000
#> 263      1 0.000
#> 264      1 0.000
#> 265      1 0.000
#> 266      1 0.000
#> 267      1 0.000
#> 268      1 0.000
#> 269      1 0.000
#> 270      1 0.000
#> 271      1 0.000
#> 272      1 0.000
#> 273      1 0.000
#> 274      1 0.000
#> 275      1 0.000
#> 276      1 0.000
#> 277      1 0.000
#> 278      1 0.000
#> 279      1 0.000
#> 280      1 0.000
#> 281      1 0.000
#> 282      1 0.000
#> 283      1 0.000
#> 284      1 0.000
#> 285      1 0.000
#> 286      1 0.000
#> 287      1 0.000
#> 288      1 0.000
#> 289      1 0.000
#> 290      1 0.000
#> 291      1 0.000
#> 292      1 0.000
#> 293      1 0.000
#> 294      1 0.000
#> 295      1 0.000
#> 296      1 0.000
#> 297      1 0.000
#> 298      1 0.000
#> 299      1 0.000
#> 300      1 0.000
#> 301      1 0.000
#> 302      1 0.000
#> 303      1 0.000
#> 304      1 0.000
#> 305      1 0.000
#> 306      1 0.000
#> 307      1 0.000
#> 308      1 0.000
#> 309      1 0.000
#> 310      1 0.000
#> 311      1 0.000
#> 312      1 0.000
#> 313      1 0.000
#> 314      1 0.000
#> 315      1 0.000
#> 316      1 0.000
#> 317      1 0.000
#> 318      1 0.000
#> 319      1 0.000
#> 320      1 0.000
#> 321      1 0.000
#> 322      1 0.000
#> 323      2 1.000
#> 324      1 0.000
#> 325      1 0.000
#> 326      1 0.000
#> 327      1 1.000
#> 328      1 0.000
#> 329      1 0.000
#> 330      1 0.000
#> 331      1 0.000
#> 332      1 0.000
#> 333      1 0.000
#> 334      1 0.000
#> 335      1 0.000
#> 336      1 0.000
#> 337      1 0.000
#> 338      1 0.000
#> 339      1 0.000
#> 340      1 0.249
#> 341      2 1.000
#> 342      1 0.000
#> 343      1 0.000
#> 344      1 0.000
#> 345      1 0.000
#> 346      1 0.000
#> 347      1 0.000
#> 348      1 0.000
#> 349      1 0.000
#> 350      2 1.000
#> 351      1 1.000
#> 352      1 0.000
#> 353      1 0.000
#> 354      1 0.000
#> 355      1 0.000
#> 356      2 1.000
#> 357      1 0.000
#> 358      1 0.000
#> 359      1 0.000
#> 360      1 0.000
#> 361      1 0.000
#> 362      1 0.000
#> 363      1 0.000
#> 364      1 0.000
#> 365      1 0.000
#> 366      1 0.000
#> 367      1 1.000
#> 368      1 0.000
#> 369      1 0.000
#> 370      1 0.000
#> 371      1 0.000
#> 372      1 0.000
#> 373      1 0.000
#> 374      1 0.000
#> 375      1 0.000
#> 376      1 0.000
#> 377      1 0.000
#> 378      1 0.000
#> 379      1 0.000
#> 380      1 1.000
#> 381      1 0.000
#> 382      1 0.000
#> 383      1 0.000
#> 384      1 0.000
#> 385      2 1.000
#> 386      1 0.000
#> 387      1 0.000
#> 388      1 0.000
#> 389      1 0.000
#> 390      1 0.000
#> 391      1 0.000
#> 392      1 0.498
#> 393      1 1.000
#> 394      1 1.000
#> 395      1 1.000
#> 396      1 1.000
#> 397      1 0.000
#> 398      1 0.000
#> 399      1 0.000
#> 400      1 0.000
#> 401      1 0.000
#> 402      1 0.000
#> 403      1 0.000
#> 404      1 0.000
#> 405      1 0.000
#> 406      1 0.000
#> 407      1 0.000
#> 408      1 0.000
#> 409      1 0.000
#> 410      1 0.000
#> 411      2 1.000
#> 412      2 1.000
#> 413      2 1.000
#> 414      1 0.000
#> 415      1 0.502
#> 416      1 0.000
#> 417      1 0.000
#> 418      1 0.000
#> 419      1 0.000
#> 420      1 0.000
#> 421      1 0.000
#> 422      1 0.000
#> 423      1 0.000
#> 424      1 0.000
#> 425      1 0.000
#> 426      1 0.000
#> 427      1 0.000
#> 428      1 0.000
#> 429      1 0.253
#> 430      1 0.000
#> 431      1 0.000
#> 432      1 0.000
#> 433      1 1.000
#> 434      1 0.000
#> 435      1 0.000
#> 436      1 0.000
#> 437      1 0.000
#> 438      1 0.000
#> 439      1 0.000
#> 440      1 0.000
#> 441      1 0.000
#> 442      1 0.000
#> 443      1 0.000
#> 444      1 0.000
#> 445      1 0.000
#> 446      1 0.000
#> 447      1 0.000
#> 448      1 0.751
#> 449      1 0.000
#> 450      1 0.000
#> 451      1 0.000
#> 452      1 0.000
#> 453      1 1.000
#> 454      1 1.000
#> 455      1 0.000
#> 456      2 1.000
#> 457      1 0.000
#> 458      1 0.249
#> 459      1 0.000
#> 460      1 0.000
#> 461      1 0.000
#> 462      1 0.000
#> 463      1 0.000
#> 464      1 0.000
#> 465      1 0.000
#> 466      1 0.000
#> 467      1 0.000
#> 468      1 0.000
#> 469      1 0.000
#> 470      1 0.000
#> 471      1 0.000
#> 472      2 0.000
#> 473      2 0.000
#> 474      2 0.000
#> 475      2 0.000
#> 476      2 0.000
#> 477      2 0.000
#> 478      2 0.000
#> 479      2 0.000
#> 480      2 0.000
#> 481      2 0.000
#> 482      2 0.000
#> 483      2 0.000
#> 484      2 0.000
#> 485      2 0.000
#> 486      2 0.000
#> 487      2 0.000
#> 488      2 0.000
#> 489      2 0.000
#> 490      2 0.000
#> 491      2 0.000
#> 492      2 0.000
#> 493      2 0.000
#> 494      2 0.000
#> 495      2 0.000
#> 496      2 0.000
#> 497      2 0.000
#> 498      2 0.000
#> 499      2 0.000
#> 500      2 0.000
#> 501      2 0.000
#> 502      2 0.000
#> 503      2 0.000
#> 504      2 0.000
#> 505      2 0.000
#> 506      1 0.502
#> 507      2 0.000
#> 508      2 0.000
#> 509      2 0.000
#> 510      2 0.000
#> 511      2 0.000
#> 512      2 0.000
#> 513      1 1.000
#> 514      2 0.000
#> 515      2 0.000
#> 516      2 0.000
#> 517      2 0.000
#> 518      2 0.000
#> 519      2 0.000
#> 520      2 0.000
#> 521      1 0.000
#> 522      2 0.000
#> 523      2 0.000
#> 524      2 0.000
#> 525      2 0.000
#> 526      2 0.000
#> 527      2 0.000
#> 528      2 0.000
#> 529      2 0.000
#> 530      2 0.000
#> 531      2 0.000
#> 532      2 0.000
#> 533      2 0.000
#> 534      2 0.000
#> 535      2 0.000
#> 536      2 0.000
#> 537      2 0.000
#> 538      2 0.000
#> 539      2 0.000
#> 540      2 0.000
#> 541      2 0.000
#> 542      2 0.000
#> 543      2 0.000
#> 544      2 0.000
#> 545      2 0.000
#> 546      2 0.000
#> 547      2 0.000
#> 548      2 0.000
#> 549      2 0.000
#> 550      2 0.000
#> 551      2 0.000
#> 552      1 0.000
#> 553      2 0.000
#> 554      2 0.000
#> 555      2 0.000
#> 556      2 0.000
#> 557      2 0.000
#> 558      2 0.000
#> 559      2 0.000
#> 560      2 0.000
#> 561      2 0.000
#> 562      2 0.000
#> 563      2 0.000
#> 564      2 0.000
#> 565      2 0.000
#> 566      2 0.000
#> 567      2 0.000
#> 568      2 0.000
#> 569      2 0.000
#> 570      2 0.000
#> 571      2 0.000
#> 572      2 0.000
#> 573      2 0.000
#> 574      2 0.000
#> 575      2 0.000
#> 576      2 0.000
#> 577      2 0.000
#> 578      2 0.000
#> 579      2 0.000
#> 580      2 0.000
#> 581      2 0.000
#> 582      2 0.000
#> 583      2 0.000
#> 584      2 0.000
#> 585      2 0.000
#> 586      2 0.000
#> 587      1 0.751
#> 588      1 1.000
#> 589      2 0.000
#> 590      2 0.000
#> 591      2 0.000
#> 592      2 0.000
#> 593      2 0.000
#> 594      2 0.000
#> 595      2 0.000
#> 596      2 0.000
#> 597      1 0.000
#> 598      2 0.000
#> 599      2 0.000
#> 600      2 1.000
#> 601      2 0.000
#> 602      2 0.000
#> 603      2 0.000
#> 604      2 0.000
#> 605      2 0.000
#> 606      2 0.000
#> 607      2 0.000
#> 608      2 0.000
#> 609      2 0.000
#> 610      2 0.000
#> 611      2 0.000
#> 612      2 0.000
#> 613      1 0.000
#> 614      1 0.747
#> 615      1 0.000
#> 616      2 0.000
#> 617      2 0.000
#> 618      2 0.000
#> 619      2 0.000
#> 620      1 0.000
#> 621      1 0.000
#> 622      1 0.000
#> 623      2 0.000
#> 624      1 0.000
#> 625      2 0.000
#> 626      1 0.751
#> 627      1 0.000
#> 628      2 0.000
#> 629      2 0.000
#> 630      2 0.000
#> 631      2 0.000
#> 632      2 0.000
#> 633      2 0.000
#> 634      2 0.000
#> 635      1 0.498
#> 636      2 0.000
#> 637      2 0.000
#> 638      1 0.000
#> 639      2 0.000
#> 640      2 0.000
#> 641      2 0.000
#> 642      2 0.000
#> 643      2 0.000
#> 644      2 0.000
#> 645      2 0.000
#> 646      2 1.000
#> 647      2 0.000
#> 648      2 0.000
#> 649      2 0.000
#> 650      2 0.000
#> 651      2 0.000
#> 652      2 0.000
#> 653      2 0.000
#> 654      2 0.000
#> 655      2 0.000
#> 656      2 0.000
#> 657      1 0.000
#> 658      2 0.000
#> 659      2 0.000
#> 660      2 0.000
#> 661      2 0.000
#> 662      2 0.000
#> 663      2 0.000
#> 664      2 0.000
#> 665      2 0.000
#> 666      2 0.000
#> 667      1 0.000
#> 668      2 0.000
#> 669      2 0.000
#> 670      2 0.000
#> 671      2 0.000
#> 672      2 0.000
#> 673      2 0.000
#> 674      2 0.000
#> 675      2 0.000
#> 676      2 0.000
#> 677      2 0.000
#> 678      1 0.000
#> 679      2 0.000
#> 680      1 0.000
#> 681      1 0.000
#> 682      2 0.000
#> 683      2 0.000
#> 684      2 0.000
#> 685      2 0.000
#> 686      2 0.000
#> 687      1 0.000
#> 688      1 0.000
#> 689      2 0.000
#> 690      2 0.000
#> 691      1 0.000
#> 692      2 0.000
#> 693      1 0.000
#> 694      1 0.000
#> 695      1 0.000
#> 696      2 0.000
#> 697      2 0.000
#> 698      2 0.000
#> 699      2 0.000
#> 700      2 0.000
#> 701      2 0.000
#> 702      1 0.000
#> 703      1 0.000
#> 704      2 0.000
#> 705      2 0.000
#> 706      2 0.000
#> 707      2 0.000
#> 708      2 0.000
#> 709      2 0.000
#> 710      2 0.000
#> 711      2 0.000
#> 712      2 0.000
#> 713      2 0.000
#> 714      2 0.000
#> 715      2 0.000
#> 716      2 0.000
#> 717      2 0.000
#> 718      2 0.000
#> 719      2 0.000
#> 720      2 0.000
#> 721      2 0.000
#> 722      2 0.000
#> 723      2 0.000
#> 724      2 0.000
#> 725      2 0.000
#> 726      2 0.000
#> 727      2 0.000
#> 728      2 0.000
#> 729      2 0.000
#> 730      2 0.000
#> 731      2 0.000
#> 732      2 0.000
#> 733      2 0.000
#> 734      2 0.000
#> 735      2 0.000
#> 736      2 0.000
#> 737      2 0.000
#> 738      2 0.000
#> 739      2 0.000
#> 740      2 0.000
#> 741      2 0.000
#> 742      2 0.000
#> 743      2 0.000
#> 744      2 0.000
#> 745      2 0.000
#> 746      2 0.000
#> 747      2 0.000
#> 748      2 0.000
#> 749      2 0.000
#> 750      2 0.000
#> 751      2 0.000
#> 752      2 0.000
#> 753      2 0.000
#> 754      2 0.000
#> 755      2 0.000
#> 756      2 0.000
#> 757      2 0.000
#> 758      2 0.000
#> 759      2 0.000
#> 760      2 0.000
#> 761      2 0.000
#> 762      2 0.000
#> 763      2 0.000
#> 764      2 0.000
#> 765      2 0.000
#> 766      2 0.000
#> 767      2 0.000
#> 768      2 0.000
#> 769      2 0.000
#> 770      2 0.000
#> 771      2 0.000
#> 772      2 0.000
#> 773      2 0.000
#> 774      2 0.000
#> 775      2 0.000
#> 776      2 0.000
#> 777      2 0.000
#> 778      2 0.000
#> 779      2 0.000
#> 780      2 0.000
#> 781      2 0.000
#> 782      2 0.000
#> 783      2 0.000
#> 784      2 0.000
#> 785      2 0.000
#> 786      2 0.000
#> 787      2 0.000
#> 788      2 0.000
#> 789      2 0.000
#> 790      2 0.000
#> 791      2 0.000
#> 792      2 0.000
#> 793      2 0.000
#> 794      2 0.000
#> 795      2 0.000
#> 796      2 0.000
#> 797      2 0.000
#> 798      2 0.000
#> 799      2 0.000
#> 800      2 0.000
#> 801      2 0.000
#> 802      2 0.000
#> 803      2 0.000
#> 804      2 0.000
#> 805      2 0.000
#> 806      2 0.000
#> 807      2 0.000
#> 808      2 0.000
#> 809      2 0.000
#> 810      2 0.000
#> 811      2 0.000
#> 812      2 0.000
#> 813      2 0.000
#> 814      2 0.000
#> 815      2 0.000
#> 816      2 0.000
#> 817      1 0.000
#> 818      2 0.000
#> 819      2 0.000
#> 820      2 0.000
#> 821      2 0.000
#> 822      2 0.000
#> 823      2 0.000
#> 824      2 0.000
#> 825      2 0.000
#> 826      2 0.000
#> 827      2 0.000
#> 828      2 0.000
#> 829      2 0.000
#> 830      2 0.000
#> 831      2 0.000
#> 832      2 0.000
#> 833      2 0.000
#> 834      2 0.000
#> 835      2 0.000
#> 836      2 0.000
#> 837      2 0.000
#> 838      2 0.000
#> 839      2 0.000
#> 840      2 0.000
#> 841      2 0.000
#> 842      2 0.000
#> 843      2 0.000
#> 844      2 1.000
#> 845      2 0.000
#> 846      1 0.000
#> 847      1 0.000
#> 848      1 0.000
#> 849      2 0.000
#> 850      2 0.000
#> 851      2 0.000
#> 852      1 0.000
#> 853      2 0.000
#> 854      2 0.000
#> 855      2 0.000
#> 856      2 0.000
#> 857      1 0.000
#> 858      2 0.000
#> 859      2 0.000
#> 860      2 0.000
#> 861      2 0.000
#> 862      2 0.000
#> 863      2 0.000
#> 864      2 0.000
#> 865      2 0.000
#> 866      2 1.000
#> 867      2 0.000
#> 868      2 0.000
#> 869      1 0.000
#> 870      2 0.000
#> 871      2 0.000
#> 872      2 0.000
#> 873      2 0.000
#> 874      1 0.000
#> 875      2 0.000
#> 876      2 0.000
#> 877      2 0.000
#> 878      2 0.000
#> 879      2 0.000
#> 880      2 0.000
#> 881      2 0.000
#> 882      2 0.000
#> 883      2 0.000
#> 884      2 0.000
#> 885      2 0.000
#> 886      2 0.000
#> 887      1 0.249
#> 888      2 0.000
#> 889      2 0.000
#> 890      2 0.000
#> 891      2 0.000
#> 892      2 0.000
#> 893      1 1.000
#> 894      2 0.000
#> 895      1 0.000
#> 896      1 0.000
#> 897      2 0.000
#> 898      2 0.000
#> 899      2 1.000
#> 900      2 0.000
#> 901      2 0.000
#> 902      2 0.000
#> 903      2 0.000
#> 904      2 0.000
#> 905      2 0.000
#> 906      2 0.000
#> 907      2 0.000
#> 908      2 0.000
#> 909      2 0.000
#> 910      1 0.253
#> 911      2 0.000
#> 912      2 0.000
#> 913      2 0.000
#> 914      2 0.000
#> 915      2 0.000
#> 916      2 0.000
#> 917      2 0.000
#> 918      1 0.000
#> 919      1 0.000
#> 920      1 0.000
#> 921      2 0.000
#> 922      2 0.000
#> 923      2 0.000
#> 924      2 0.000
#> 925      2 0.000
#> 926      2 0.000
#> 927      2 0.000
#> 928      2 0.000
#> 929      2 0.000
#> 930      2 0.000
#> 931      2 0.000
#> 932      2 0.000
#> 933      1 0.000
#> 934      2 0.000
#> 935      2 0.000
#> 936      2 0.000
#> 937      2 0.249
#> 938      2 0.000
#> 939      2 0.000
#> 940      2 0.000
#> 941      2 0.000
#> 942      2 0.000
#> 943      2 0.000
#> 944      2 0.000
#> 945      2 0.000
#> 946      2 0.000
#> 947      2 0.000
#> 948      2 0.000
#> 949      2 0.000
#> 950      2 0.000
#> 951      2 0.000
#> 952      2 0.000
#> 953      2 0.000
#> 954      2 0.000
#> 955      2 0.000
#> 956      2 0.000
#> 957      2 0.000
#> 958      1 0.000
#> 959      2 1.000
#> 960      1 0.000
#> 961      1 0.000
#> 962      2 0.000
#> 963      2 0.249
#> 964      2 0.000
#> 965      2 0.000
#> 966      2 0.000
#> 967      2 0.000
#> 968      2 0.000
#> 969      2 0.000
#> 970      2 0.000
#> 971      2 0.000
#> 972      2 0.000
#> 973      2 0.000
#> 974      2 0.000
#> 975      2 0.000
#> 976      2 0.000
#> 977      2 0.000
#> 978      2 0.249
#> 979      1 0.000
#> 980      1 0.000
#> 981      2 0.000
#> 982      2 0.000
#> 983      2 0.000
#> 984      2 0.000
#> 985      2 0.000
#> 986      2 0.000
#> 987      1 0.249
#> 988      2 0.000
#> 989      1 0.000
#> 990      2 0.000
#> 991      2 0.000
#> 992      2 0.000
#> 993      2 0.000
#> 994      2 0.000
#> 995      2 0.000
#> 996      2 0.000
#> 997      1 0.000
#> 998      2 0.000
#> 999      2 1.000
#> 1000     1 0.000
#> 1001     2 0.000
#> 1002     2 0.000
#> 1003     2 0.000
#> 1004     2 0.000
#> 1005     2 0.000
#> 1006     2 0.000
#> 1007     2 0.000
#> 1008     2 0.000
#> 1009     2 0.000
#> 1010     2 0.000
#> 1011     2 0.000
#> 1012     2 0.000
#> 1013     2 0.000
#> 1014     2 0.000
#> 1015     2 0.000
#> 1016     2 0.000
#> 1017     2 0.000
#> 1018     2 0.000
#> 1019     2 0.253
#> 1020     2 0.000
#> 1021     2 0.000
#> 1022     2 0.000
#> 1023     2 0.253
#> 1024     2 0.000
#> 1025     2 0.502
#> 1026     1 0.000
#> 1027     2 0.000
#> 1028     1 0.000
#> 1029     1 0.000
#> 1030     1 0.253
#> 1031     2 0.000
#> 1032     2 0.000
#> 1033     2 0.000
#> 1034     2 0.000
#> 1035     2 0.000
#> 1036     2 0.000
#> 1037     2 0.000
#> 1038     2 0.000
#> 1039     2 0.000
#> 1040     2 0.000
#> 1041     2 0.000
#> 1042     2 0.000
#> 1043     1 0.000
#> 1044     2 0.000
#> 1045     2 0.000
#> 1046     2 0.000
#> 1047     1 0.000
#> 1048     2 0.000
#> 1049     1 0.000
#> 1050     1 0.000
#> 1051     2 0.000
#> 1052     2 0.000
#> 1053     2 0.000
#> 1054     2 0.000
#> 1055     2 0.000
#> 1056     2 0.000
#> 1057     2 0.000
#> 1058     1 0.000
#> 1059     2 0.000
#> 1060     2 0.000
#> 1061     2 0.000
#> 1062     2 1.000
#> 1063     2 0.000
#> 1064     2 0.000
#> 1065     1 0.000
#> 1066     2 0.000
#> 1067     1 0.000
#> 1068     2 0.000
#> 1069     2 0.000
#> 1070     1 0.000
#> 1071     2 0.000
#> 1072     2 0.000
#> 1073     2 0.000
#> 1074     2 0.000
#> 1075     2 0.000
#> 1076     2 0.000
#> 1077     2 0.000
#> 1078     2 0.000
#> 1079     2 0.000
#> 1080     1 0.000
#> 1081     2 0.000
#> 1082     2 0.000
#> 1083     2 0.000
#> 1084     2 0.000
#> 1085     2 0.000
#> 1086     2 0.000
#> 1087     2 0.000
#> 1088     2 0.000
#> 1089     2 0.000
#> 1090     2 0.000
#> 1091     2 0.000
#> 1092     2 0.000
#> 1093     2 0.000
#> 1094     2 0.000
#> 1095     2 0.000
#> 1096     2 0.000
#> 1097     2 0.000
#> 1098     2 0.751
#> 1099     2 0.000
#> 1100     1 0.253
#> 1101     2 0.000
#> 1102     2 0.000
#> 1103     2 0.000
#> 1104     2 0.000
#> 1105     2 0.000
#> 1106     2 0.000
#> 1107     2 0.000
#> 1108     2 0.000
#> 1109     2 0.000
#> 1110     2 0.000
#> 1111     2 0.000
#> 1112     2 0.000
#> 1113     2 0.000
#> 1114     1 0.000
#> 1115     2 0.000
#> 1116     2 0.000
#> 1117     1 0.000
#> 1118     2 0.000
#> 1119     2 0.000
#> 1120     2 0.000
#> 1121     2 0.000
#> 1122     2 0.000
#> 1123     2 0.000
#> 1124     2 0.000
#> 1125     2 0.000
#> 1126     2 0.000
#> 1127     2 0.000
#> 1128     2 0.000
#> 1129     2 0.000
#> 1130     2 0.000
#> 1131     2 0.000
#> 1132     2 0.000
#> 1133     2 0.000
#> 1134     2 0.000
#> 1135     2 0.000
#> 1136     1 0.000
#> 1137     2 0.000
#> 1138     2 0.000
#> 1139     2 0.000
#> 1140     2 0.000
#> 1141     2 0.000
#> 1142     2 0.000
#> 1143     2 0.000
#> 1144     2 0.000
#> 1145     2 0.000
#> 1146     2 0.000
#> 1147     2 0.000
#> 1148     2 0.000
#> 1149     2 0.000
#> 1150     2 0.000
#> 1151     2 0.000
#> 1152     2 0.000
#> 1153     2 0.000
#> 1154     2 0.000
#> 1155     2 0.000
#> 1156     2 1.000
#> 1157     2 0.000
#> 1158     2 0.000
#> 1159     2 0.000
#> 1160     2 0.000
#> 1161     2 0.000
#> 1162     2 0.000
#> 1163     2 0.000
#> 1164     2 0.000
#> 1165     2 0.000
#> 1166     2 0.000
#> 1167     2 0.000
#> 1168     2 0.000
#> 1169     2 0.000
#> 1170     2 0.000
#> 1171     2 0.000
#> 1172     2 0.000
#> 1173     2 0.000
#> 1174     2 0.000
#> 1175     2 0.000
#> 1176     2 0.000
#> 1177     2 0.000
#> 1178     2 0.000
#> 1179     2 0.000
#> 1180     2 0.000
#> 1181     2 0.000
#> 1182     1 0.000
#> 1183     2 0.000
#> 1184     2 0.000
#> 1185     2 0.502
#> 1186     2 0.000
#> 1187     2 0.000
#> 1188     2 0.249
#> 1189     2 0.000
#> 1190     2 0.000
#> 1191     2 0.253
#> 1192     2 0.000
#> 1193     2 0.000
#> 1194     2 0.000
#> 1195     2 0.000
#> 1196     2 0.000
#> 1197     2 0.000
#> 1198     2 0.000
#> 1199     2 0.000
#> 1200     2 0.000
#> 1201     2 1.000
#> 1202     2 0.000
#> 1203     2 0.000
#> 1204     2 0.000
#> 1205     2 0.000
#> 1206     2 0.000
#> 1207     2 0.000
#> 1208     2 0.249
#> 1209     2 0.751
#> 1210     2 0.000
#> 1211     2 0.751
#> 1212     2 0.000
#> 1213     2 0.000
#> 1214     2 0.000
#> 1215     2 0.000
#> 1216     2 0.000
#> 1217     2 0.000
#> 1218     2 0.000
#> 1219     2 0.000
#> 1220     2 0.000
#> 1221     2 0.000
#> 1222     2 0.000
#> 1223     2 0.000
#> 1224     2 0.000
#> 1225     2 0.751
#> 1226     2 0.498
#> 1227     2 0.249
#> 1228     2 0.249
#> 1229     2 0.000
#> 1230     2 0.000
#> 1231     2 0.000
#> 1232     2 0.000
#> 1233     2 0.000
#> 1234     2 0.000
#> 1235     2 0.000
#> 1236     2 0.000
#> 1237     2 0.000
#> 1238     1 0.000
#> 1239     2 0.000
#> 1240     2 0.000
#> 1241     2 0.000
#> 1242     2 0.000
#> 1243     2 0.000
#> 1244     2 0.000
#> 1245     2 0.000
#> 1246     2 0.000
#> 1247     2 0.000
#> 1248     2 0.498
#> 1249     2 0.000
#> 1250     2 0.000
#> 1251     2 0.000
#> 1252     2 0.000
#> 1253     2 0.000
#> 1254     2 0.000
#> 1255     2 1.000
#> 1256     2 0.000
#> 1257     2 0.249
#> 1258     2 0.000
#> 1259     2 0.249
#> 1260     2 0.000
#> 1261     2 0.000
#> 1262     2 0.000
#> 1263     2 0.000
#> 1264     2 0.000
#> 1265     2 0.000
#> 1266     2 0.000
#> 1267     2 0.000
#> 1268     2 0.000
#> 1269     2 0.000
#> 1270     2 0.000
#> 1271     2 0.000
#> 1272     2 0.000
#> 1273     2 0.000

show/hide code output

get_classes(res, k = 3)
#>      class     p
#> 1        2 0.502
#> 2        2 1.000
#> 3        2 0.000
#> 4        2 1.000
#> 5        1 1.000
#> 6        2 1.000
#> 7        2 1.000
#> 8        2 1.000
#> 9        1 1.000
#> 10       2 1.000
#> 11       2 1.000
#> 12       2 1.000
#> 13       2 1.000
#> 14       2 0.498
#> 15       1 0.000
#> 16       2 0.249
#> 17       1 0.498
#> 18       2 0.751
#> 19       2 0.751
#> 20       2 1.000
#> 21       2 1.000
#> 22       2 1.000
#> 23       2 1.000
#> 24       1 0.000
#> 25       1 1.000
#> 26       1 1.000
#> 27       2 1.000
#> 28       1 0.000
#> 29       1 0.000
#> 30       1 0.000
#> 31       2 1.000
#> 32       2 1.000
#> 33       1 0.000
#> 34       1 0.000
#> 35       1 0.000
#> 36       1 0.000
#> 37       1 0.000
#> 38       2 1.000
#> 39       2 1.000
#> 40       2 1.000
#> 41       1 0.000
#> 42       1 1.000
#> 43       1 0.000
#> 44       1 1.000
#> 45       1 0.000
#> 46       1 0.000
#> 47       1 0.000
#> 48       1 0.000
#> 49       1 0.000
#> 50       1 0.000
#> 51       1 0.000
#> 52       1 0.000
#> 53       1 0.000
#> 54       2 0.000
#> 55       1 0.000
#> 56       1 0.000
#> 57       1 0.000
#> 58       1 0.000
#> 59       1 0.000
#> 60       1 0.000
#> 61       1 0.000
#> 62       1 0.000
#> 63       1 0.000
#> 64       2 1.000
#> 65       1 0.000
#> 66       1 1.000
#> 67       2 1.000
#> 68       2 1.000
#> 69       1 0.000
#> 70       1 0.000
#> 71       1 0.000
#> 72       1 0.000
#> 73       1 0.000
#> 74       1 0.000
#> 75       1 0.000
#> 76       2 0.751
#> 77       1 0.000
#> 78       1 0.000
#> 79       1 0.000
#> 80       2 1.000
#> 81       1 1.000
#> 82       1 0.000
#> 83       1 0.000
#> 84       1 0.000
#> 85       1 0.000
#> 86       1 0.000
#> 87       1 0.000
#> 88       2 1.000
#> 89       2 1.000
#> 90       2 1.000
#> 91       2 0.498
#> 92       1 0.000
#> 93       1 0.000
#> 94       1 0.000
#> 95       1 0.000
#> 96       1 0.000
#> 97       1 0.000
#> 98       1 0.000
#> 99       1 0.000
#> 100      1 0.000
#> 101      1 0.000
#> 102      1 0.000
#> 103      1 0.000
#> 104      1 0.000
#> 105      1 0.000
#> 106      1 0.000
#> 107      1 0.000
#> 108      1 0.000
#> 109      1 0.000
#> 110      1 0.000
#> 111      1 0.000
#> 112      1 0.000
#> 113      1 0.000
#> 114      1 0.000
#> 115      1 0.000
#> 116      1 0.000
#> 117      1 0.000
#> 118      1 0.000
#> 119      1 0.000
#> 120      1 0.000
#> 121      1 0.000
#> 122      1 0.000
#> 123      1 0.000
#> 124      1 0.000
#> 125      1 0.000
#> 126      1 0.000
#> 127      1 0.000
#> 128      1 0.000
#> 129      1 0.000
#> 130      1 0.000
#> 131      1 0.000
#> 132      1 0.000
#> 133      1 0.000
#> 134      1 0.000
#> 135      1 0.000
#> 136      1 0.000
#> 137      1 0.000
#> 138      1 0.000
#> 139      1 0.000
#> 140      1 0.000
#> 141      1 0.000
#> 142      1 0.000
#> 143      1 0.000
#> 144      1 0.000
#> 145      1 0.000
#> 146      1 0.000
#> 147      1 0.000
#> 148      1 0.000
#> 149      1 0.000
#> 150      1 0.000
#> 151      1 0.000
#> 152      1 0.000
#> 153      1 0.000
#> 154      1 0.000
#> 155      1 0.000
#> 156      1 0.000
#> 157      1 0.000
#> 158      1 0.000
#> 159      1 0.000
#> 160      1 0.000
#> 161      1 0.000
#> 162      1 0.000
#> 163      1 0.000
#> 164      1 0.000
#> 165      1 0.000
#> 166      1 0.000
#> 167      1 0.000
#> 168      1 0.000
#> 169      1 0.000
#> 170      1 0.000
#> 171      1 0.000
#> 172      1 0.000
#> 173      1 0.000
#> 174      1 0.000
#> 175      1 0.000
#> 176      1 0.000
#> 177      1 0.000
#> 178      1 0.000
#> 179      1 0.000
#> 180      1 0.000
#> 181      1 0.000
#> 182      1 0.000
#> 183      1 0.000
#> 184      1 0.000
#> 185      1 0.000
#> 186      1 0.000
#> 187      1 0.000
#> 188      1 0.000
#> 189      1 0.000
#> 190      1 0.000
#> 191      1 0.000
#> 192      1 0.000
#> 193      1 0.000
#> 194      1 0.000
#> 195      1 0.000
#> 196      1 0.000
#> 197      1 0.000
#> 198      1 0.000
#> 199      1 0.000
#> 200      1 0.000
#> 201      1 0.000
#> 202      1 0.000
#> 203      1 0.000
#> 204      1 0.000
#> 205      1 0.000
#> 206      1 0.000
#> 207      1 0.000
#> 208      1 0.000
#> 209      1 0.000
#> 210      1 0.000
#> 211      1 0.000
#> 212      1 0.000
#> 213      1 0.000
#> 214      1 0.000
#> 215      1 0.000
#> 216      1 0.000
#> 217      1 0.000
#> 218      1 0.000
#> 219      1 0.000
#> 220      1 0.000
#> 221      1 0.000
#> 222      1 0.000
#> 223      1 0.000
#> 224      1 0.000
#> 225      1 0.000
#> 226      1 0.000
#> 227      1 0.000
#> 228      1 0.000
#> 229      1 0.000
#> 230      1 0.000
#> 231      1 0.000
#> 232      1 0.000
#> 233      1 0.000
#> 234      1 0.000
#> 235      1 0.000
#> 236      1 0.000
#> 237      1 0.000
#> 238      1 0.000
#> 239      1 0.000
#> 240      1 0.000
#> 241      1 0.000
#> 242      1 0.000
#> 243      1 0.000
#> 244      1 0.000
#> 245      1 0.000
#> 246      1 0.000
#> 247      1 0.000
#> 248      1 0.000
#> 249      1 0.000
#> 250      1 0.000
#> 251      1 0.000
#> 252      1 0.000
#> 253      1 0.000
#> 254      1 0.000
#> 255      1 0.000
#> 256      1 0.000
#> 257      1 0.000
#> 258      1 0.000
#> 259      1 0.000
#> 260      1 0.000
#> 261      1 0.000
#> 262      1 0.000
#> 263      1 0.000
#> 264      1 0.000
#> 265      1 0.000
#> 266      1 0.000
#> 267      1 0.000
#> 268      1 0.000
#> 269      1 0.000
#> 270      1 0.000
#> 271      1 0.000
#> 272      1 0.000
#> 273      1 0.000
#> 274      1 0.000
#> 275      1 0.000
#> 276      1 0.000
#> 277      1 0.000
#> 278      1 0.000
#> 279      1 0.000
#> 280      1 0.000
#> 281      1 0.000
#> 282      1 0.000
#> 283      1 0.000
#> 284      1 0.000
#> 285      1 0.000
#> 286      1 0.000
#> 287      1 0.000
#> 288      1 0.000
#> 289      1 0.000
#> 290      1 0.000
#> 291      1 0.000
#> 292      1 0.000
#> 293      1 0.000
#> 294      1 0.000
#> 295      1 0.000
#> 296      1 0.000
#> 297      1 0.000
#> 298      1 0.000
#> 299      1 0.000
#> 300      1 0.000
#> 301      1 0.000
#> 302      1 0.000
#> 303      1 0.000
#> 304      1 0.000
#> 305      1 0.000
#> 306      1 0.000
#> 307      1 0.000
#> 308      1 0.000
#> 309      1 0.000
#> 310      1 0.000
#> 311      1 0.000
#> 312      1 0.000
#> 313      1 0.000
#> 314      1 0.000
#> 315      1 0.000
#> 316      1 0.000
#> 317      1 0.000
#> 318      1 0.000
#> 319      1 0.000
#> 320      1 0.000
#> 321      1 0.000
#> 322      1 0.000
#> 323      2 1.000
#> 324      1 0.000
#> 325      1 0.000
#> 326      1 0.000
#> 327      1 1.000
#> 328      1 0.000
#> 329      1 0.000
#> 330      1 0.249
#> 331      1 0.000
#> 332      1 0.000
#> 333      1 0.000
#> 334      1 0.000
#> 335      1 0.000
#> 336      1 0.000
#> 337      1 0.000
#> 338      1 0.000
#> 339      1 0.000
#> 340      1 0.751
#> 341      2 1.000
#> 342      1 0.000
#> 343      1 0.000
#> 344      1 0.000
#> 345      1 0.000
#> 346      1 0.000
#> 347      1 0.000
#> 348      1 0.000
#> 349      1 0.000
#> 350      2 1.000
#> 351      1 1.000
#> 352      1 0.000
#> 353      1 0.000
#> 354      1 0.000
#> 355      1 0.000
#> 356      2 1.000
#> 357      1 0.000
#> 358      1 0.000
#> 359      1 0.000
#> 360      1 0.000
#> 361      1 0.000
#> 362      1 0.000
#> 363      1 0.000
#> 364      1 0.000
#> 365      1 0.000
#> 366      1 0.000
#> 367      1 0.249
#> 368      1 0.000
#> 369      1 0.000
#> 370      1 0.000
#> 371      1 0.000
#> 372      1 0.000
#> 373      1 0.000
#> 374      1 0.000
#> 375      1 0.000
#> 376      1 0.000
#> 377      1 0.000
#> 378      1 0.000
#> 379      1 0.000
#> 380      1 1.000
#> 381      1 0.000
#> 382      1 0.000
#> 383      1 0.000
#> 384      1 0.000
#> 385      2 1.000
#> 386      1 1.000
#> 387      1 0.000
#> 388      1 0.000
#> 389      1 0.000
#> 390      1 0.000
#> 391      1 0.000
#> 392      1 0.751
#> 393      1 1.000
#> 394      1 1.000
#> 395      1 0.249
#> 396      1 1.000
#> 397      1 0.000
#> 398      1 0.000
#> 399      1 0.000
#> 400      1 0.000
#> 401      1 0.000
#> 402      1 0.000
#> 403      1 0.000
#> 404      1 0.000
#> 405      1 0.000
#> 406      1 0.000
#> 407      1 0.000
#> 408      1 0.000
#> 409      1 0.000
#> 410      1 0.000
#> 411      1 1.000
#> 412      2 1.000
#> 413      2 1.000
#> 414      1 0.000
#> 415      1 1.000
#> 416      1 0.000
#> 417      1 0.000
#> 418      1 0.000
#> 419      1 0.000
#> 420      1 0.000
#> 421      1 0.000
#> 422      1 0.000
#> 423      1 0.000
#> 424      1 0.000
#> 425      1 0.000
#> 426      1 0.000
#> 427      1 0.000
#> 428      1 0.000
#> 429      1 1.000
#> 430      1 0.000
#> 431      1 0.000
#> 432      1 0.000
#> 433      1 1.000
#> 434      1 0.000
#> 435      1 0.000
#> 436      1 0.000
#> 437      1 0.000
#> 438      1 0.000
#> 439      1 0.000
#> 440      1 0.000
#> 441      1 0.000
#> 442      1 0.000
#> 443      1 0.000
#> 444      1 0.000
#> 445      1 0.000
#> 446      1 0.000
#> 447      1 0.000
#> 448      1 0.000
#> 449      1 0.000
#> 450      1 0.000
#> 451      1 0.000
#> 452      1 0.000
#> 453      1 1.000
#> 454      1 1.000
#> 455      1 0.000
#> 456      2 1.000
#> 457      1 0.000
#> 458      1 1.000
#> 459      1 0.000
#> 460      1 0.000
#> 461      1 0.000
#> 462      1 0.000
#> 463      1 0.000
#> 464      1 0.000
#> 465      1 0.000
#> 466      1 0.000
#> 467      1 0.000
#> 468      1 0.000
#> 469      1 0.000
#> 470      1 0.000
#> 471      1 0.000
#> 472      3 0.000
#> 473      2 0.000
#> 474      2 0.000
#> 475      2 0.498
#> 476      2 0.000
#> 477      2 0.000
#> 478      2 0.000
#> 479      2 0.000
#> 480      2 0.000
#> 481      2 1.000
#> 482      2 0.000
#> 483      2 0.000
#> 484      2 0.000
#> 485      2 0.000
#> 486      2 0.000
#> 487      2 0.000
#> 488      2 0.000
#> 489      2 0.000
#> 490      2 0.000
#> 491      2 0.000
#> 492      2 0.000
#> 493      2 0.000
#> 494      3 1.000
#> 495      2 0.000
#> 496      2 0.000
#> 497      2 0.000
#> 498      2 0.000
#> 499      2 0.000
#> 500      2 0.000
#> 501      2 0.000
#> 502      2 0.000
#> 503      2 0.000
#> 504      2 0.000
#> 505      2 0.000
#> 506      1 0.000
#> 507      2 0.000
#> 508      2 0.000
#> 509      2 0.000
#> 510      2 0.000
#> 511      2 0.000
#> 512      2 0.000
#> 513      1 0.000
#> 514      2 0.000
#> 515      2 0.000
#> 516      2 0.000
#> 517      2 0.000
#> 518      2 0.000
#> 519      2 0.000
#> 520      2 0.000
#> 521      1 0.000
#> 522      2 0.000
#> 523      2 0.000
#> 524      2 0.000
#> 525      2 0.000
#> 526      2 0.000
#> 527      2 0.000
#> 528      2 0.000
#> 529      2 0.000
#> 530      2 0.000
#> 531      2 0.000
#> 532      2 0.000
#> 533      2 0.000
#> 534      2 0.000
#> 535      3 0.000
#> 536      2 0.000
#> 537      2 0.000
#> 538      2 0.000
#> 539      2 0.000
#> 540      3 0.000
#> 541      2 0.000
#> 542      2 0.000
#> 543      2 0.000
#> 544      2 0.000
#> 545      2 0.000
#> 546      2 0.000
#> 547      2 0.000
#> 548      2 0.000
#> 549      2 0.000
#> 550      2 0.000
#> 551      2 0.000
#> 552      1 0.000
#> 553      3 0.000
#> 554      2 0.000
#> 555      2 0.000
#> 556      2 0.000
#> 557      2 0.000
#> 558      2 0.000
#> 559      2 0.000
#> 560      3 0.000
#> 561      2 0.000
#> 562      2 0.000
#> 563      2 0.000
#> 564      2 0.000
#> 565      2 0.000
#> 566      2 0.000
#> 567      2 0.000
#> 568      2 0.000
#> 569      2 0.000
#> 570      2 0.000
#> 571      2 0.000
#> 572      2 0.000
#> 573      2 0.000
#> 574      3 0.000
#> 575      2 0.000
#> 576      2 0.000
#> 577      2 0.502
#> 578      2 0.000
#> 579      2 0.000
#> 580      2 0.000
#> 581      2 0.000
#> 582      2 0.000
#> 583      2 0.000
#> 584      2 0.000
#> 585      2 0.000
#> 586      2 0.000
#> 587      1 0.000
#> 588      1 0.000
#> 589      2 0.000
#> 590      2 0.000
#> 591      2 0.000
#> 592      2 0.000
#> 593      2 0.000
#> 594      2 0.000
#> 595      2 0.000
#> 596      2 0.000
#> 597      1 0.000
#> 598      2 1.000
#> 599      2 0.000
#> 600      2 1.000
#> 601      2 0.000
#> 602      2 1.000
#> 603      2 0.000
#> 604      2 0.000
#> 605      2 1.000
#> 606      2 0.502
#> 607      2 0.000
#> 608      2 0.000
#> 609      2 0.000
#> 610      2 0.000
#> 611      2 0.000
#> 612      2 0.000
#> 613      1 0.000
#> 614      2 1.000
#> 615      1 0.000
#> 616      2 0.000
#> 617      2 0.000
#> 618      2 0.000
#> 619      2 0.000
#> 620      1 0.000
#> 621      1 0.000
#> 622      1 0.000
#> 623      2 0.000
#> 624      1 0.000
#> 625      2 0.000
#> 626      1 0.000
#> 627      1 0.000
#> 628      2 1.000
#> 629      2 0.000
#> 630      2 0.249
#> 631      2 0.000
#> 632      2 0.000
#> 633      2 1.000
#> 634      2 0.000
#> 635      1 1.000
#> 636      2 0.000
#> 637      2 0.000
#> 638      1 0.000
#> 639      2 0.000
#> 640      2 0.000
#> 641      2 0.000
#> 642      2 0.751
#> 643      2 0.000
#> 644      2 0.000
#> 645      2 1.000
#> 646      2 1.000
#> 647      2 1.000
#> 648      3 0.000
#> 649      2 0.000
#> 650      2 0.000
#> 651      2 1.000
#> 652      2 1.000
#> 653      2 0.000
#> 654      2 0.751
#> 655      2 0.000
#> 656      2 0.000
#> 657      1 0.000
#> 658      2 0.000
#> 659      2 0.000
#> 660      3 0.000
#> 661      2 0.000
#> 662      2 0.751
#> 663      2 1.000
#> 664      2 0.000
#> 665      2 0.000
#> 666      2 0.751
#> 667      1 0.000
#> 668      2 0.000
#> 669      2 0.000
#> 670      2 0.000
#> 671      2 0.000
#> 672      2 0.000
#> 673      2 0.000
#> 674      2 1.000
#> 675      2 0.000
#> 676      2 0.000
#> 677      2 0.000
#> 678      1 0.000
#> 679      2 0.000
#> 680      1 0.000
#> 681      1 0.000
#> 682      2 1.000
#> 683      2 0.502
#> 684      2 0.000
#> 685      2 0.249
#> 686      2 0.000
#> 687      1 0.000
#> 688      1 0.000
#> 689      2 0.000
#> 690      2 0.249
#> 691      1 0.000
#> 692      2 1.000
#> 693      1 0.000
#> 694      1 0.000
#> 695      1 0.000
#> 696      2 1.000
#> 697      2 1.000
#> 698      2 1.000
#> 699      2 0.000
#> 700      2 1.000
#> 701      2 1.000
#> 702      1 0.000
#> 703      1 0.000
#> 704      3 0.000
#> 705      3 0.000
#> 706      3 0.000
#> 707      3 0.000
#> 708      3 0.000
#> 709      3 0.000
#> 710      3 0.000
#> 711      3 0.000
#> 712      3 0.000
#> 713      3 0.000
#> 714      3 0.000
#> 715      3 0.000
#> 716      3 0.000
#> 717      3 0.000
#> 718      3 0.000
#> 719      3 0.000
#> 720      3 0.000
#> 721      3 0.000
#> 722      3 0.000
#> 723      3 0.000
#> 724      3 0.000
#> 725      3 0.000
#> 726      3 0.000
#> 727      3 0.000
#> 728      3 0.000
#> 729      3 0.000
#> 730      3 0.000
#> 731      3 0.000
#> 732      3 0.000
#> 733      3 0.000
#> 734      3 0.000
#> 735      3 0.000
#> 736      3 0.000
#> 737      3 0.000
#> 738      3 0.000
#> 739      3 0.000
#> 740      3 0.000
#> 741      3 0.000
#> 742      3 0.000
#> 743      3 0.000
#> 744      3 0.000
#> 745      2 1.000
#> 746      3 0.000
#> 747      3 0.000
#> 748      3 0.000
#> 749      3 0.000
#> 750      3 0.000
#> 751      3 0.000
#> 752      3 0.000
#> 753      3 0.000
#> 754      3 0.000
#> 755      3 0.000
#> 756      3 0.000
#> 757      3 0.000
#> 758      3 0.000
#> 759      3 0.000
#> 760      3 0.000
#> 761      3 0.000
#> 762      3 0.000
#> 763      3 0.000
#> 764      3 0.000
#> 765      3 0.000
#> 766      3 0.000
#> 767      3 0.000
#> 768      3 0.000
#> 769      3 0.000
#> 770      3 0.000
#> 771      3 0.000
#> 772      3 0.000
#> 773      3 0.000
#> 774      3 0.000
#> 775      3 0.000
#> 776      3 0.000
#> 777      3 0.000
#> 778      3 0.000
#> 779      3 0.000
#> 780      3 0.000
#> 781      3 0.000
#> 782      3 0.000
#> 783      3 0.000
#> 784      3 0.000
#> 785      3 0.000
#> 786      2 1.000
#> 787      3 1.000
#> 788      2 1.000
#> 789      2 1.000
#> 790      3 0.000
#> 791      3 1.000
#> 792      3 1.000
#> 793      3 1.000
#> 794      3 0.000
#> 795      3 0.000
#> 796      3 0.000
#> 797      3 0.000
#> 798      3 0.000
#> 799      3 0.000
#> 800      3 0.000
#> 801      3 0.000
#> 802      3 0.000
#> 803      3 0.000
#> 804      3 0.000
#> 805      3 0.000
#> 806      3 1.000
#> 807      3 0.000
#> 808      3 0.498
#> 809      3 0.000
#> 810      3 0.000
#> 811      3 0.000
#> 812      3 0.000
#> 813      3 0.000
#> 814      3 0.000
#> 815      3 0.249
#> 816      3 0.000
#> 817      1 0.000
#> 818      3 0.000
#> 819      2 1.000
#> 820      3 0.000
#> 821      3 0.000
#> 822      3 0.000
#> 823      3 0.000
#> 824      3 0.498
#> 825      3 0.000
#> 826      3 0.000
#> 827      3 0.000
#> 828      3 0.000
#> 829      3 0.000
#> 830      2 1.000
#> 831      3 1.000
#> 832      3 0.000
#> 833      3 0.000
#> 834      3 0.000
#> 835      3 0.000
#> 836      3 0.000
#> 837      3 0.000
#> 838      3 0.000
#> 839      3 0.000
#> 840      3 0.000
#> 841      3 0.000
#> 842      3 0.000
#> 843      3 0.000
#> 844      2 1.000
#> 845      3 0.000
#> 846      1 0.249
#> 847      1 0.000
#> 848      1 0.000
#> 849      3 0.000
#> 850      3 0.000
#> 851      3 1.000
#> 852      1 0.000
#> 853      3 0.000
#> 854      2 1.000
#> 855      3 0.000
#> 856      3 0.000
#> 857      1 0.000
#> 858      3 0.000
#> 859      3 0.000
#> 860      3 0.000
#> 861      3 0.000
#> 862      3 0.000
#> 863      3 0.253
#> 864      3 0.751
#> 865      3 0.000
#> 866      2 1.000
#> 867      2 1.000
#> 868      3 0.000
#> 869      1 0.000
#> 870      3 0.000
#> 871      2 1.000
#> 872      3 0.000
#> 873      3 0.000
#> 874      1 0.502
#> 875      3 1.000
#> 876      3 0.000
#> 877      3 0.000
#> 878      3 1.000
#> 879      3 0.000
#> 880      2 1.000
#> 881      3 0.000
#> 882      3 0.000
#> 883      3 1.000
#> 884      3 1.000
#> 885      3 1.000
#> 886      3 0.000
#> 887      3 0.751
#> 888      3 0.000
#> 889      3 0.000
#> 890      3 0.000
#> 891      3 0.000
#> 892      3 0.000
#> 893      3 0.000
#> 894      2 1.000
#> 895      1 0.000
#> 896      1 0.000
#> 897      3 0.000
#> 898      3 0.000
#> 899      2 1.000
#> 900      3 0.000
#> 901      3 0.000
#> 902      3 0.000
#> 903      3 1.000
#> 904      3 1.000
#> 905      3 0.000
#> 906      3 0.000
#> 907      3 0.000
#> 908      3 0.000
#> 909      3 0.000
#> 910      1 0.747
#> 911      3 0.000
#> 912      3 0.000
#> 913      3 0.000
#> 914      3 0.000
#> 915      3 1.000
#> 916      2 1.000
#> 917      3 1.000
#> 918      3 1.000
#> 919      1 0.000
#> 920      3 1.000
#> 921      3 0.249
#> 922      2 1.000
#> 923      3 0.000
#> 924      3 0.751
#> 925      3 0.000
#> 926      3 0.000
#> 927      3 0.000
#> 928      3 0.000
#> 929      3 0.000
#> 930      3 0.000
#> 931      3 0.000
#> 932      3 0.000
#> 933      1 0.000
#> 934      2 0.502
#> 935      3 0.000
#> 936      2 0.249
#> 937      3 0.000
#> 938      2 1.000
#> 939      2 0.502
#> 940      2 0.000
#> 941      2 1.000
#> 942      2 0.498
#> 943      2 1.000
#> 944      2 0.502
#> 945      2 1.000
#> 946      3 0.000
#> 947      2 1.000
#> 948      2 1.000
#> 949      2 0.502
#> 950      2 1.000
#> 951      2 0.000
#> 952      2 0.249
#> 953      2 0.000
#> 954      2 1.000
#> 955      2 0.498
#> 956      2 1.000
#> 957      2 0.000
#> 958      1 0.000
#> 959      2 1.000
#> 960      1 0.000
#> 961      1 0.000
#> 962      2 1.000
#> 963      2 0.751
#> 964      2 0.000
#> 965      2 0.502
#> 966      2 1.000
#> 967      2 0.751
#> 968      2 0.000
#> 969      2 0.253
#> 970      2 1.000
#> 971      2 0.249
#> 972      2 1.000
#> 973      2 0.751
#> 974      2 1.000
#> 975      2 1.000
#> 976      2 1.000
#> 977      2 0.000
#> 978      2 0.000
#> 979      1 0.000
#> 980      1 0.000
#> 981      2 0.502
#> 982      2 0.000
#> 983      2 0.000
#> 984      2 1.000
#> 985      2 0.000
#> 986      2 0.000
#> 987      1 0.000
#> 988      2 0.000
#> 989      1 1.000
#> 990      2 0.000
#> 991      2 0.747
#> 992      2 1.000
#> 993      2 0.000
#> 994      2 0.751
#> 995      2 0.751
#> 996      2 0.000
#> 997      1 0.000
#> 998      2 0.751
#> 999      2 0.249
#> 1000     1 0.000
#> 1001     2 0.000
#> 1002     2 0.253
#> 1003     2 1.000
#> 1004     2 0.498
#> 1005     2 0.000
#> 1006     2 1.000
#> 1007     2 0.000
#> 1008     3 0.000
#> 1009     2 0.000
#> 1010     2 0.000
#> 1011     2 0.000
#> 1012     3 0.000
#> 1013     2 1.000
#> 1014     2 0.498
#> 1015     3 0.249
#> 1016     2 0.000
#> 1017     2 1.000
#> 1018     2 1.000
#> 1019     2 0.000
#> 1020     2 0.498
#> 1021     2 0.000
#> 1022     2 1.000
#> 1023     2 0.249
#> 1024     2 0.000
#> 1025     2 1.000
#> 1026     1 0.000
#> 1027     2 1.000
#> 1028     1 0.000
#> 1029     1 0.000
#> 1030     1 0.498
#> 1031     2 0.000
#> 1032     2 0.249
#> 1033     3 0.000
#> 1034     2 1.000
#> 1035     3 0.000
#> 1036     2 0.000
#> 1037     2 0.249
#> 1038     2 0.000
#> 1039     2 0.000
#> 1040     2 0.000
#> 1041     2 0.000
#> 1042     2 0.000
#> 1043     1 0.747
#> 1044     2 0.000
#> 1045     3 1.000
#> 1046     2 0.000
#> 1047     1 0.000
#> 1048     2 0.000
#> 1049     1 0.000
#> 1050     1 0.000
#> 1051     3 0.498
#> 1052     2 1.000
#> 1053     2 0.498
#> 1054     2 0.253
#> 1055     2 1.000
#> 1056     2 0.000
#> 1057     2 1.000
#> 1058     1 0.000
#> 1059     2 0.000
#> 1060     2 0.747
#> 1061     2 1.000
#> 1062     2 1.000
#> 1063     2 0.751
#> 1064     2 0.000
#> 1065     1 0.000
#> 1066     2 0.249
#> 1067     1 0.000
#> 1068     2 0.000
#> 1069     2 0.000
#> 1070     1 0.000
#> 1071     2 0.502
#> 1072     2 0.253
#> 1073     2 0.751
#> 1074     2 1.000
#> 1075     2 0.000
#> 1076     2 0.000
#> 1077     2 0.751
#> 1078     2 0.000
#> 1079     2 0.000
#> 1080     1 0.000
#> 1081     2 0.000
#> 1082     2 1.000
#> 1083     2 0.000
#> 1084     2 1.000
#> 1085     2 1.000
#> 1086     2 0.253
#> 1087     2 1.000
#> 1088     2 0.000
#> 1089     2 0.000
#> 1090     2 0.000
#> 1091     2 1.000
#> 1092     2 0.000
#> 1093     2 0.000
#> 1094     2 0.502
#> 1095     2 0.249
#> 1096     2 0.000
#> 1097     2 0.000
#> 1098     2 1.000
#> 1099     2 0.000
#> 1100     1 0.000
#> 1101     2 0.000
#> 1102     2 0.502
#> 1103     2 0.249
#> 1104     2 0.751
#> 1105     2 0.249
#> 1106     2 1.000
#> 1107     2 0.000
#> 1108     2 0.498
#> 1109     2 0.498
#> 1110     2 0.000
#> 1111     2 0.000
#> 1112     2 0.000
#> 1113     2 1.000
#> 1114     1 0.000
#> 1115     2 0.249
#> 1116     2 0.000
#> 1117     1 0.000
#> 1118     2 0.249
#> 1119     2 0.000
#> 1120     2 0.249
#> 1121     2 0.000
#> 1122     2 0.000
#> 1123     2 0.751
#> 1124     2 0.249
#> 1125     2 0.000
#> 1126     2 0.000
#> 1127     2 0.498
#> 1128     2 0.000
#> 1129     2 0.000
#> 1130     2 0.000
#> 1131     2 0.000
#> 1132     2 0.000
#> 1133     2 0.000
#> 1134     2 0.000
#> 1135     2 0.000
#> 1136     1 0.000
#> 1137     2 0.249
#> 1138     2 0.000
#> 1139     2 0.000
#> 1140     2 0.000
#> 1141     2 0.751
#> 1142     2 0.502
#> 1143     3 0.000
#> 1144     2 1.000
#> 1145     2 0.000
#> 1146     2 1.000
#> 1147     2 0.000
#> 1148     2 0.000
#> 1149     2 0.000
#> 1150     2 0.000
#> 1151     2 0.000
#> 1152     2 0.000
#> 1153     2 0.000
#> 1154     2 0.000
#> 1155     2 0.000
#> 1156     1 1.000
#> 1157     2 0.249
#> 1158     2 0.000
#> 1159     2 0.000
#> 1160     2 0.000
#> 1161     2 0.000
#> 1162     2 0.000
#> 1163     2 0.000
#> 1164     2 0.000
#> 1165     2 0.000
#> 1166     2 0.000
#> 1167     2 0.000
#> 1168     2 0.000
#> 1169     2 0.000
#> 1170     2 0.000
#> 1171     2 0.502
#> 1172     2 0.249
#> 1173     2 0.000
#> 1174     2 0.253
#> 1175     2 0.000
#> 1176     2 1.000
#> 1177     3 0.498
#> 1178     2 1.000
#> 1179     3 1.000
#> 1180     3 0.000
#> 1181     2 1.000
#> 1182     1 0.502
#> 1183     2 1.000
#> 1184     2 1.000
#> 1185     3 0.249
#> 1186     2 1.000
#> 1187     3 1.000
#> 1188     3 1.000
#> 1189     2 1.000
#> 1190     2 1.000
#> 1191     3 1.000
#> 1192     2 1.000
#> 1193     2 1.000
#> 1194     3 1.000
#> 1195     2 1.000
#> 1196     2 1.000
#> 1197     2 1.000
#> 1198     3 0.000
#> 1199     2 1.000
#> 1200     2 1.000
#> 1201     2 1.000
#> 1202     2 1.000
#> 1203     3 1.000
#> 1204     2 1.000
#> 1205     2 1.000
#> 1206     2 1.000
#> 1207     2 1.000
#> 1208     2 1.000
#> 1209     3 0.000
#> 1210     2 1.000
#> 1211     2 1.000
#> 1212     2 1.000
#> 1213     2 1.000
#> 1214     2 1.000
#> 1215     2 1.000
#> 1216     2 1.000
#> 1217     3 1.000
#> 1218     2 1.000
#> 1219     2 1.000
#> 1220     2 1.000
#> 1221     3 1.000
#> 1222     2 1.000
#> 1223     2 1.000
#> 1224     3 1.000
#> 1225     3 0.249
#> 1226     3 1.000
#> 1227     2 1.000
#> 1228     2 1.000
#> 1229     2 1.000
#> 1230     2 0.000
#> 1231     2 1.000
#> 1232     2 1.000
#> 1233     2 1.000
#> 1234     2 1.000
#> 1235     2 1.000
#> 1236     2 1.000
#> 1237     2 0.000
#> 1238     1 0.000
#> 1239     2 1.000
#> 1240     2 1.000
#> 1241     2 1.000
#> 1242     2 1.000
#> 1243     2 1.000
#> 1244     2 1.000
#> 1245     2 1.000
#> 1246     2 1.000
#> 1247     2 1.000
#> 1248     2 1.000
#> 1249     2 1.000
#> 1250     2 1.000
#> 1251     2 1.000
#> 1252     3 1.000
#> 1253     2 1.000
#> 1254     2 1.000
#> 1255     2 1.000
#> 1256     2 1.000
#> 1257     2 1.000
#> 1258     2 1.000
#> 1259     2 1.000
#> 1260     3 1.000
#> 1261     2 1.000
#> 1262     2 1.000
#> 1263     2 1.000
#> 1264     3 0.000
#> 1265     3 1.000
#> 1266     2 1.000
#> 1267     3 1.000
#> 1268     2 1.000
#> 1269     3 0.000
#> 1270     3 1.000
#> 1271     2 1.000
#> 1272     2 1.000
#> 1273     2 1.000

show/hide code output

get_classes(res, k = 4)
#>      class     p
#> 1        2 1.000
#> 2        2 1.000
#> 3        2 0.249
#> 4        2 0.000
#> 5        1 1.000
#> 6        2 1.000
#> 7        2 1.000
#> 8        2 1.000
#> 9        1 1.000
#> 10       2 1.000
#> 11       2 1.000
#> 12       2 1.000
#> 13       2 1.000
#> 14       2 0.249
#> 15       1 0.000
#> 16       2 0.498
#> 17       1 1.000
#> 18       2 1.000
#> 19       2 0.751
#> 20       2 1.000
#> 21       2 1.000
#> 22       2 1.000
#> 23       2 1.000
#> 24       1 1.000
#> 25       1 1.000
#> 26       2 1.000
#> 27       2 1.000
#> 28       1 1.000
#> 29       1 0.000
#> 30       1 0.000
#> 31       2 1.000
#> 32       2 1.000
#> 33       4 0.502
#> 34       1 0.000
#> 35       1 0.000
#> 36       1 0.253
#> 37       1 0.000
#> 38       2 0.000
#> 39       2 1.000
#> 40       2 1.000
#> 41       1 0.000
#> 42       1 1.000
#> 43       4 0.249
#> 44       1 1.000
#> 45       1 0.000
#> 46       1 0.000
#> 47       4 0.000
#> 48       1 0.000
#> 49       4 0.000
#> 50       1 0.000
#> 51       1 0.000
#> 52       1 0.249
#> 53       1 0.000
#> 54       2 1.000
#> 55       1 0.747
#> 56       1 0.502
#> 57       1 0.000
#> 58       1 0.000
#> 59       1 0.000
#> 60       1 0.000
#> 61       4 0.000
#> 62       1 0.000
#> 63       1 0.498
#> 64       1 1.000
#> 65       1 0.000
#> 66       1 1.000
#> 67       4 1.000
#> 68       4 0.000
#> 69       1 0.000
#> 70       1 0.000
#> 71       1 0.000
#> 72       1 0.000
#> 73       4 0.000
#> 74       1 0.000
#> 75       1 0.249
#> 76       2 1.000
#> 77       1 0.000
#> 78       1 0.000
#> 79       1 0.000
#> 80       2 1.000
#> 81       1 1.000
#> 82       1 0.000
#> 83       1 1.000
#> 84       1 0.000
#> 85       1 0.000
#> 86       1 0.000
#> 87       1 1.000
#> 88       1 1.000
#> 89       2 1.000
#> 90       2 1.000
#> 91       2 1.000
#> 92       1 0.000
#> 93       1 0.000
#> 94       1 0.000
#> 95       1 0.000
#> 96       1 0.000
#> 97       1 0.000
#> 98       1 0.000
#> 99       1 0.000
#> 100      1 0.000
#> 101      1 0.000
#> 102      1 0.000
#> 103      1 0.000
#> 104      1 0.000
#> 105      1 0.000
#> 106      1 0.000
#> 107      1 0.000
#> 108      1 0.000
#> 109      1 0.000
#> 110      1 0.000
#> 111      1 0.000
#> 112      1 0.000
#> 113      1 0.751
#> 114      1 0.000
#> 115      1 0.000
#> 116      1 0.000
#> 117      1 0.000
#> 118      1 0.000
#> 119      1 0.000
#> 120      1 0.000
#> 121      1 0.000
#> 122      1 0.000
#> 123      1 0.000
#> 124      1 0.000
#> 125      1 0.000
#> 126      1 0.000
#> 127      1 0.000
#> 128      1 0.000
#> 129      1 0.000
#> 130      1 0.000
#> 131      1 0.000
#> 132      1 0.000
#> 133      1 0.000
#> 134      1 0.000
#> 135      1 0.000
#> 136      1 0.000
#> 137      1 0.000
#> 138      1 0.000
#> 139      4 0.000
#> 140      1 0.000
#> 141      1 0.000
#> 142      1 0.000
#> 143      1 0.000
#> 144      1 0.000
#> 145      1 0.000
#> 146      1 0.000
#> 147      1 0.000
#> 148      1 0.000
#> 149      1 0.000
#> 150      1 1.000
#> 151      1 0.000
#> 152      1 0.000
#> 153      1 0.000
#> 154      1 0.000
#> 155      1 0.000
#> 156      1 0.000
#> 157      1 0.000
#> 158      1 0.000
#> 159      1 0.000
#> 160      1 0.000
#> 161      1 0.000
#> 162      1 0.000
#> 163      1 0.000
#> 164      1 0.000
#> 165      1 0.000
#> 166      1 0.000
#> 167      1 0.000
#> 168      1 0.000
#> 169      1 0.000
#> 170      1 0.000
#> 171      1 0.000
#> 172      1 0.000
#> 173      1 0.000
#> 174      1 0.000
#> 175      1 0.000
#> 176      1 0.000
#> 177      1 0.000
#> 178      1 0.000
#> 179      1 0.000
#> 180      1 0.000
#> 181      1 0.000
#> 182      1 0.000
#> 183      1 0.000
#> 184      1 0.000
#> 185      1 0.000
#> 186      1 0.000
#> 187      1 0.000
#> 188      1 0.000
#> 189      1 0.000
#> 190      1 0.000
#> 191      1 0.000
#> 192      1 0.000
#> 193      1 0.000
#> 194      1 0.000
#> 195      1 0.000
#> 196      1 0.000
#> 197      1 0.000
#> 198      1 0.000
#> 199      4 1.000
#> 200      1 0.000
#> 201      4 0.751
#> 202      1 0.000
#> 203      1 0.000
#> 204      1 0.000
#> 205      1 0.000
#> 206      1 0.000
#> 207      1 0.000
#> 208      1 0.000
#> 209      1 0.000
#> 210      1 0.000
#> 211      1 0.000
#> 212      1 0.000
#> 213      1 0.000
#> 214      1 0.000
#> 215      1 0.000
#> 216      1 0.000
#> 217      1 0.000
#> 218      1 0.000
#> 219      1 0.000
#> 220      1 0.000
#> 221      1 0.000
#> 222      1 0.000
#> 223      1 0.000
#> 224      1 0.000
#> 225      1 0.000
#> 226      1 0.000
#> 227      1 0.000
#> 228      1 0.000
#> 229      1 0.000
#> 230      1 0.000
#> 231      1 0.000
#> 232      1 0.000
#> 233      1 0.000
#> 234      1 0.000
#> 235      1 0.000
#> 236      1 0.000
#> 237      1 0.000
#> 238      1 0.000
#> 239      1 0.000
#> 240      1 0.000
#> 241      1 0.000
#> 242      1 0.000
#> 243      1 0.000
#> 244      1 0.000
#> 245      1 0.000
#> 246      1 0.000
#> 247      1 0.000
#> 248      1 0.000
#> 249      1 0.000
#> 250      1 0.000
#> 251      1 0.000
#> 252      1 0.000
#> 253      1 0.000
#> 254      1 0.000
#> 255      1 0.000
#> 256      1 0.000
#> 257      1 0.000
#> 258      1 0.000
#> 259      1 0.000
#> 260      1 0.000
#> 261      1 0.000
#> 262      1 0.000
#> 263      1 0.000
#> 264      1 0.000
#> 265      4 1.000
#> 266      1 0.000
#> 267      1 0.000
#> 268      1 0.000
#> 269      1 0.498
#> 270      1 0.000
#> 271      1 0.000
#> 272      1 0.000
#> 273      1 0.000
#> 274      1 0.000
#> 275      1 0.000
#> 276      1 0.000
#> 277      1 0.000
#> 278      1 0.000
#> 279      1 0.000
#> 280      1 0.000
#> 281      1 0.000
#> 282      1 0.000
#> 283      1 0.000
#> 284      1 0.000
#> 285      1 0.000
#> 286      1 0.000
#> 287      1 0.000
#> 288      1 0.000
#> 289      1 0.000
#> 290      1 0.000
#> 291      1 0.000
#> 292      1 0.000
#> 293      1 0.000
#> 294      1 0.000
#> 295      1 0.000
#> 296      1 0.000
#> 297      1 0.000
#> 298      1 0.000
#> 299      1 0.000
#> 300      1 0.000
#> 301      1 0.000
#> 302      1 0.000
#> 303      1 0.000
#> 304      1 0.000
#> 305      1 0.000
#> 306      1 0.000
#> 307      1 0.000
#> 308      1 0.000
#> 309      1 0.000
#> 310      1 0.000
#> 311      1 0.000
#> 312      1 0.000
#> 313      1 0.000
#> 314      1 0.000
#> 315      1 0.000
#> 316      1 0.000
#> 317      1 0.000
#> 318      1 0.000
#> 319      1 0.000
#> 320      1 0.000
#> 321      1 0.000
#> 322      1 0.000
#> 323      2 1.000
#> 324      4 0.000
#> 325      1 0.000
#> 326      1 0.000
#> 327      1 1.000
#> 328      1 0.000
#> 329      1 0.000
#> 330      1 1.000
#> 331      1 0.000
#> 332      1 0.000
#> 333      1 0.000
#> 334      1 0.000
#> 335      1 0.000
#> 336      1 0.000
#> 337      1 0.000
#> 338      1 0.000
#> 339      1 0.000
#> 340      1 0.751
#> 341      2 1.000
#> 342      1 0.000
#> 343      1 0.000
#> 344      1 0.000
#> 345      1 0.000
#> 346      1 0.000
#> 347      1 0.000
#> 348      1 0.000
#> 349      1 0.000
#> 350      1 1.000
#> 351      1 1.000
#> 352      1 0.498
#> 353      1 0.000
#> 354      1 0.000
#> 355      1 0.000
#> 356      2 1.000
#> 357      1 1.000
#> 358      1 0.000
#> 359      4 0.000
#> 360      4 0.000
#> 361      4 0.000
#> 362      1 0.000
#> 363      1 0.000
#> 364      1 0.000
#> 365      1 0.000
#> 366      1 0.000
#> 367      1 1.000
#> 368      1 0.000
#> 369      1 0.000
#> 370      1 0.000
#> 371      1 0.000
#> 372      1 0.000
#> 373      1 0.000
#> 374      1 0.000
#> 375      1 0.000
#> 376      1 0.000
#> 377      4 0.000
#> 378      1 0.000
#> 379      1 0.000
#> 380      1 1.000
#> 381      1 0.000
#> 382      1 0.000
#> 383      1 0.000
#> 384      1 1.000
#> 385      2 1.000
#> 386      1 1.000
#> 387      1 0.000
#> 388      1 0.000
#> 389      1 0.000
#> 390      1 1.000
#> 391      1 0.000
#> 392      1 1.000
#> 393      1 1.000
#> 394      1 1.000
#> 395      1 0.502
#> 396      1 1.000
#> 397      1 0.000
#> 398      1 0.000
#> 399      1 0.000
#> 400      1 0.000
#> 401      1 0.000
#> 402      1 0.000
#> 403      1 0.000
#> 404      1 0.000
#> 405      1 0.000
#> 406      1 0.000
#> 407      1 0.000
#> 408      1 0.000
#> 409      1 0.000
#> 410      1 0.498
#> 411      1 1.000
#> 412      1 1.000
#> 413      1 1.000
#> 414      1 0.000
#> 415      1 1.000
#> 416      1 0.000
#> 417      1 0.000
#> 418      1 0.000
#> 419      1 1.000
#> 420      1 1.000
#> 421      1 0.000
#> 422      1 0.000
#> 423      4 1.000
#> 424      1 0.000
#> 425      1 0.000
#> 426      1 0.000
#> 427      1 0.000
#> 428      1 0.000
#> 429      1 1.000
#> 430      1 0.000
#> 431      4 0.000
#> 432      1 0.000
#> 433      1 1.000
#> 434      1 0.000
#> 435      1 0.000
#> 436      1 0.000
#> 437      1 0.000
#> 438      1 1.000
#> 439      1 0.000
#> 440      1 0.000
#> 441      1 0.000
#> 442      1 0.000
#> 443      1 0.000
#> 444      4 0.000
#> 445      4 0.000
#> 446      1 0.000
#> 447      1 0.000
#> 448      1 0.000
#> 449      1 0.000
#> 450      1 0.000
#> 451      1 0.000
#> 452      1 0.000
#> 453      1 1.000
#> 454      1 0.751
#> 455      1 0.000
#> 456      2 1.000
#> 457      1 0.000
#> 458      1 1.000
#> 459      1 0.000
#> 460      1 0.000
#> 461      1 0.000
#> 462      1 0.000
#> 463      1 0.000
#> 464      1 0.000
#> 465      1 0.000
#> 466      1 0.000
#> 467      1 0.000
#> 468      1 0.000
#> 469      1 0.000
#> 470      1 0.000
#> 471      1 0.000
#> 472      3 0.000
#> 473      2 0.000
#> 474      2 0.000
#> 475      2 0.000
#> 476      2 0.000
#> 477      2 0.000
#> 478      2 0.000
#> 479      2 0.000
#> 480      2 0.000
#> 481      2 0.000
#> 482      2 0.000
#> 483      2 0.000
#> 484      2 0.000
#> 485      2 0.000
#> 486      2 0.000
#> 487      2 0.000
#> 488      2 0.000
#> 489      2 0.000
#> 490      2 0.000
#> 491      2 0.000
#> 492      2 0.000
#> 493      2 0.000
#> 494      4 0.000
#> 495      2 0.000
#> 496      2 0.000
#> 497      2 0.000
#> 498      2 0.000
#> 499      2 0.000
#> 500      2 0.000
#> 501      2 0.000
#> 502      2 0.000
#> 503      2 0.000
#> 504      2 0.000
#> 505      2 0.000
#> 506      1 0.000
#> 507      2 0.000
#> 508      2 0.000
#> 509      2 0.000
#> 510      2 0.000
#> 511      2 0.000
#> 512      2 0.000
#> 513      1 0.000
#> 514      2 0.000
#> 515      2 0.000
#> 516      2 0.000
#> 517      2 0.000
#> 518      2 0.000
#> 519      2 0.000
#> 520      2 0.000
#> 521      1 0.000
#> 522      2 0.000
#> 523      2 0.000
#> 524      2 0.000
#> 525      2 0.000
#> 526      2 0.000
#> 527      2 0.000
#> 528      2 0.000
#> 529      2 0.000
#> 530      2 0.000
#> 531      2 0.000
#> 532      2 0.000
#> 533      2 0.000
#> 534      2 0.000
#> 535      3 0.000
#> 536      2 0.000
#> 537      2 0.000
#> 538      2 0.000
#> 539      2 0.000
#> 540      3 0.000
#> 541      2 0.000
#> 542      2 0.000
#> 543      2 0.000
#> 544      2 0.000
#> 545      2 0.000
#> 546      2 0.000
#> 547      2 0.000
#> 548      2 0.000
#> 549      2 0.000
#> 550      2 0.000
#> 551      2 0.000
#> 552      1 0.000
#> 553      3 0.000
#> 554      2 0.000
#> 555      2 0.000
#> 556      2 0.000
#> 557      2 0.000
#> 558      2 0.000
#> 559      2 0.000
#> 560      4 0.000
#> 561      2 0.000
#> 562      2 0.000
#> 563      2 0.000
#> 564      2 0.000
#> 565      2 0.000
#> 566      2 0.000
#> 567      2 0.000
#> 568      2 0.000
#> 569      2 0.000
#> 570      2 0.000
#> 571      2 0.000
#> 572      2 0.000
#> 573      2 0.000
#> 574      3 0.000
#> 575      2 0.000
#> 576      2 0.000
#> 577      4 0.000
#> 578      2 0.000
#> 579      2 0.000
#> 580      2 0.000
#> 581      2 0.000
#> 582      2 0.000
#> 583      2 0.000
#> 584      2 0.000
#> 585      2 0.000
#> 586      2 0.000
#> 587      1 0.498
#> 588      1 0.000
#> 589      2 0.000
#> 590      2 0.000
#> 591      2 0.000
#> 592      2 0.000
#> 593      2 0.000
#> 594      2 0.000
#> 595      2 0.000
#> 596      2 0.000
#> 597      1 0.000
#> 598      2 0.249
#> 599      2 0.000
#> 600      1 1.000
#> 601      2 0.000
#> 602      4 0.000
#> 603      2 0.000
#> 604      2 0.000
#> 605      2 1.000
#> 606      2 0.000
#> 607      2 0.000
#> 608      2 0.000
#> 609      2 0.000
#> 610      2 0.000
#> 611      2 0.000
#> 612      2 0.000
#> 613      1 0.000
#> 614      2 1.000
#> 615      1 0.000
#> 616      2 0.000
#> 617      2 0.000
#> 618      2 0.000
#> 619      2 0.000
#> 620      1 0.000
#> 621      1 1.000
#> 622      1 0.000
#> 623      2 0.000
#> 624      1 0.000
#> 625      2 0.000
#> 626      1 0.000
#> 627      1 0.000
#> 628      2 1.000
#> 629      2 0.498
#> 630      2 0.498
#> 631      2 0.000
#> 632      2 0.000
#> 633      4 0.000
#> 634      2 0.000
#> 635      1 1.000
#> 636      2 0.000
#> 637      2 0.000
#> 638      1 0.000
#> 639      2 0.000
#> 640      2 0.000
#> 641      2 0.000
#> 642      2 0.000
#> 643      2 0.000
#> 644      2 0.000
#> 645      4 1.000
#> 646      2 1.000
#> 647      2 1.000
#> 648      3 0.000
#> 649      2 0.000
#> 650      2 0.000
#> 651      4 0.000
#> 652      2 1.000
#> 653      2 0.000
#> 654      2 0.498
#> 655      2 0.000
#> 656      2 0.000
#> 657      1 0.000
#> 658      2 0.000
#> 659      2 0.000
#> 660      3 0.000
#> 661      2 0.000
#> 662      2 0.751
#> 663      4 0.000
#> 664      2 0.000
#> 665      2 0.000
#> 666      2 1.000
#> 667      1 1.000
#> 668      2 0.000
#> 669      2 0.000
#> 670      2 0.000
#> 671      2 0.000
#> 672      2 0.000
#> 673      2 0.000
#> 674      4 0.249
#> 675      2 0.000
#> 676      2 0.000
#> 677      2 0.000
#> 678      1 0.000
#> 679      2 0.000
#> 680      1 0.000
#> 681      1 0.000
#> 682      4 0.000
#> 683      2 0.000
#> 684      2 0.000
#> 685      2 0.249
#> 686      2 0.000
#> 687      1 0.000
#> 688      1 0.000
#> 689      2 0.000
#> 690      2 0.000
#> 691      1 0.000
#> 692      2 0.000
#> 693      1 0.000
#> 694      1 0.000
#> 695      1 0.000
#> 696      2 0.000
#> 697      2 0.000
#> 698      2 0.253
#> 699      2 0.000
#> 700      2 0.000
#> 701      4 0.000
#> 702      1 0.751
#> 703      1 0.000
#> 704      3 0.000
#> 705      3 0.000
#> 706      3 0.000
#> 707      3 0.000
#> 708      3 0.000
#> 709      3 0.000
#> 710      3 0.000
#> 711      3 0.000
#> 712      3 0.000
#> 713      3 0.000
#> 714      3 0.000
#> 715      3 0.000
#> 716      3 0.000
#> 717      3 0.000
#> 718      3 0.000
#> 719      3 0.000
#> 720      3 0.000
#> 721      3 0.000
#> 722      3 0.000
#> 723      3 0.000
#> 724      3 0.000
#> 725      3 0.000
#> 726      3 0.000
#> 727      3 0.000
#> 728      3 0.000
#> 729      3 0.000
#> 730      3 0.000
#> 731      3 0.000
#> 732      3 0.000
#> 733      3 0.000
#> 734      3 0.000
#> 735      3 0.000
#> 736      3 0.000
#> 737      3 0.000
#> 738      3 0.000
#> 739      3 0.000
#> 740      3 0.000
#> 741      3 0.000
#> 742      3 0.000
#> 743      3 0.000
#> 744      3 0.000
#> 745      2 1.000
#> 746      3 0.000
#> 747      3 0.000
#> 748      3 0.000
#> 749      3 0.000
#> 750      3 0.000
#> 751      3 0.000
#> 752      3 0.000
#> 753      3 0.000
#> 754      3 0.000
#> 755      3 0.000
#> 756      3 0.000
#> 757      3 0.000
#> 758      3 0.000
#> 759      3 0.000
#> 760      3 0.000
#> 761      3 0.000
#> 762      3 0.000
#> 763      3 0.000
#> 764      3 0.000
#> 765      3 0.000
#> 766      3 0.000
#> 767      3 0.000
#> 768      3 0.000
#> 769      3 0.000
#> 770      3 0.000
#> 771      3 0.000
#> 772      3 0.000
#> 773      3 0.000
#> 774      3 0.000
#> 775      3 0.000
#> 776      3 0.000
#> 777      3 0.000
#> 778      3 0.000
#> 779      3 0.000
#> 780      3 0.000
#> 781      3 0.000
#> 782      3 0.000
#> 783      3 0.000
#> 784      3 0.000
#> 785      3 0.000
#> 786      2 0.000
#> 787      2 1.000
#> 788      2 0.000
#> 789      2 0.000
#> 790      3 0.000
#> 791      3 0.502
#> 792      4 0.249
#> 793      2 1.000
#> 794      3 0.000
#> 795      3 0.000
#> 796      3 0.000
#> 797      3 0.000
#> 798      3 0.000
#> 799      3 0.000
#> 800      3 0.000
#> 801      3 0.000
#> 802      3 0.000
#> 803      3 0.000
#> 804      3 0.000
#> 805      3 0.000
#> 806      3 1.000
#> 807      3 0.000
#> 808      3 0.000
#> 809      3 0.000
#> 810      3 0.000
#> 811      3 0.000
#> 812      3 0.000
#> 813      3 0.000
#> 814      3 0.000
#> 815      3 0.000
#> 816      3 0.000
#> 817      1 0.000
#> 818      3 0.000
#> 819      2 0.000
#> 820      3 0.000
#> 821      3 0.000
#> 822      3 0.000
#> 823      3 0.000
#> 824      3 0.000
#> 825      3 0.000
#> 826      3 0.000
#> 827      3 0.000
#> 828      3 0.000
#> 829      3 0.000
#> 830      2 1.000
#> 831      3 1.000
#> 832      3 0.000
#> 833      3 0.000
#> 834      3 0.000
#> 835      3 0.000
#> 836      3 0.000
#> 837      3 0.000
#> 838      3 0.000
#> 839      3 0.000
#> 840      3 0.000
#> 841      3 0.000
#> 842      3 0.000
#> 843      3 0.000
#> 844      2 1.000
#> 845      3 0.000
#> 846      1 0.253
#> 847      1 0.000
#> 848      1 0.000
#> 849      3 0.000
#> 850      3 0.000
#> 851      2 1.000
#> 852      1 0.000
#> 853      3 0.000
#> 854      2 0.000
#> 855      3 0.000
#> 856      3 0.000
#> 857      1 0.000
#> 858      3 0.000
#> 859      3 0.000
#> 860      3 0.000
#> 861      4 0.000
#> 862      3 0.000
#> 863      4 0.000
#> 864      3 0.000
#> 865      3 0.000
#> 866      1 1.000
#> 867      4 0.000
#> 868      3 0.000
#> 869      1 0.000
#> 870      3 0.000
#> 871      2 0.502
#> 872      4 0.000
#> 873      3 0.000
#> 874      1 0.000
#> 875      2 1.000
#> 876      3 0.000
#> 877      3 0.000
#> 878      2 1.000
#> 879      3 0.000
#> 880      2 0.000
#> 881      3 0.000
#> 882      3 0.000
#> 883      2 1.000
#> 884      3 0.000
#> 885      4 0.000
#> 886      4 0.000
#> 887      3 1.000
#> 888      3 0.000
#> 889      3 0.000
#> 890      3 0.000
#> 891      4 0.000
#> 892      3 0.000
#> 893      3 0.000
#> 894      2 0.000
#> 895      1 0.000
#> 896      1 0.000
#> 897      3 0.000
#> 898      3 0.000
#> 899      2 1.000
#> 900      3 0.000
#> 901      3 0.000
#> 902      3 0.000
#> 903      3 0.000
#> 904      3 1.000
#> 905      3 0.000
#> 906      3 0.000
#> 907      3 0.000
#> 908      3 0.000
#> 909      3 0.000
#> 910      1 1.000
#> 911      3 0.000
#> 912      3 0.000
#> 913      3 0.000
#> 914      4 0.249
#> 915      3 1.000
#> 916      2 0.000
#> 917      2 1.000
#> 918      4 0.253
#> 919      1 0.000
#> 920      3 0.000
#> 921      3 0.000
#> 922      2 1.000
#> 923      3 0.000
#> 924      4 0.000
#> 925      3 0.000
#> 926      3 0.000
#> 927      3 0.000
#> 928      3 0.000
#> 929      3 0.000
#> 930      3 0.000
#> 931      3 0.000
#> 932      3 0.000
#> 933      1 0.000
#> 934      2 0.000
#> 935      3 0.000
#> 936      2 0.000
#> 937      3 0.000
#> 938      4 1.000
#> 939      2 0.000
#> 940      2 0.000
#> 941      2 1.000
#> 942      2 0.000
#> 943      2 0.000
#> 944      2 0.000
#> 945      2 0.000
#> 946      3 0.000
#> 947      2 0.000
#> 948      4 0.000
#> 949      2 0.000
#> 950      4 1.000
#> 951      2 0.000
#> 952      2 0.000
#> 953      2 0.000
#> 954      4 0.000
#> 955      2 0.000
#> 956      2 0.498
#> 957      2 0.000
#> 958      1 0.000
#> 959      2 1.000
#> 960      1 0.249
#> 961      1 0.000
#> 962      2 0.000
#> 963      2 0.000
#> 964      2 0.000
#> 965      2 0.000
#> 966      2 0.000
#> 967      2 0.000
#> 968      2 0.000
#> 969      2 0.000
#> 970      2 0.000
#> 971      2 0.000
#> 972      2 0.000
#> 973      2 0.000
#> 974      2 1.000
#> 975      2 0.000
#> 976      2 0.000
#> 977      2 0.000
#> 978      2 0.000
#> 979      1 0.000
#> 980      1 0.000
#> 981      2 0.000
#> 982      2 0.000
#> 983      2 0.000
#> 984      4 0.000
#> 985      2 0.000
#> 986      2 0.000
#> 987      1 0.747
#> 988      2 0.000
#> 989      2 1.000
#> 990      2 0.000
#> 991      2 0.000
#> 992      2 0.000
#> 993      2 0.000
#> 994      2 0.000
#> 995      2 0.000
#> 996      2 0.000
#> 997      1 0.000
#> 998      2 0.000
#> 999      2 1.000
#> 1000     1 0.000
#> 1001     2 0.000
#> 1002     2 0.000
#> 1003     2 0.000
#> 1004     2 0.000
#> 1005     2 0.000
#> 1006     2 0.000
#> 1007     2 0.000
#> 1008     3 0.000
#> 1009     2 0.000
#> 1010     2 0.000
#> 1011     2 0.000
#> 1012     3 0.000
#> 1013     2 0.000
#> 1014     2 0.000
#> 1015     3 0.249
#> 1016     2 0.000
#> 1017     4 0.502
#> 1018     2 1.000
#> 1019     2 0.249
#> 1020     2 0.000
#> 1021     2 0.000
#> 1022     2 1.000
#> 1023     2 0.000
#> 1024     2 0.000
#> 1025     2 1.000
#> 1026     1 0.000
#> 1027     2 0.000
#> 1028     1 0.000
#> 1029     1 0.000
#> 1030     1 0.751
#> 1031     2 0.000
#> 1032     2 0.000
#> 1033     3 0.000
#> 1034     2 0.000
#> 1035     3 0.249
#> 1036     2 0.000
#> 1037     2 0.000
#> 1038     2 0.000
#> 1039     2 0.000
#> 1040     2 0.000
#> 1041     2 0.000
#> 1042     2 0.000
#> 1043     1 1.000
#> 1044     2 0.000
#> 1045     4 0.000
#> 1046     2 0.000
#> 1047     1 0.000
#> 1048     2 0.000
#> 1049     1 0.000
#> 1050     1 0.000
#> 1051     3 0.000
#> 1052     2 0.000
#> 1053     2 0.000
#> 1054     2 0.000
#> 1055     2 0.000
#> 1056     2 0.000
#> 1057     2 0.000
#> 1058     1 0.000
#> 1059     2 0.000
#> 1060     2 0.000
#> 1061     2 0.000
#> 1062     1 1.000
#> 1063     2 0.000
#> 1064     2 0.000
#> 1065     1 0.000
#> 1066     2 0.000
#> 1067     1 0.000
#> 1068     2 0.000
#> 1069     2 0.000
#> 1070     1 0.000
#> 1071     2 0.498
#> 1072     2 0.000
#> 1073     2 0.498
#> 1074     2 0.000
#> 1075     2 0.000
#> 1076     2 0.000
#> 1077     2 0.000
#> 1078     2 0.000
#> 1079     2 0.000
#> 1080     1 1.000
#> 1081     2 0.000
#> 1082     2 0.000
#> 1083     2 0.000
#> 1084     2 0.000
#> 1085     2 0.000
#> 1086     2 0.000
#> 1087     2 0.751
#> 1088     2 0.000
#> 1089     2 0.000
#> 1090     2 0.000
#> 1091     2 0.000
#> 1092     2 0.000
#> 1093     2 0.000
#> 1094     2 0.000
#> 1095     2 0.000
#> 1096     2 0.000
#> 1097     2 0.000
#> 1098     2 1.000
#> 1099     2 0.000
#> 1100     1 1.000
#> 1101     2 0.000
#> 1102     2 0.000
#> 1103     2 0.000
#> 1104     2 0.000
#> 1105     2 0.000
#> 1106     4 0.000
#> 1107     2 0.000
#> 1108     2 0.000
#> 1109     2 0.000
#> 1110     2 0.000
#> 1111     2 0.000
#> 1112     2 0.000
#> 1113     2 1.000
#> 1114     1 0.000
#> 1115     2 0.000
#> 1116     2 0.000
#> 1117     1 0.000
#> 1118     2 0.000
#> 1119     2 0.000
#> 1120     2 0.000
#> 1121     2 0.000
#> 1122     2 0.000
#> 1123     2 0.000
#> 1124     2 0.000
#> 1125     2 0.000
#> 1126     2 0.000
#> 1127     2 0.000
#> 1128     2 0.000
#> 1129     2 0.000
#> 1130     2 0.000
#> 1131     2 0.000
#> 1132     2 0.000
#> 1133     2 0.000
#> 1134     2 0.000
#> 1135     2 0.000
#> 1136     1 0.000
#> 1137     2 0.000
#> 1138     2 0.000
#> 1139     2 0.000
#> 1140     2 0.000
#> 1141     2 0.000
#> 1142     2 0.000
#> 1143     3 0.000
#> 1144     2 0.000
#> 1145     2 0.000
#> 1146     2 0.000
#> 1147     2 0.000
#> 1148     2 0.000
#> 1149     2 0.000
#> 1150     2 0.000
#> 1151     2 0.000
#> 1152     2 0.000
#> 1153     2 0.000
#> 1154     2 0.000
#> 1155     2 0.000
#> 1156     1 1.000
#> 1157     2 0.000
#> 1158     2 0.000
#> 1159     2 0.000
#> 1160     2 0.502
#> 1161     2 0.000
#> 1162     2 0.000
#> 1163     2 0.000
#> 1164     2 0.000
#> 1165     2 0.000
#> 1166     2 0.000
#> 1167     2 0.000
#> 1168     2 0.000
#> 1169     2 0.000
#> 1170     2 0.000
#> 1171     2 0.000
#> 1172     2 0.000
#> 1173     2 0.000
#> 1174     2 0.000
#> 1175     2 0.000
#> 1176     2 0.000
#> 1177     4 0.000
#> 1178     4 0.000
#> 1179     4 0.000
#> 1180     4 0.000
#> 1181     4 0.000
#> 1182     4 0.000
#> 1183     4 0.000
#> 1184     4 0.000
#> 1185     4 0.000
#> 1186     4 0.000
#> 1187     4 0.000
#> 1188     4 0.000
#> 1189     4 1.000
#> 1190     4 0.000
#> 1191     4 0.000
#> 1192     4 0.000
#> 1193     4 0.000
#> 1194     4 0.000
#> 1195     4 0.000
#> 1196     4 0.000
#> 1197     4 0.000
#> 1198     4 0.000
#> 1199     4 0.000
#> 1200     4 0.000
#> 1201     2 1.000
#> 1202     4 0.000
#> 1203     4 0.000
#> 1204     4 0.000
#> 1205     4 0.000
#> 1206     4 1.000
#> 1207     4 1.000
#> 1208     4 1.000
#> 1209     4 0.000
#> 1210     2 1.000
#> 1211     4 0.000
#> 1212     4 1.000
#> 1213     4 1.000
#> 1214     4 0.000
#> 1215     2 1.000
#> 1216     4 1.000
#> 1217     4 0.000
#> 1218     4 0.000
#> 1219     4 0.000
#> 1220     4 0.000
#> 1221     4 0.000
#> 1222     4 0.000
#> 1223     4 0.000
#> 1224     4 0.000
#> 1225     4 0.000
#> 1226     4 0.000
#> 1227     4 0.000
#> 1228     4 0.000
#> 1229     4 0.000
#> 1230     2 0.000
#> 1231     4 1.000
#> 1232     2 1.000
#> 1233     4 0.000
#> 1234     2 1.000
#> 1235     4 1.000
#> 1236     2 1.000
#> 1237     2 0.000
#> 1238     4 0.000
#> 1239     4 1.000
#> 1240     4 0.000
#> 1241     4 0.000
#> 1242     4 0.000
#> 1243     4 0.000
#> 1244     4 0.000
#> 1245     4 0.000
#> 1246     4 0.000
#> 1247     4 0.000
#> 1248     4 0.249
#> 1249     4 0.000
#> 1250     4 0.000
#> 1251     2 1.000
#> 1252     4 0.000
#> 1253     4 1.000
#> 1254     4 0.253
#> 1255     4 0.253
#> 1256     4 0.751
#> 1257     4 0.000
#> 1258     4 1.000
#> 1259     4 0.000
#> 1260     4 0.000
#> 1261     4 0.000
#> 1262     4 1.000
#> 1263     4 0.000
#> 1264     4 0.000
#> 1265     4 0.000
#> 1266     4 0.000
#> 1267     4 0.000
#> 1268     4 0.000
#> 1269     4 0.000
#> 1270     4 0.000
#> 1271     4 0.000
#> 1272     4 0.000
#> 1273     4 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-01-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-01-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-01-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-01-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-01-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-01-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-01-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-01-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-01-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-01-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-01-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-01-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-01-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-01-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-01-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-01-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-01-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans     1164             3.94e-196 2
#> ATC:skmeans      925             2.01e-298 3
#> ATC:skmeans     1078              0.00e+00 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node011

Parent node: Node01. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["011"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 9529 rows and 485 columns.
#>   Top rows (953) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-011-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-011-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.964       0.985         0.5009 0.500   0.500
#> 3 3 0.973           0.956       0.981         0.3054 0.766   0.566
#> 4 4 0.865           0.891       0.946         0.0861 0.911   0.755

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.634    0.80737 0.16 0.84
#> 2       2   0.000    0.98375 0.00 1.00
#> 3       2   0.000    0.98375 0.00 1.00
#> 4       2   0.000    0.98375 0.00 1.00
#> 5       2   0.242    0.94722 0.04 0.96
#> 6       2   0.141    0.96631 0.02 0.98
#> 7       2   0.141    0.96631 0.02 0.98
#> 8       2   0.000    0.98375 0.00 1.00
#> 9       2   0.000    0.98375 0.00 1.00
#> 10      2   0.000    0.98375 0.00 1.00
#> 11      1   0.000    0.98629 1.00 0.00
#> 12      2   0.000    0.98375 0.00 1.00
#> 13      2   0.000    0.98375 0.00 1.00
#> 14      2   0.000    0.98375 0.00 1.00
#> 15      1   0.000    0.98629 1.00 0.00
#> 16      1   0.000    0.98629 1.00 0.00
#> 17      2   0.000    0.98375 0.00 1.00
#> 18      2   0.000    0.98375 0.00 1.00
#> 19      2   0.000    0.98375 0.00 1.00
#> 20      1   0.000    0.98629 1.00 0.00
#> 21      2   0.000    0.98375 0.00 1.00
#> 22      2   0.795    0.68663 0.24 0.76
#> 23      2   0.000    0.98375 0.00 1.00
#> 24      1   0.000    0.98629 1.00 0.00
#> 25      2   0.141    0.96631 0.02 0.98
#> 26      2   0.000    0.98375 0.00 1.00
#> 27      2   0.000    0.98375 0.00 1.00
#> 28      2   0.000    0.98375 0.00 1.00
#> 29      2   0.000    0.98375 0.00 1.00
#> 30      2   0.000    0.98375 0.00 1.00
#> 31      1   0.000    0.98629 1.00 0.00
#> 32      1   0.000    0.98629 1.00 0.00
#> 33      1   0.000    0.98629 1.00 0.00
#> 34      1   0.000    0.98629 1.00 0.00
#> 35      1   0.141    0.96786 0.98 0.02
#> 36      2   0.000    0.98375 0.00 1.00
#> 37      2   0.000    0.98375 0.00 1.00
#> 38      2   0.000    0.98375 0.00 1.00
#> 39      1   0.000    0.98629 1.00 0.00
#> 40      2   0.529    0.85851 0.12 0.88
#> 41      1   0.000    0.98629 1.00 0.00
#> 42      1   0.469    0.88335 0.90 0.10
#> 43      2   0.995    0.15670 0.46 0.54
#> 44      1   0.000    0.98629 1.00 0.00
#> 45      2   0.000    0.98375 0.00 1.00
#> 46      1   0.000    0.98629 1.00 0.00
#> 47      2   0.141    0.96631 0.02 0.98
#> 48      2   0.000    0.98375 0.00 1.00
#> 49      1   0.000    0.98629 1.00 0.00
#> 50      1   0.000    0.98629 1.00 0.00
#> 51      1   0.000    0.98629 1.00 0.00
#> 52      2   0.000    0.98375 0.00 1.00
#> 53      2   0.000    0.98375 0.00 1.00
#> 54      2   0.000    0.98375 0.00 1.00
#> 55      2   0.000    0.98375 0.00 1.00
#> 56      2   0.000    0.98375 0.00 1.00
#> 57      2   0.000    0.98375 0.00 1.00
#> 58      2   0.000    0.98375 0.00 1.00
#> 59      2   0.000    0.98375 0.00 1.00
#> 60      2   0.000    0.98375 0.00 1.00
#> 61      2   0.000    0.98375 0.00 1.00
#> 62      2   0.000    0.98375 0.00 1.00
#> 63      2   0.000    0.98375 0.00 1.00
#> 64      2   0.000    0.98375 0.00 1.00
#> 65      2   0.000    0.98375 0.00 1.00
#> 66      2   0.000    0.98375 0.00 1.00
#> 67      2   0.000    0.98375 0.00 1.00
#> 68      2   0.000    0.98375 0.00 1.00
#> 69      2   0.000    0.98375 0.00 1.00
#> 70      2   0.000    0.98375 0.00 1.00
#> 71      2   0.000    0.98375 0.00 1.00
#> 72      2   0.000    0.98375 0.00 1.00
#> 73      2   0.000    0.98375 0.00 1.00
#> 74      2   0.000    0.98375 0.00 1.00
#> 75      2   0.000    0.98375 0.00 1.00
#> 76      2   0.000    0.98375 0.00 1.00
#> 77      2   0.000    0.98375 0.00 1.00
#> 78      2   0.000    0.98375 0.00 1.00
#> 79      1   0.242    0.94849 0.96 0.04
#> 80      2   0.000    0.98375 0.00 1.00
#> 81      2   0.000    0.98375 0.00 1.00
#> 82      2   0.000    0.98375 0.00 1.00
#> 83      2   0.000    0.98375 0.00 1.00
#> 84      2   0.000    0.98375 0.00 1.00
#> 85      2   0.000    0.98375 0.00 1.00
#> 86      2   0.000    0.98375 0.00 1.00
#> 87      2   0.000    0.98375 0.00 1.00
#> 88      2   0.000    0.98375 0.00 1.00
#> 89      1   0.000    0.98629 1.00 0.00
#> 90      2   0.000    0.98375 0.00 1.00
#> 91      2   0.000    0.98375 0.00 1.00
#> 92      1   0.000    0.98629 1.00 0.00
#> 93      1   0.000    0.98629 1.00 0.00
#> 94      2   0.000    0.98375 0.00 1.00
#> 95      2   0.000    0.98375 0.00 1.00
#> 96      1   0.760    0.72156 0.78 0.22
#> 97      1   0.000    0.98629 1.00 0.00
#> 98      2   0.000    0.98375 0.00 1.00
#> 99      2   0.000    0.98375 0.00 1.00
#> 100     1   0.000    0.98629 1.00 0.00
#> 101     2   0.000    0.98375 0.00 1.00
#> 102     2   0.000    0.98375 0.00 1.00
#> 103     2   0.000    0.98375 0.00 1.00
#> 104     2   0.000    0.98375 0.00 1.00
#> 105     2   0.000    0.98375 0.00 1.00
#> 106     1   0.000    0.98629 1.00 0.00
#> 107     1   0.000    0.98629 1.00 0.00
#> 108     1   0.000    0.98629 1.00 0.00
#> 109     1   0.000    0.98629 1.00 0.00
#> 110     1   0.000    0.98629 1.00 0.00
#> 111     2   0.904    0.53062 0.32 0.68
#> 112     2   0.000    0.98375 0.00 1.00
#> 113     1   0.242    0.94851 0.96 0.04
#> 114     2   0.000    0.98375 0.00 1.00
#> 115     2   0.141    0.96629 0.02 0.98
#> 116     2   0.795    0.68413 0.24 0.76
#> 117     2   0.000    0.98375 0.00 1.00
#> 118     2   0.000    0.98375 0.00 1.00
#> 119     1   0.000    0.98629 1.00 0.00
#> 120     2   0.000    0.98375 0.00 1.00
#> 121     2   0.000    0.98375 0.00 1.00
#> 122     2   0.141    0.96629 0.02 0.98
#> 123     2   0.000    0.98375 0.00 1.00
#> 124     2   0.000    0.98375 0.00 1.00
#> 125     2   0.000    0.98375 0.00 1.00
#> 126     2   0.000    0.98375 0.00 1.00
#> 127     2   0.000    0.98375 0.00 1.00
#> 128     2   0.000    0.98375 0.00 1.00
#> 129     2   0.000    0.98375 0.00 1.00
#> 130     2   0.000    0.98375 0.00 1.00
#> 131     2   0.000    0.98375 0.00 1.00
#> 132     2   0.000    0.98375 0.00 1.00
#> 133     2   0.000    0.98375 0.00 1.00
#> 134     2   0.000    0.98375 0.00 1.00
#> 135     2   0.000    0.98375 0.00 1.00
#> 136     2   0.000    0.98375 0.00 1.00
#> 137     2   0.000    0.98375 0.00 1.00
#> 138     2   0.000    0.98375 0.00 1.00
#> 139     2   0.000    0.98375 0.00 1.00
#> 140     2   0.000    0.98375 0.00 1.00
#> 141     1   0.760    0.72189 0.78 0.22
#> 142     1   0.000    0.98629 1.00 0.00
#> 143     1   0.000    0.98629 1.00 0.00
#> 144     1   0.000    0.98629 1.00 0.00
#> 145     1   0.000    0.98629 1.00 0.00
#> 146     2   0.000    0.98375 0.00 1.00
#> 147     1   0.000    0.98629 1.00 0.00
#> 148     1   0.000    0.98629 1.00 0.00
#> 149     1   0.000    0.98629 1.00 0.00
#> 150     1   0.000    0.98629 1.00 0.00
#> 151     2   0.000    0.98375 0.00 1.00
#> 152     1   0.000    0.98629 1.00 0.00
#> 153     1   0.000    0.98629 1.00 0.00
#> 154     2   0.000    0.98375 0.00 1.00
#> 155     1   0.141    0.96789 0.98 0.02
#> 156     1   0.000    0.98629 1.00 0.00
#> 157     1   0.000    0.98629 1.00 0.00
#> 158     2   0.000    0.98375 0.00 1.00
#> 159     2   0.000    0.98375 0.00 1.00
#> 160     2   0.000    0.98375 0.00 1.00
#> 161     2   0.000    0.98375 0.00 1.00
#> 162     1   0.000    0.98629 1.00 0.00
#> 163     2   0.000    0.98375 0.00 1.00
#> 164     2   0.000    0.98375 0.00 1.00
#> 165     2   0.000    0.98375 0.00 1.00
#> 166     1   0.000    0.98629 1.00 0.00
#> 167     2   0.000    0.98375 0.00 1.00
#> 168     2   0.000    0.98375 0.00 1.00
#> 169     2   0.000    0.98375 0.00 1.00
#> 170     2   0.000    0.98375 0.00 1.00
#> 171     1   0.000    0.98629 1.00 0.00
#> 172     2   0.000    0.98375 0.00 1.00
#> 173     2   0.242    0.94704 0.04 0.96
#> 174     2   0.000    0.98375 0.00 1.00
#> 175     1   0.000    0.98629 1.00 0.00
#> 176     2   0.000    0.98375 0.00 1.00
#> 177     1   0.000    0.98629 1.00 0.00
#> 178     2   0.000    0.98375 0.00 1.00
#> 179     2   0.000    0.98375 0.00 1.00
#> 180     1   0.000    0.98629 1.00 0.00
#> 181     1   0.000    0.98629 1.00 0.00
#> 182     2   0.000    0.98375 0.00 1.00
#> 183     1   0.000    0.98629 1.00 0.00
#> 184     1   0.000    0.98629 1.00 0.00
#> 185     2   0.242    0.94736 0.04 0.96
#> 186     1   0.000    0.98629 1.00 0.00
#> 187     1   0.000    0.98629 1.00 0.00
#> 188     1   0.000    0.98629 1.00 0.00
#> 189     1   0.000    0.98629 1.00 0.00
#> 190     1   0.000    0.98629 1.00 0.00
#> 191     2   0.000    0.98375 0.00 1.00
#> 192     1   0.000    0.98629 1.00 0.00
#> 193     1   0.000    0.98629 1.00 0.00
#> 194     2   0.000    0.98375 0.00 1.00
#> 195     2   0.000    0.98375 0.00 1.00
#> 196     2   0.000    0.98375 0.00 1.00
#> 197     2   0.000    0.98375 0.00 1.00
#> 198     2   0.000    0.98375 0.00 1.00
#> 199     2   0.000    0.98375 0.00 1.00
#> 200     2   0.000    0.98375 0.00 1.00
#> 201     2   0.000    0.98375 0.00 1.00
#> 202     2   0.000    0.98375 0.00 1.00
#> 203     2   0.000    0.98375 0.00 1.00
#> 204     2   0.000    0.98375 0.00 1.00
#> 205     2   0.000    0.98375 0.00 1.00
#> 206     2   0.000    0.98375 0.00 1.00
#> 207     2   0.000    0.98375 0.00 1.00
#> 208     2   0.141    0.96624 0.02 0.98
#> 209     2   0.000    0.98375 0.00 1.00
#> 210     2   0.000    0.98375 0.00 1.00
#> 211     2   0.000    0.98375 0.00 1.00
#> 212     2   0.000    0.98375 0.00 1.00
#> 213     2   0.000    0.98375 0.00 1.00
#> 214     2   0.000    0.98375 0.00 1.00
#> 215     2   0.000    0.98375 0.00 1.00
#> 216     2   0.000    0.98375 0.00 1.00
#> 217     2   0.529    0.85746 0.12 0.88
#> 218     2   0.000    0.98375 0.00 1.00
#> 219     2   0.000    0.98375 0.00 1.00
#> 220     2   0.000    0.98375 0.00 1.00
#> 221     2   0.000    0.98375 0.00 1.00
#> 222     2   0.943    0.43780 0.36 0.64
#> 223     1   0.000    0.98629 1.00 0.00
#> 224     1   0.469    0.88450 0.90 0.10
#> 225     2   0.000    0.98375 0.00 1.00
#> 226     1   0.000    0.98629 1.00 0.00
#> 227     1   0.981    0.27922 0.58 0.42
#> 228     1   0.000    0.98629 1.00 0.00
#> 229     2   0.584    0.83185 0.14 0.86
#> 230     1   0.000    0.98629 1.00 0.00
#> 231     1   0.000    0.98629 1.00 0.00
#> 232     1   0.943    0.44394 0.64 0.36
#> 233     2   1.000   -0.00754 0.50 0.50
#> 234     2   0.995    0.14504 0.46 0.54
#> 235     1   0.000    0.98629 1.00 0.00
#> 236     1   0.000    0.98629 1.00 0.00
#> 237     2   0.000    0.98375 0.00 1.00
#> 238     1   0.000    0.98629 1.00 0.00
#> 239     1   0.000    0.98629 1.00 0.00
#> 240     1   0.000    0.98629 1.00 0.00
#> 241     1   0.000    0.98629 1.00 0.00
#> 242     2   0.000    0.98375 0.00 1.00
#> 243     2   0.000    0.98375 0.00 1.00
#> 244     1   0.943    0.44408 0.64 0.36
#> 245     1   0.634    0.80967 0.84 0.16
#> 246     1   0.760    0.72125 0.78 0.22
#> 247     2   0.000    0.98375 0.00 1.00
#> 248     1   0.958    0.39246 0.62 0.38
#> 249     1   0.469    0.88499 0.90 0.10
#> 250     2   0.000    0.98375 0.00 1.00
#> 251     2   0.000    0.98375 0.00 1.00
#> 252     2   0.000    0.98375 0.00 1.00
#> 253     2   0.141    0.96625 0.02 0.98
#> 254     2   0.000    0.98375 0.00 1.00
#> 255     1   0.000    0.98629 1.00 0.00
#> 256     1   0.000    0.98629 1.00 0.00
#> 257     1   0.000    0.98629 1.00 0.00
#> 258     2   0.000    0.98375 0.00 1.00
#> 259     2   0.000    0.98375 0.00 1.00
#> 260     2   0.000    0.98375 0.00 1.00
#> 261     1   0.000    0.98629 1.00 0.00
#> 262     2   0.000    0.98375 0.00 1.00
#> 263     2   0.000    0.98375 0.00 1.00
#> 264     1   0.402    0.90759 0.92 0.08
#> 265     2   0.000    0.98375 0.00 1.00
#> 266     1   0.000    0.98629 1.00 0.00
#> 267     2   0.000    0.98375 0.00 1.00
#> 268     1   0.000    0.98629 1.00 0.00
#> 269     1   0.000    0.98629 1.00 0.00
#> 270     2   0.000    0.98375 0.00 1.00
#> 271     2   0.000    0.98375 0.00 1.00
#> 272     2   0.000    0.98375 0.00 1.00
#> 273     1   0.000    0.98629 1.00 0.00
#> 274     1   0.000    0.98629 1.00 0.00
#> 275     2   0.000    0.98375 0.00 1.00
#> 276     2   0.000    0.98375 0.00 1.00
#> 277     2   0.000    0.98375 0.00 1.00
#> 278     2   0.000    0.98375 0.00 1.00
#> 279     1   0.000    0.98629 1.00 0.00
#> 280     2   0.999    0.07381 0.48 0.52
#> 281     1   0.000    0.98629 1.00 0.00
#> 282     1   0.000    0.98629 1.00 0.00
#> 283     1   0.000    0.98629 1.00 0.00
#> 284     1   0.000    0.98629 1.00 0.00
#> 285     1   0.000    0.98629 1.00 0.00
#> 286     1   0.000    0.98629 1.00 0.00
#> 287     1   0.000    0.98629 1.00 0.00
#> 288     1   0.000    0.98629 1.00 0.00
#> 289     1   0.000    0.98629 1.00 0.00
#> 290     1   0.000    0.98629 1.00 0.00
#> 291     1   0.242    0.94888 0.96 0.04
#> 292     1   0.000    0.98629 1.00 0.00
#> 293     1   0.000    0.98629 1.00 0.00
#> 294     1   0.000    0.98629 1.00 0.00
#> 295     1   0.000    0.98629 1.00 0.00
#> 296     1   0.000    0.98629 1.00 0.00
#> 297     1   0.000    0.98629 1.00 0.00
#> 298     1   0.000    0.98629 1.00 0.00
#> 299     1   0.000    0.98629 1.00 0.00
#> 300     1   0.000    0.98629 1.00 0.00
#> 301     1   0.000    0.98629 1.00 0.00
#> 302     1   0.000    0.98629 1.00 0.00
#> 303     1   0.000    0.98629 1.00 0.00
#> 304     1   0.000    0.98629 1.00 0.00
#> 305     1   0.000    0.98629 1.00 0.00
#> 306     1   0.000    0.98629 1.00 0.00
#> 307     1   0.000    0.98629 1.00 0.00
#> 308     2   0.000    0.98375 0.00 1.00
#> 309     2   0.000    0.98375 0.00 1.00
#> 310     1   0.000    0.98629 1.00 0.00
#> 311     1   0.000    0.98629 1.00 0.00
#> 312     1   0.000    0.98629 1.00 0.00
#> 313     1   0.000    0.98629 1.00 0.00
#> 314     1   0.000    0.98629 1.00 0.00
#> 315     1   0.000    0.98629 1.00 0.00
#> 316     1   0.000    0.98629 1.00 0.00
#> 317     1   0.000    0.98629 1.00 0.00
#> 318     1   0.000    0.98629 1.00 0.00
#> 319     2   0.000    0.98375 0.00 1.00
#> 320     1   0.827    0.65479 0.74 0.26
#> 321     1   0.000    0.98629 1.00 0.00
#> 322     2   0.000    0.98375 0.00 1.00
#> 323     1   0.000    0.98629 1.00 0.00
#> 324     1   0.000    0.98629 1.00 0.00
#> 325     1   0.000    0.98629 1.00 0.00
#> 326     1   0.000    0.98629 1.00 0.00
#> 327     1   0.000    0.98629 1.00 0.00
#> 328     1   0.000    0.98629 1.00 0.00
#> 329     1   0.000    0.98629 1.00 0.00
#> 330     1   0.000    0.98629 1.00 0.00
#> 331     1   0.000    0.98629 1.00 0.00
#> 332     1   0.000    0.98629 1.00 0.00
#> 333     1   0.000    0.98629 1.00 0.00
#> 334     1   0.000    0.98629 1.00 0.00
#> 335     1   0.000    0.98629 1.00 0.00
#> 336     1   0.000    0.98629 1.00 0.00
#> 337     1   0.000    0.98629 1.00 0.00
#> 338     1   0.000    0.98629 1.00 0.00
#> 339     1   0.000    0.98629 1.00 0.00
#> 340     1   0.000    0.98629 1.00 0.00
#> 341     1   0.000    0.98629 1.00 0.00
#> 342     1   0.000    0.98629 1.00 0.00
#> 343     1   0.000    0.98629 1.00 0.00
#> 344     1   0.000    0.98629 1.00 0.00
#> 345     1   0.000    0.98629 1.00 0.00
#> 346     2   0.000    0.98375 0.00 1.00
#> 347     2   0.000    0.98375 0.00 1.00
#> 348     2   0.000    0.98375 0.00 1.00
#> 349     2   0.000    0.98375 0.00 1.00
#> 350     1   0.000    0.98629 1.00 0.00
#> 351     1   0.000    0.98629 1.00 0.00
#> 352     1   0.000    0.98629 1.00 0.00
#> 353     1   0.000    0.98629 1.00 0.00
#> 354     1   0.000    0.98629 1.00 0.00
#> 355     1   0.000    0.98629 1.00 0.00
#> 356     1   0.000    0.98629 1.00 0.00
#> 357     1   0.000    0.98629 1.00 0.00
#> 358     1   0.000    0.98629 1.00 0.00
#> 359     1   0.000    0.98629 1.00 0.00
#> 360     1   0.000    0.98629 1.00 0.00
#> 361     1   0.000    0.98629 1.00 0.00
#> 362     1   0.000    0.98629 1.00 0.00
#> 363     1   0.000    0.98629 1.00 0.00
#> 364     2   0.000    0.98375 0.00 1.00
#> 365     1   0.000    0.98629 1.00 0.00
#> 366     1   0.000    0.98629 1.00 0.00
#> 367     1   0.000    0.98629 1.00 0.00
#> 368     1   0.000    0.98629 1.00 0.00
#> 369     1   0.000    0.98629 1.00 0.00
#> 370     1   0.000    0.98629 1.00 0.00
#> 371     1   0.000    0.98629 1.00 0.00
#> 372     1   0.000    0.98629 1.00 0.00
#> 373     1   0.000    0.98629 1.00 0.00
#> 374     1   0.000    0.98629 1.00 0.00
#> 375     1   0.000    0.98629 1.00 0.00
#> 376     1   0.000    0.98629 1.00 0.00
#> 377     1   0.000    0.98629 1.00 0.00
#> 378     1   0.000    0.98629 1.00 0.00
#> 379     1   0.000    0.98629 1.00 0.00
#> 380     1   0.000    0.98629 1.00 0.00
#> 381     1   0.000    0.98629 1.00 0.00
#> 382     1   0.000    0.98629 1.00 0.00
#> 383     1   0.000    0.98629 1.00 0.00
#> 384     1   0.000    0.98629 1.00 0.00
#> 385     1   0.000    0.98629 1.00 0.00
#> 386     1   0.000    0.98629 1.00 0.00
#> 387     1   0.000    0.98629 1.00 0.00
#> 388     2   0.000    0.98375 0.00 1.00
#> 389     1   0.000    0.98629 1.00 0.00
#> 390     1   0.000    0.98629 1.00 0.00
#> 391     1   0.000    0.98629 1.00 0.00
#> 392     2   0.000    0.98375 0.00 1.00
#> 393     1   0.000    0.98629 1.00 0.00
#> 394     1   0.000    0.98629 1.00 0.00
#> 395     1   0.000    0.98629 1.00 0.00
#> 396     1   0.000    0.98629 1.00 0.00
#> 397     1   0.000    0.98629 1.00 0.00
#> 398     2   0.000    0.98375 0.00 1.00
#> 399     1   0.000    0.98629 1.00 0.00
#> 400     1   0.000    0.98629 1.00 0.00
#> 401     1   0.000    0.98629 1.00 0.00
#> 402     1   0.000    0.98629 1.00 0.00
#> 403     1   0.000    0.98629 1.00 0.00
#> 404     1   0.000    0.98629 1.00 0.00
#> 405     1   0.000    0.98629 1.00 0.00
#> 406     2   0.000    0.98375 0.00 1.00
#> 407     2   0.242    0.94692 0.04 0.96
#> 408     2   0.000    0.98375 0.00 1.00
#> 409     2   0.000    0.98375 0.00 1.00
#> 410     1   0.000    0.98629 1.00 0.00
#> 411     1   0.000    0.98629 1.00 0.00
#> 412     1   0.000    0.98629 1.00 0.00
#> 413     1   0.000    0.98629 1.00 0.00
#> 414     2   0.000    0.98375 0.00 1.00
#> 415     2   0.000    0.98375 0.00 1.00
#> 416     2   0.000    0.98375 0.00 1.00
#> 417     2   0.000    0.98375 0.00 1.00
#> 418     2   0.000    0.98375 0.00 1.00
#> 419     2   0.000    0.98375 0.00 1.00
#> 420     2   0.000    0.98375 0.00 1.00
#> 421     1   0.000    0.98629 1.00 0.00
#> 422     2   0.242    0.94727 0.04 0.96
#> 423     2   0.000    0.98375 0.00 1.00
#> 424     1   0.000    0.98629 1.00 0.00
#> 425     2   0.000    0.98375 0.00 1.00
#> 426     1   0.000    0.98629 1.00 0.00
#> 427     2   0.000    0.98375 0.00 1.00
#> 428     2   0.000    0.98375 0.00 1.00
#> 429     2   0.000    0.98375 0.00 1.00
#> 430     1   0.000    0.98629 1.00 0.00
#> 431     2   0.000    0.98375 0.00 1.00
#> 432     2   0.000    0.98375 0.00 1.00
#> 433     2   0.000    0.98375 0.00 1.00
#> 434     2   0.000    0.98375 0.00 1.00
#> 435     2   0.000    0.98375 0.00 1.00
#> 436     2   0.000    0.98375 0.00 1.00
#> 437     2   0.000    0.98375 0.00 1.00
#> 438     2   0.000    0.98375 0.00 1.00
#> 439     2   0.000    0.98375 0.00 1.00
#> 440     2   0.000    0.98375 0.00 1.00
#> 441     1   0.000    0.98629 1.00 0.00
#> 442     2   0.000    0.98375 0.00 1.00
#> 443     1   0.000    0.98629 1.00 0.00
#> 444     2   0.000    0.98375 0.00 1.00
#> 445     2   0.000    0.98375 0.00 1.00
#> 446     1   0.000    0.98629 1.00 0.00
#> 447     1   0.000    0.98629 1.00 0.00
#> 448     2   0.000    0.98375 0.00 1.00
#> 449     2   0.000    0.98375 0.00 1.00
#> 450     1   0.000    0.98629 1.00 0.00
#> 451     1   0.000    0.98629 1.00 0.00
#> 452     1   0.000    0.98629 1.00 0.00
#> 453     1   0.000    0.98629 1.00 0.00
#> 454     2   0.000    0.98375 0.00 1.00
#> 455     1   0.000    0.98629 1.00 0.00
#> 456     1   0.000    0.98629 1.00 0.00
#> 457     2   0.000    0.98375 0.00 1.00
#> 458     2   0.000    0.98375 0.00 1.00
#> 459     1   0.000    0.98629 1.00 0.00
#> 460     1   0.000    0.98629 1.00 0.00
#> 461     2   0.000    0.98375 0.00 1.00
#> 462     2   0.000    0.98375 0.00 1.00
#> 463     2   0.000    0.98375 0.00 1.00
#> 464     2   0.141    0.96628 0.02 0.98
#> 465     2   0.000    0.98375 0.00 1.00
#> 466     2   0.000    0.98375 0.00 1.00
#> 467     2   0.000    0.98375 0.00 1.00
#> 468     2   0.000    0.98375 0.00 1.00
#> 469     2   0.000    0.98375 0.00 1.00
#> 470     1   0.000    0.98629 1.00 0.00
#> 471     1   0.000    0.98629 1.00 0.00
#> 472     2   0.000    0.98375 0.00 1.00
#> 473     1   0.000    0.98629 1.00 0.00
#> 474     1   0.000    0.98629 1.00 0.00
#> 475     2   0.000    0.98375 0.00 1.00
#> 476     1   0.000    0.98629 1.00 0.00
#> 477     2   0.000    0.98375 0.00 1.00
#> 478     1   0.000    0.98629 1.00 0.00
#> 479     2   0.000    0.98375 0.00 1.00
#> 480     2   0.000    0.98375 0.00 1.00
#> 481     1   0.000    0.98629 1.00 0.00
#> 482     1   0.000    0.98629 1.00 0.00
#> 483     1   0.000    0.98629 1.00 0.00
#> 484     2   0.000    0.98375 0.00 1.00
#> 485     2   0.000    0.98375 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       3  0.0000     0.9661 0.00 0.00 1.00
#> 2       3  0.0000     0.9661 0.00 0.00 1.00
#> 3       3  0.0000     0.9661 0.00 0.00 1.00
#> 4       3  0.0000     0.9661 0.00 0.00 1.00
#> 5       3  0.0000     0.9661 0.00 0.00 1.00
#> 6       3  0.0000     0.9661 0.00 0.00 1.00
#> 7       3  0.0000     0.9661 0.00 0.00 1.00
#> 8       3  0.0000     0.9661 0.00 0.00 1.00
#> 9       3  0.0000     0.9661 0.00 0.00 1.00
#> 10      3  0.0000     0.9661 0.00 0.00 1.00
#> 11      3  0.5216     0.6458 0.26 0.00 0.74
#> 12      3  0.0000     0.9661 0.00 0.00 1.00
#> 13      3  0.0000     0.9661 0.00 0.00 1.00
#> 14      3  0.0000     0.9661 0.00 0.00 1.00
#> 15      3  0.0000     0.9661 0.00 0.00 1.00
#> 16      1  0.0000     0.9781 1.00 0.00 0.00
#> 17      2  0.0892     0.9715 0.00 0.98 0.02
#> 18      3  0.0000     0.9661 0.00 0.00 1.00
#> 19      3  0.0000     0.9661 0.00 0.00 1.00
#> 20      3  0.0000     0.9661 0.00 0.00 1.00
#> 21      3  0.0000     0.9661 0.00 0.00 1.00
#> 22      3  0.0000     0.9661 0.00 0.00 1.00
#> 23      3  0.0000     0.9661 0.00 0.00 1.00
#> 24      1  0.0000     0.9781 1.00 0.00 0.00
#> 25      3  0.0000     0.9661 0.00 0.00 1.00
#> 26      3  0.0000     0.9661 0.00 0.00 1.00
#> 27      3  0.0000     0.9661 0.00 0.00 1.00
#> 28      3  0.0000     0.9661 0.00 0.00 1.00
#> 29      3  0.0000     0.9661 0.00 0.00 1.00
#> 30      3  0.0000     0.9661 0.00 0.00 1.00
#> 31      3  0.0000     0.9661 0.00 0.00 1.00
#> 32      1  0.0000     0.9781 1.00 0.00 0.00
#> 33      3  0.0000     0.9661 0.00 0.00 1.00
#> 34      1  0.0000     0.9781 1.00 0.00 0.00
#> 35      1  0.0000     0.9781 1.00 0.00 0.00
#> 36      3  0.0000     0.9661 0.00 0.00 1.00
#> 37      3  0.0000     0.9661 0.00 0.00 1.00
#> 38      3  0.0000     0.9661 0.00 0.00 1.00
#> 39      3  0.5948     0.4387 0.36 0.00 0.64
#> 40      3  0.0000     0.9661 0.00 0.00 1.00
#> 41      1  0.0000     0.9781 1.00 0.00 0.00
#> 42      3  0.0000     0.9661 0.00 0.00 1.00
#> 43      3  0.0000     0.9661 0.00 0.00 1.00
#> 44      3  0.0000     0.9661 0.00 0.00 1.00
#> 45      3  0.0000     0.9661 0.00 0.00 1.00
#> 46      1  0.0000     0.9781 1.00 0.00 0.00
#> 47      3  0.0000     0.9661 0.00 0.00 1.00
#> 48      3  0.0000     0.9661 0.00 0.00 1.00
#> 49      1  0.0000     0.9781 1.00 0.00 0.00
#> 50      3  0.0000     0.9661 0.00 0.00 1.00
#> 51      1  0.0000     0.9781 1.00 0.00 0.00
#> 52      3  0.0000     0.9661 0.00 0.00 1.00
#> 53      3  0.0000     0.9661 0.00 0.00 1.00
#> 54      3  0.0000     0.9661 0.00 0.00 1.00
#> 55      3  0.0000     0.9661 0.00 0.00 1.00
#> 56      3  0.0000     0.9661 0.00 0.00 1.00
#> 57      3  0.0000     0.9661 0.00 0.00 1.00
#> 58      3  0.0000     0.9661 0.00 0.00 1.00
#> 59      3  0.0000     0.9661 0.00 0.00 1.00
#> 60      3  0.0000     0.9661 0.00 0.00 1.00
#> 61      3  0.0000     0.9661 0.00 0.00 1.00
#> 62      3  0.0000     0.9661 0.00 0.00 1.00
#> 63      3  0.0000     0.9661 0.00 0.00 1.00
#> 64      3  0.0000     0.9661 0.00 0.00 1.00
#> 65      3  0.0000     0.9661 0.00 0.00 1.00
#> 66      3  0.0000     0.9661 0.00 0.00 1.00
#> 67      3  0.0000     0.9661 0.00 0.00 1.00
#> 68      3  0.0000     0.9661 0.00 0.00 1.00
#> 69      3  0.0000     0.9661 0.00 0.00 1.00
#> 70      3  0.0000     0.9661 0.00 0.00 1.00
#> 71      3  0.0000     0.9661 0.00 0.00 1.00
#> 72      3  0.0000     0.9661 0.00 0.00 1.00
#> 73      3  0.0000     0.9661 0.00 0.00 1.00
#> 74      3  0.0000     0.9661 0.00 0.00 1.00
#> 75      3  0.0000     0.9661 0.00 0.00 1.00
#> 76      3  0.0000     0.9661 0.00 0.00 1.00
#> 77      3  0.0000     0.9661 0.00 0.00 1.00
#> 78      3  0.0000     0.9661 0.00 0.00 1.00
#> 79      3  0.0000     0.9661 0.00 0.00 1.00
#> 80      3  0.2066     0.9208 0.00 0.06 0.94
#> 81      3  0.0000     0.9661 0.00 0.00 1.00
#> 82      3  0.0000     0.9661 0.00 0.00 1.00
#> 83      3  0.0000     0.9661 0.00 0.00 1.00
#> 84      3  0.0000     0.9661 0.00 0.00 1.00
#> 85      3  0.4002     0.8206 0.00 0.16 0.84
#> 86      3  0.0000     0.9661 0.00 0.00 1.00
#> 87      2  0.0000     0.9912 0.00 1.00 0.00
#> 88      3  0.0000     0.9661 0.00 0.00 1.00
#> 89      1  0.1529     0.9403 0.96 0.04 0.00
#> 90      2  0.0000     0.9912 0.00 1.00 0.00
#> 91      2  0.0000     0.9912 0.00 1.00 0.00
#> 92      1  0.0000     0.9781 1.00 0.00 0.00
#> 93      2  0.4002     0.7948 0.16 0.84 0.00
#> 94      2  0.0000     0.9912 0.00 1.00 0.00
#> 95      2  0.0000     0.9912 0.00 1.00 0.00
#> 96      2  0.0000     0.9912 0.00 1.00 0.00
#> 97      1  0.0000     0.9781 1.00 0.00 0.00
#> 98      2  0.6280     0.0863 0.00 0.54 0.46
#> 99      2  0.0000     0.9912 0.00 1.00 0.00
#> 100     1  0.6309     0.0289 0.50 0.50 0.00
#> 101     2  0.0000     0.9912 0.00 1.00 0.00
#> 102     2  0.0000     0.9912 0.00 1.00 0.00
#> 103     2  0.0000     0.9912 0.00 1.00 0.00
#> 104     2  0.0000     0.9912 0.00 1.00 0.00
#> 105     2  0.0000     0.9912 0.00 1.00 0.00
#> 106     1  0.0000     0.9781 1.00 0.00 0.00
#> 107     3  0.2959     0.8746 0.10 0.00 0.90
#> 108     1  0.0000     0.9781 1.00 0.00 0.00
#> 109     1  0.5397     0.6014 0.72 0.00 0.28
#> 110     1  0.0000     0.9781 1.00 0.00 0.00
#> 111     2  0.0000     0.9912 0.00 1.00 0.00
#> 112     2  0.0000     0.9912 0.00 1.00 0.00
#> 113     1  0.3415     0.8847 0.90 0.08 0.02
#> 114     2  0.0000     0.9912 0.00 1.00 0.00
#> 115     2  0.0000     0.9912 0.00 1.00 0.00
#> 116     2  0.0000     0.9912 0.00 1.00 0.00
#> 117     2  0.0000     0.9912 0.00 1.00 0.00
#> 118     2  0.0000     0.9912 0.00 1.00 0.00
#> 119     1  0.0000     0.9781 1.00 0.00 0.00
#> 120     2  0.0000     0.9912 0.00 1.00 0.00
#> 121     2  0.0000     0.9912 0.00 1.00 0.00
#> 122     2  0.0000     0.9912 0.00 1.00 0.00
#> 123     2  0.0000     0.9912 0.00 1.00 0.00
#> 124     2  0.0000     0.9912 0.00 1.00 0.00
#> 125     2  0.0000     0.9912 0.00 1.00 0.00
#> 126     2  0.0000     0.9912 0.00 1.00 0.00
#> 127     2  0.0000     0.9912 0.00 1.00 0.00
#> 128     2  0.0000     0.9912 0.00 1.00 0.00
#> 129     2  0.0000     0.9912 0.00 1.00 0.00
#> 130     2  0.0000     0.9912 0.00 1.00 0.00
#> 131     2  0.0000     0.9912 0.00 1.00 0.00
#> 132     2  0.0000     0.9912 0.00 1.00 0.00
#> 133     2  0.0000     0.9912 0.00 1.00 0.00
#> 134     2  0.0000     0.9912 0.00 1.00 0.00
#> 135     2  0.0000     0.9912 0.00 1.00 0.00
#> 136     2  0.0000     0.9912 0.00 1.00 0.00
#> 137     2  0.0000     0.9912 0.00 1.00 0.00
#> 138     2  0.0000     0.9912 0.00 1.00 0.00
#> 139     2  0.0000     0.9912 0.00 1.00 0.00
#> 140     2  0.0000     0.9912 0.00 1.00 0.00
#> 141     2  0.0000     0.9912 0.00 1.00 0.00
#> 142     1  0.0000     0.9781 1.00 0.00 0.00
#> 143     1  0.5706     0.5461 0.68 0.32 0.00
#> 144     1  0.0000     0.9781 1.00 0.00 0.00
#> 145     1  0.0000     0.9781 1.00 0.00 0.00
#> 146     2  0.0000     0.9912 0.00 1.00 0.00
#> 147     1  0.0000     0.9781 1.00 0.00 0.00
#> 148     2  0.5397     0.6003 0.28 0.72 0.00
#> 149     1  0.0000     0.9781 1.00 0.00 0.00
#> 150     1  0.0000     0.9781 1.00 0.00 0.00
#> 151     2  0.0000     0.9912 0.00 1.00 0.00
#> 152     1  0.0000     0.9781 1.00 0.00 0.00
#> 153     1  0.0000     0.9781 1.00 0.00 0.00
#> 154     2  0.0000     0.9912 0.00 1.00 0.00
#> 155     2  0.0892     0.9688 0.02 0.98 0.00
#> 156     2  0.0000     0.9912 0.00 1.00 0.00
#> 157     1  0.0000     0.9781 1.00 0.00 0.00
#> 158     2  0.0000     0.9912 0.00 1.00 0.00
#> 159     3  0.2066     0.9215 0.00 0.06 0.94
#> 160     3  0.4796     0.7428 0.00 0.22 0.78
#> 161     2  0.0000     0.9912 0.00 1.00 0.00
#> 162     1  0.0000     0.9781 1.00 0.00 0.00
#> 163     2  0.0000     0.9912 0.00 1.00 0.00
#> 164     2  0.0000     0.9912 0.00 1.00 0.00
#> 165     2  0.0000     0.9912 0.00 1.00 0.00
#> 166     1  0.4555     0.7561 0.80 0.20 0.00
#> 167     2  0.4291     0.7756 0.00 0.82 0.18
#> 168     2  0.0892     0.9715 0.00 0.98 0.02
#> 169     2  0.0000     0.9912 0.00 1.00 0.00
#> 170     2  0.0000     0.9912 0.00 1.00 0.00
#> 171     1  0.6192     0.2967 0.58 0.42 0.00
#> 172     2  0.0000     0.9912 0.00 1.00 0.00
#> 173     2  0.0000     0.9912 0.00 1.00 0.00
#> 174     2  0.0000     0.9912 0.00 1.00 0.00
#> 175     1  0.0000     0.9781 1.00 0.00 0.00
#> 176     3  0.4555     0.7706 0.00 0.20 0.80
#> 177     1  0.0000     0.9781 1.00 0.00 0.00
#> 178     2  0.0000     0.9912 0.00 1.00 0.00
#> 179     2  0.0000     0.9912 0.00 1.00 0.00
#> 180     1  0.0000     0.9781 1.00 0.00 0.00
#> 181     1  0.0000     0.9781 1.00 0.00 0.00
#> 182     3  0.4291     0.7979 0.00 0.18 0.82
#> 183     1  0.0000     0.9781 1.00 0.00 0.00
#> 184     1  0.0000     0.9781 1.00 0.00 0.00
#> 185     2  0.0000     0.9912 0.00 1.00 0.00
#> 186     1  0.0000     0.9781 1.00 0.00 0.00
#> 187     1  0.0000     0.9781 1.00 0.00 0.00
#> 188     1  0.0000     0.9781 1.00 0.00 0.00
#> 189     1  0.0000     0.9781 1.00 0.00 0.00
#> 190     1  0.0000     0.9781 1.00 0.00 0.00
#> 191     2  0.0000     0.9912 0.00 1.00 0.00
#> 192     1  0.6126     0.3559 0.60 0.40 0.00
#> 193     1  0.0000     0.9781 1.00 0.00 0.00
#> 194     2  0.0000     0.9912 0.00 1.00 0.00
#> 195     2  0.0000     0.9912 0.00 1.00 0.00
#> 196     2  0.0000     0.9912 0.00 1.00 0.00
#> 197     2  0.0000     0.9912 0.00 1.00 0.00
#> 198     2  0.0000     0.9912 0.00 1.00 0.00
#> 199     2  0.0000     0.9912 0.00 1.00 0.00
#> 200     2  0.0000     0.9912 0.00 1.00 0.00
#> 201     2  0.0000     0.9912 0.00 1.00 0.00
#> 202     2  0.0000     0.9912 0.00 1.00 0.00
#> 203     2  0.0000     0.9912 0.00 1.00 0.00
#> 204     2  0.0000     0.9912 0.00 1.00 0.00
#> 205     2  0.0000     0.9912 0.00 1.00 0.00
#> 206     2  0.0000     0.9912 0.00 1.00 0.00
#> 207     2  0.0000     0.9912 0.00 1.00 0.00
#> 208     2  0.0000     0.9912 0.00 1.00 0.00
#> 209     2  0.0000     0.9912 0.00 1.00 0.00
#> 210     2  0.0000     0.9912 0.00 1.00 0.00
#> 211     2  0.0000     0.9912 0.00 1.00 0.00
#> 212     2  0.0000     0.9912 0.00 1.00 0.00
#> 213     2  0.0000     0.9912 0.00 1.00 0.00
#> 214     2  0.0000     0.9912 0.00 1.00 0.00
#> 215     2  0.0000     0.9912 0.00 1.00 0.00
#> 216     2  0.0000     0.9912 0.00 1.00 0.00
#> 217     2  0.0000     0.9912 0.00 1.00 0.00
#> 218     2  0.0000     0.9912 0.00 1.00 0.00
#> 219     2  0.0000     0.9912 0.00 1.00 0.00
#> 220     2  0.0000     0.9912 0.00 1.00 0.00
#> 221     2  0.0000     0.9912 0.00 1.00 0.00
#> 222     2  0.0000     0.9912 0.00 1.00 0.00
#> 223     1  0.0892     0.9595 0.98 0.02 0.00
#> 224     2  0.0000     0.9912 0.00 1.00 0.00
#> 225     2  0.0000     0.9912 0.00 1.00 0.00
#> 226     1  0.0000     0.9781 1.00 0.00 0.00
#> 227     2  0.0000     0.9912 0.00 1.00 0.00
#> 228     1  0.1529     0.9401 0.96 0.04 0.00
#> 229     2  0.0000     0.9912 0.00 1.00 0.00
#> 230     1  0.0000     0.9781 1.00 0.00 0.00
#> 231     1  0.0000     0.9781 1.00 0.00 0.00
#> 232     2  0.0000     0.9912 0.00 1.00 0.00
#> 233     2  0.0000     0.9912 0.00 1.00 0.00
#> 234     2  0.0000     0.9912 0.00 1.00 0.00
#> 235     2  0.2537     0.8976 0.08 0.92 0.00
#> 236     1  0.0000     0.9781 1.00 0.00 0.00
#> 237     2  0.0000     0.9912 0.00 1.00 0.00
#> 238     2  0.0000     0.9912 0.00 1.00 0.00
#> 239     1  0.0000     0.9781 1.00 0.00 0.00
#> 240     1  0.2537     0.8990 0.92 0.08 0.00
#> 241     1  0.0000     0.9781 1.00 0.00 0.00
#> 242     2  0.0000     0.9912 0.00 1.00 0.00
#> 243     2  0.0000     0.9912 0.00 1.00 0.00
#> 244     2  0.0000     0.9912 0.00 1.00 0.00
#> 245     2  0.0000     0.9912 0.00 1.00 0.00
#> 246     2  0.0000     0.9912 0.00 1.00 0.00
#> 247     2  0.0000     0.9912 0.00 1.00 0.00
#> 248     2  0.0000     0.9912 0.00 1.00 0.00
#> 249     2  0.0000     0.9912 0.00 1.00 0.00
#> 250     2  0.0000     0.9912 0.00 1.00 0.00
#> 251     2  0.0000     0.9912 0.00 1.00 0.00
#> 252     2  0.0000     0.9912 0.00 1.00 0.00
#> 253     2  0.0000     0.9912 0.00 1.00 0.00
#> 254     2  0.0000     0.9912 0.00 1.00 0.00
#> 255     2  0.0000     0.9912 0.00 1.00 0.00
#> 256     1  0.4555     0.7569 0.80 0.20 0.00
#> 257     1  0.0000     0.9781 1.00 0.00 0.00
#> 258     2  0.0000     0.9912 0.00 1.00 0.00
#> 259     2  0.0000     0.9912 0.00 1.00 0.00
#> 260     2  0.0000     0.9912 0.00 1.00 0.00
#> 261     1  0.5835     0.5031 0.66 0.34 0.00
#> 262     2  0.0000     0.9912 0.00 1.00 0.00
#> 263     2  0.0000     0.9912 0.00 1.00 0.00
#> 264     2  0.0000     0.9912 0.00 1.00 0.00
#> 265     2  0.0000     0.9912 0.00 1.00 0.00
#> 266     1  0.0892     0.9595 0.98 0.02 0.00
#> 267     2  0.0000     0.9912 0.00 1.00 0.00
#> 268     2  0.0000     0.9912 0.00 1.00 0.00
#> 269     1  0.0000     0.9781 1.00 0.00 0.00
#> 270     2  0.0000     0.9912 0.00 1.00 0.00
#> 271     2  0.0000     0.9912 0.00 1.00 0.00
#> 272     2  0.0000     0.9912 0.00 1.00 0.00
#> 273     1  0.5216     0.6618 0.74 0.26 0.00
#> 274     1  0.0000     0.9781 1.00 0.00 0.00
#> 275     2  0.0000     0.9912 0.00 1.00 0.00
#> 276     2  0.0000     0.9912 0.00 1.00 0.00
#> 277     2  0.0000     0.9912 0.00 1.00 0.00
#> 278     2  0.0000     0.9912 0.00 1.00 0.00
#> 279     1  0.4796     0.7266 0.78 0.22 0.00
#> 280     2  0.0000     0.9912 0.00 1.00 0.00
#> 281     1  0.0000     0.9781 1.00 0.00 0.00
#> 282     1  0.0000     0.9781 1.00 0.00 0.00
#> 283     1  0.0000     0.9781 1.00 0.00 0.00
#> 284     1  0.0000     0.9781 1.00 0.00 0.00
#> 285     1  0.0000     0.9781 1.00 0.00 0.00
#> 286     1  0.0000     0.9781 1.00 0.00 0.00
#> 287     1  0.0000     0.9781 1.00 0.00 0.00
#> 288     1  0.0000     0.9781 1.00 0.00 0.00
#> 289     1  0.0000     0.9781 1.00 0.00 0.00
#> 290     1  0.4291     0.7842 0.82 0.18 0.00
#> 291     2  0.0000     0.9912 0.00 1.00 0.00
#> 292     1  0.0000     0.9781 1.00 0.00 0.00
#> 293     1  0.0000     0.9781 1.00 0.00 0.00
#> 294     1  0.0000     0.9781 1.00 0.00 0.00
#> 295     1  0.0000     0.9781 1.00 0.00 0.00
#> 296     1  0.0000     0.9781 1.00 0.00 0.00
#> 297     1  0.0000     0.9781 1.00 0.00 0.00
#> 298     1  0.0000     0.9781 1.00 0.00 0.00
#> 299     1  0.0000     0.9781 1.00 0.00 0.00
#> 300     1  0.0000     0.9781 1.00 0.00 0.00
#> 301     1  0.0000     0.9781 1.00 0.00 0.00
#> 302     1  0.0000     0.9781 1.00 0.00 0.00
#> 303     1  0.0000     0.9781 1.00 0.00 0.00
#> 304     1  0.0000     0.9781 1.00 0.00 0.00
#> 305     1  0.0000     0.9781 1.00 0.00 0.00
#> 306     1  0.0000     0.9781 1.00 0.00 0.00
#> 307     1  0.0000     0.9781 1.00 0.00 0.00
#> 308     2  0.0000     0.9912 0.00 1.00 0.00
#> 309     3  0.0000     0.9661 0.00 0.00 1.00
#> 310     1  0.0000     0.9781 1.00 0.00 0.00
#> 311     1  0.0000     0.9781 1.00 0.00 0.00
#> 312     1  0.0000     0.9781 1.00 0.00 0.00
#> 313     1  0.0000     0.9781 1.00 0.00 0.00
#> 314     1  0.0000     0.9781 1.00 0.00 0.00
#> 315     1  0.0000     0.9781 1.00 0.00 0.00
#> 316     1  0.0000     0.9781 1.00 0.00 0.00
#> 317     1  0.0000     0.9781 1.00 0.00 0.00
#> 318     1  0.0000     0.9781 1.00 0.00 0.00
#> 319     2  0.0000     0.9912 0.00 1.00 0.00
#> 320     2  0.0000     0.9912 0.00 1.00 0.00
#> 321     1  0.0000     0.9781 1.00 0.00 0.00
#> 322     2  0.0000     0.9912 0.00 1.00 0.00
#> 323     1  0.0000     0.9781 1.00 0.00 0.00
#> 324     1  0.0892     0.9595 0.98 0.02 0.00
#> 325     1  0.0000     0.9781 1.00 0.00 0.00
#> 326     1  0.0000     0.9781 1.00 0.00 0.00
#> 327     1  0.0000     0.9781 1.00 0.00 0.00
#> 328     1  0.0000     0.9781 1.00 0.00 0.00
#> 329     1  0.0000     0.9781 1.00 0.00 0.00
#> 330     1  0.0000     0.9781 1.00 0.00 0.00
#> 331     1  0.0000     0.9781 1.00 0.00 0.00
#> 332     1  0.0000     0.9781 1.00 0.00 0.00
#> 333     1  0.0000     0.9781 1.00 0.00 0.00
#> 334     1  0.0000     0.9781 1.00 0.00 0.00
#> 335     1  0.0000     0.9781 1.00 0.00 0.00
#> 336     1  0.0000     0.9781 1.00 0.00 0.00
#> 337     1  0.0000     0.9781 1.00 0.00 0.00
#> 338     1  0.0000     0.9781 1.00 0.00 0.00
#> 339     1  0.0000     0.9781 1.00 0.00 0.00
#> 340     1  0.0000     0.9781 1.00 0.00 0.00
#> 341     1  0.0000     0.9781 1.00 0.00 0.00
#> 342     1  0.0000     0.9781 1.00 0.00 0.00
#> 343     1  0.0000     0.9781 1.00 0.00 0.00
#> 344     1  0.0000     0.9781 1.00 0.00 0.00
#> 345     1  0.0000     0.9781 1.00 0.00 0.00
#> 346     2  0.0000     0.9912 0.00 1.00 0.00
#> 347     2  0.0000     0.9912 0.00 1.00 0.00
#> 348     2  0.0000     0.9912 0.00 1.00 0.00
#> 349     2  0.0000     0.9912 0.00 1.00 0.00
#> 350     1  0.0000     0.9781 1.00 0.00 0.00
#> 351     1  0.0000     0.9781 1.00 0.00 0.00
#> 352     1  0.0000     0.9781 1.00 0.00 0.00
#> 353     1  0.0000     0.9781 1.00 0.00 0.00
#> 354     1  0.0000     0.9781 1.00 0.00 0.00
#> 355     1  0.0000     0.9781 1.00 0.00 0.00
#> 356     1  0.5016     0.6947 0.76 0.24 0.00
#> 357     1  0.0000     0.9781 1.00 0.00 0.00
#> 358     1  0.0000     0.9781 1.00 0.00 0.00
#> 359     1  0.0000     0.9781 1.00 0.00 0.00
#> 360     1  0.0000     0.9781 1.00 0.00 0.00
#> 361     1  0.0000     0.9781 1.00 0.00 0.00
#> 362     1  0.0000     0.9781 1.00 0.00 0.00
#> 363     1  0.0000     0.9781 1.00 0.00 0.00
#> 364     2  0.0000     0.9912 0.00 1.00 0.00
#> 365     1  0.0000     0.9781 1.00 0.00 0.00
#> 366     1  0.0000     0.9781 1.00 0.00 0.00
#> 367     1  0.0000     0.9781 1.00 0.00 0.00
#> 368     1  0.0000     0.9781 1.00 0.00 0.00
#> 369     1  0.0000     0.9781 1.00 0.00 0.00
#> 370     1  0.0000     0.9781 1.00 0.00 0.00
#> 371     1  0.0000     0.9781 1.00 0.00 0.00
#> 372     1  0.0000     0.9781 1.00 0.00 0.00
#> 373     1  0.0000     0.9781 1.00 0.00 0.00
#> 374     1  0.0000     0.9781 1.00 0.00 0.00
#> 375     1  0.0000     0.9781 1.00 0.00 0.00
#> 376     1  0.0000     0.9781 1.00 0.00 0.00
#> 377     1  0.0000     0.9781 1.00 0.00 0.00
#> 378     1  0.0000     0.9781 1.00 0.00 0.00
#> 379     1  0.0000     0.9781 1.00 0.00 0.00
#> 380     1  0.0000     0.9781 1.00 0.00 0.00
#> 381     1  0.0000     0.9781 1.00 0.00 0.00
#> 382     1  0.0000     0.9781 1.00 0.00 0.00
#> 383     1  0.0000     0.9781 1.00 0.00 0.00
#> 384     1  0.0000     0.9781 1.00 0.00 0.00
#> 385     1  0.0000     0.9781 1.00 0.00 0.00
#> 386     1  0.0000     0.9781 1.00 0.00 0.00
#> 387     1  0.0000     0.9781 1.00 0.00 0.00
#> 388     3  0.5016     0.7131 0.00 0.24 0.76
#> 389     1  0.0000     0.9781 1.00 0.00 0.00
#> 390     2  0.0000     0.9912 0.00 1.00 0.00
#> 391     1  0.0000     0.9781 1.00 0.00 0.00
#> 392     2  0.0000     0.9912 0.00 1.00 0.00
#> 393     1  0.0000     0.9781 1.00 0.00 0.00
#> 394     1  0.0000     0.9781 1.00 0.00 0.00
#> 395     1  0.0000     0.9781 1.00 0.00 0.00
#> 396     1  0.0000     0.9781 1.00 0.00 0.00
#> 397     1  0.0000     0.9781 1.00 0.00 0.00
#> 398     2  0.0000     0.9912 0.00 1.00 0.00
#> 399     1  0.0000     0.9781 1.00 0.00 0.00
#> 400     1  0.0000     0.9781 1.00 0.00 0.00
#> 401     1  0.0000     0.9781 1.00 0.00 0.00
#> 402     1  0.0000     0.9781 1.00 0.00 0.00
#> 403     1  0.0000     0.9781 1.00 0.00 0.00
#> 404     2  0.0892     0.9687 0.02 0.98 0.00
#> 405     1  0.0000     0.9781 1.00 0.00 0.00
#> 406     2  0.0000     0.9912 0.00 1.00 0.00
#> 407     2  0.0000     0.9912 0.00 1.00 0.00
#> 408     2  0.0000     0.9912 0.00 1.00 0.00
#> 409     2  0.0000     0.9912 0.00 1.00 0.00
#> 410     1  0.0000     0.9781 1.00 0.00 0.00
#> 411     1  0.0000     0.9781 1.00 0.00 0.00
#> 412     1  0.0000     0.9781 1.00 0.00 0.00
#> 413     1  0.0000     0.9781 1.00 0.00 0.00
#> 414     3  0.1529     0.9372 0.00 0.04 0.96
#> 415     3  0.2959     0.8851 0.00 0.10 0.90
#> 416     3  0.0000     0.9661 0.00 0.00 1.00
#> 417     3  0.4555     0.7710 0.00 0.20 0.80
#> 418     3  0.0000     0.9661 0.00 0.00 1.00
#> 419     3  0.2959     0.8851 0.00 0.10 0.90
#> 420     3  0.5706     0.5697 0.00 0.32 0.68
#> 421     1  0.0000     0.9781 1.00 0.00 0.00
#> 422     3  0.0000     0.9661 0.00 0.00 1.00
#> 423     3  0.0000     0.9661 0.00 0.00 1.00
#> 424     1  0.0000     0.9781 1.00 0.00 0.00
#> 425     3  0.0000     0.9661 0.00 0.00 1.00
#> 426     1  0.0000     0.9781 1.00 0.00 0.00
#> 427     3  0.0000     0.9661 0.00 0.00 1.00
#> 428     3  0.2066     0.9213 0.00 0.06 0.94
#> 429     3  0.4555     0.7708 0.00 0.20 0.80
#> 430     1  0.0000     0.9781 1.00 0.00 0.00
#> 431     3  0.5560     0.6095 0.00 0.30 0.70
#> 432     2  0.0000     0.9912 0.00 1.00 0.00
#> 433     3  0.0000     0.9661 0.00 0.00 1.00
#> 434     3  0.5016     0.7130 0.00 0.24 0.76
#> 435     3  0.0000     0.9661 0.00 0.00 1.00
#> 436     2  0.0000     0.9912 0.00 1.00 0.00
#> 437     3  0.0000     0.9661 0.00 0.00 1.00
#> 438     3  0.0000     0.9661 0.00 0.00 1.00
#> 439     3  0.0000     0.9661 0.00 0.00 1.00
#> 440     2  0.0000     0.9912 0.00 1.00 0.00
#> 441     1  0.0000     0.9781 1.00 0.00 0.00
#> 442     2  0.0000     0.9912 0.00 1.00 0.00
#> 443     1  0.0000     0.9781 1.00 0.00 0.00
#> 444     3  0.5397     0.6462 0.00 0.28 0.72
#> 445     2  0.0000     0.9912 0.00 1.00 0.00
#> 446     1  0.0000     0.9781 1.00 0.00 0.00
#> 447     1  0.0000     0.9781 1.00 0.00 0.00
#> 448     3  0.0000     0.9661 0.00 0.00 1.00
#> 449     2  0.0000     0.9912 0.00 1.00 0.00
#> 450     1  0.0000     0.9781 1.00 0.00 0.00
#> 451     1  0.0000     0.9781 1.00 0.00 0.00
#> 452     1  0.0000     0.9781 1.00 0.00 0.00
#> 453     1  0.0000     0.9781 1.00 0.00 0.00
#> 454     2  0.0000     0.9912 0.00 1.00 0.00
#> 455     1  0.0000     0.9781 1.00 0.00 0.00
#> 456     1  0.2537     0.8982 0.92 0.00 0.08
#> 457     3  0.0000     0.9661 0.00 0.00 1.00
#> 458     3  0.2537     0.9038 0.00 0.08 0.92
#> 459     1  0.0000     0.9781 1.00 0.00 0.00
#> 460     1  0.0000     0.9781 1.00 0.00 0.00
#> 461     3  0.0000     0.9661 0.00 0.00 1.00
#> 462     2  0.0000     0.9912 0.00 1.00 0.00
#> 463     2  0.0000     0.9912 0.00 1.00 0.00
#> 464     3  0.0000     0.9661 0.00 0.00 1.00
#> 465     2  0.0000     0.9912 0.00 1.00 0.00
#> 466     2  0.0000     0.9912 0.00 1.00 0.00
#> 467     3  0.0000     0.9661 0.00 0.00 1.00
#> 468     3  0.0000     0.9661 0.00 0.00 1.00
#> 469     2  0.0000     0.9912 0.00 1.00 0.00
#> 470     1  0.0000     0.9781 1.00 0.00 0.00
#> 471     1  0.0000     0.9781 1.00 0.00 0.00
#> 472     2  0.0000     0.9912 0.00 1.00 0.00
#> 473     1  0.0000     0.9781 1.00 0.00 0.00
#> 474     1  0.0000     0.9781 1.00 0.00 0.00
#> 475     3  0.0000     0.9661 0.00 0.00 1.00
#> 476     3  0.0000     0.9661 0.00 0.00 1.00
#> 477     2  0.2959     0.8798 0.00 0.90 0.10
#> 478     1  0.0000     0.9781 1.00 0.00 0.00
#> 479     3  0.0000     0.9661 0.00 0.00 1.00
#> 480     3  0.0000     0.9661 0.00 0.00 1.00
#> 481     1  0.0000     0.9781 1.00 0.00 0.00
#> 482     1  0.0000     0.9781 1.00 0.00 0.00
#> 483     3  0.3340     0.8504 0.12 0.00 0.88
#> 484     3  0.2066     0.9218 0.00 0.06 0.94
#> 485     3  0.0000     0.9661 0.00 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 2       3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 3       3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 4       3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 5       3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 6       3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 7       3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 8       3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 9       3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 10      3  0.3400     0.7564 0.00 0.00 0.82 0.18
#> 11      3  0.0707     0.9515 0.02 0.00 0.98 0.00
#> 12      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 13      3  0.4522     0.5325 0.00 0.00 0.68 0.32
#> 14      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 15      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 16      1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 17      2  0.3821     0.8535 0.00 0.84 0.04 0.12
#> 18      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 19      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 20      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 21      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 22      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 23      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 24      1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 25      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 26      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 27      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 28      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 29      4  0.3975     0.6793 0.00 0.00 0.24 0.76
#> 30      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 31      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 32      1  0.1637     0.9160 0.94 0.00 0.06 0.00
#> 33      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 34      1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 35      4  0.2011     0.8456 0.08 0.00 0.00 0.92
#> 36      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 37      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 38      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 39      4  0.4755     0.7050 0.20 0.00 0.04 0.76
#> 40      4  0.2921     0.7975 0.00 0.00 0.14 0.86
#> 41      1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 42      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 43      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 44      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 45      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 46      1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 47      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 48      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 49      1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 50      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 51      1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 52      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 53      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 54      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 55      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 56      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 57      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 58      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 59      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 60      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 61      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 62      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 63      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 64      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 65      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 66      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 67      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 68      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 69      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 70      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 71      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 72      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 73      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 74      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 75      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 76      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 77      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 78      3  0.3172     0.7824 0.00 0.00 0.84 0.16
#> 79      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 80      3  0.4731     0.7025 0.00 0.06 0.78 0.16
#> 81      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 82      3  0.2921     0.8117 0.00 0.00 0.86 0.14
#> 83      3  0.4907     0.2913 0.00 0.00 0.58 0.42
#> 84      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 85      4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 86      4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 87      2  0.3801     0.7957 0.00 0.78 0.00 0.22
#> 88      3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 89      1  0.3172     0.7962 0.84 0.16 0.00 0.00
#> 90      2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 91      2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 92      1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 93      2  0.2011     0.8271 0.08 0.92 0.00 0.00
#> 94      2  0.2647     0.8700 0.00 0.88 0.00 0.12
#> 95      2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 96      2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 97      1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 98      4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 99      2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 100     2  0.4713     0.4518 0.36 0.64 0.00 0.00
#> 101     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 102     2  0.0707     0.8940 0.00 0.98 0.00 0.02
#> 103     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 104     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 105     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 106     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 107     3  0.1211     0.9239 0.04 0.00 0.96 0.00
#> 108     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 109     4  0.2647     0.8093 0.12 0.00 0.00 0.88
#> 110     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 111     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 112     2  0.0707     0.8940 0.00 0.98 0.00 0.02
#> 113     1  0.4610     0.7450 0.80 0.10 0.00 0.10
#> 114     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 115     2  0.2345     0.8792 0.00 0.90 0.00 0.10
#> 116     2  0.1211     0.8916 0.00 0.96 0.00 0.04
#> 117     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 118     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 119     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 120     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 121     2  0.3801     0.7957 0.00 0.78 0.00 0.22
#> 122     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 123     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 124     2  0.2011     0.8841 0.00 0.92 0.00 0.08
#> 125     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 126     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 127     2  0.2647     0.8700 0.00 0.88 0.00 0.12
#> 128     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 129     2  0.0707     0.8940 0.00 0.98 0.00 0.02
#> 130     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 131     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 132     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 133     2  0.3975     0.7739 0.00 0.76 0.00 0.24
#> 134     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 135     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 136     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 137     2  0.4277     0.7238 0.00 0.72 0.00 0.28
#> 138     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 139     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 140     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 141     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 142     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 143     2  0.4406     0.5187 0.30 0.70 0.00 0.00
#> 144     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 145     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 146     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 147     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 148     2  0.2345     0.8048 0.10 0.90 0.00 0.00
#> 149     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 150     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 151     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 152     1  0.0707     0.9556 0.98 0.02 0.00 0.00
#> 153     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 154     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 155     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 156     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 157     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 158     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 159     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 160     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 161     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 162     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 163     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 164     2  0.4994     0.3116 0.00 0.52 0.00 0.48
#> 165     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 166     1  0.4977     0.1845 0.54 0.46 0.00 0.00
#> 167     2  0.7179     0.2830 0.00 0.48 0.38 0.14
#> 168     2  0.3606     0.8529 0.00 0.84 0.02 0.14
#> 169     2  0.3801     0.7957 0.00 0.78 0.00 0.22
#> 170     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 171     2  0.4855     0.3255 0.40 0.60 0.00 0.00
#> 172     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 173     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 174     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 175     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 176     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 177     1  0.4907     0.2222 0.58 0.00 0.00 0.42
#> 178     4  0.0707     0.8867 0.00 0.02 0.00 0.98
#> 179     2  0.3801     0.7957 0.00 0.78 0.00 0.22
#> 180     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 181     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 182     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 183     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 184     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 185     2  0.1637     0.8892 0.00 0.94 0.00 0.06
#> 186     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 187     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 188     1  0.1211     0.9365 0.96 0.04 0.00 0.00
#> 189     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 190     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 191     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 192     2  0.4790     0.3841 0.38 0.62 0.00 0.00
#> 193     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 194     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 195     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 196     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 197     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 198     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 199     2  0.0707     0.8940 0.00 0.98 0.00 0.02
#> 200     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 201     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 202     2  0.0707     0.8940 0.00 0.98 0.00 0.02
#> 203     2  0.3610     0.8154 0.00 0.80 0.00 0.20
#> 204     2  0.3610     0.8154 0.00 0.80 0.00 0.20
#> 205     2  0.1637     0.8883 0.00 0.94 0.00 0.06
#> 206     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 207     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 208     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 209     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 210     2  0.3975     0.7745 0.00 0.76 0.00 0.24
#> 211     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 212     2  0.1637     0.8887 0.00 0.94 0.00 0.06
#> 213     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 214     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 215     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 216     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 217     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 218     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 219     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 220     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 221     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 222     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 223     1  0.3172     0.8029 0.84 0.16 0.00 0.00
#> 224     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 225     2  0.4277     0.7245 0.00 0.72 0.00 0.28
#> 226     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 227     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 228     1  0.3975     0.6894 0.76 0.24 0.00 0.00
#> 229     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 230     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 231     1  0.2345     0.8736 0.90 0.10 0.00 0.00
#> 232     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 233     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 234     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 235     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 236     1  0.2011     0.8955 0.92 0.08 0.00 0.00
#> 237     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 238     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 239     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 240     1  0.4855     0.3776 0.60 0.40 0.00 0.00
#> 241     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 242     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 243     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 244     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 245     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 246     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 247     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 248     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 249     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 250     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 251     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 252     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 253     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 254     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 255     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 256     2  0.4977     0.1033 0.46 0.54 0.00 0.00
#> 257     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 258     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 259     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 260     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 261     2  0.4855     0.3092 0.40 0.60 0.00 0.00
#> 262     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 263     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 264     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 265     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 266     1  0.3801     0.7181 0.78 0.22 0.00 0.00
#> 267     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 268     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 269     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 270     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 271     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 272     2  0.2011     0.8841 0.00 0.92 0.00 0.08
#> 273     2  0.4948     0.1760 0.44 0.56 0.00 0.00
#> 274     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 275     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 276     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 277     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 278     4  0.0707     0.8865 0.00 0.02 0.00 0.98
#> 279     2  0.4994     0.0296 0.48 0.52 0.00 0.00
#> 280     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 281     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 282     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 283     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 284     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 285     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 286     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 287     1  0.2921     0.8264 0.86 0.14 0.00 0.00
#> 288     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 289     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 290     1  0.4790     0.4269 0.62 0.38 0.00 0.00
#> 291     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 292     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 293     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 294     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 295     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 296     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 297     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 298     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 299     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 300     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 301     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 302     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 303     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 304     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 305     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 306     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 307     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 308     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 309     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 310     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 311     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 312     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 313     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 314     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 315     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 316     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 317     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 318     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 319     2  0.2011     0.8841 0.00 0.92 0.00 0.08
#> 320     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 321     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 322     2  0.4134     0.7511 0.00 0.74 0.00 0.26
#> 323     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 324     1  0.3400     0.7753 0.82 0.18 0.00 0.00
#> 325     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 326     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 327     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 328     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 329     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 330     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 331     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 332     1  0.2647     0.8465 0.88 0.00 0.00 0.12
#> 333     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 334     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 335     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 336     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 337     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 338     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 339     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 340     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 341     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 342     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 343     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 344     1  0.0707     0.9555 0.98 0.00 0.02 0.00
#> 345     1  0.1637     0.9165 0.94 0.06 0.00 0.00
#> 346     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 347     2  0.3610     0.8154 0.00 0.80 0.00 0.20
#> 348     2  0.2011     0.8841 0.00 0.92 0.00 0.08
#> 349     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 350     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 351     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 352     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 353     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 354     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 355     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 356     2  0.4948     0.1777 0.44 0.56 0.00 0.00
#> 357     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 358     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 359     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 360     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 361     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 362     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 363     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 364     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 365     1  0.2345     0.8736 0.90 0.10 0.00 0.00
#> 366     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 367     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 368     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 369     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 370     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 371     1  0.2011     0.8948 0.92 0.00 0.00 0.08
#> 372     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 373     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 374     1  0.2345     0.8736 0.90 0.10 0.00 0.00
#> 375     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 376     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 377     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 378     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 379     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 380     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 381     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 382     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 383     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 384     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 385     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 386     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 387     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 388     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 389     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 390     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 391     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 392     2  0.1211     0.8917 0.00 0.96 0.00 0.04
#> 393     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 394     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 395     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 396     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 397     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 398     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 399     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 400     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 401     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 402     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 403     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 404     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 405     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 406     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 407     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 408     2  0.4522     0.6635 0.00 0.68 0.00 0.32
#> 409     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 410     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 411     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 412     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 413     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 414     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 415     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 416     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 417     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 418     4  0.3172     0.7765 0.00 0.00 0.16 0.84
#> 419     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 420     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 421     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 422     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 423     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 424     1  0.2011     0.8953 0.92 0.00 0.00 0.08
#> 425     4  0.2647     0.8174 0.00 0.00 0.12 0.88
#> 426     4  0.3172     0.7682 0.16 0.00 0.00 0.84
#> 427     4  0.0707     0.8934 0.00 0.00 0.02 0.98
#> 428     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 429     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 430     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 431     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 432     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 433     3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 434     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 435     3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 436     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 437     4  0.2345     0.8352 0.00 0.00 0.10 0.90
#> 438     4  0.3610     0.7373 0.00 0.00 0.20 0.80
#> 439     4  0.2345     0.8352 0.00 0.00 0.10 0.90
#> 440     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 441     4  0.4713     0.4717 0.36 0.00 0.00 0.64
#> 442     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 443     4  0.5000     0.0541 0.50 0.00 0.00 0.50
#> 444     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 445     2  0.2345     0.8785 0.00 0.90 0.00 0.10
#> 446     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 447     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 448     3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 449     2  0.4134     0.7525 0.00 0.74 0.00 0.26
#> 450     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 451     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 452     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 453     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 454     2  0.3172     0.8474 0.00 0.84 0.00 0.16
#> 455     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 456     4  0.2647     0.8093 0.12 0.00 0.00 0.88
#> 457     4  0.4406     0.5347 0.00 0.00 0.30 0.70
#> 458     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 459     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 460     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 461     3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 462     2  0.4406     0.5965 0.00 0.70 0.00 0.30
#> 463     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 464     4  0.0707     0.8934 0.00 0.00 0.02 0.98
#> 465     2  0.0000     0.8955 0.00 1.00 0.00 0.00
#> 466     2  0.3400     0.8329 0.00 0.82 0.00 0.18
#> 467     4  0.5000     0.0342 0.00 0.00 0.50 0.50
#> 468     3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 469     2  0.2921     0.8601 0.00 0.86 0.00 0.14
#> 470     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 471     1  0.0707     0.9558 0.98 0.00 0.00 0.02
#> 472     2  0.2011     0.8841 0.00 0.92 0.00 0.08
#> 473     4  0.4624     0.5187 0.34 0.00 0.00 0.66
#> 474     4  0.3172     0.7669 0.16 0.00 0.00 0.84
#> 475     4  0.1637     0.8674 0.00 0.00 0.06 0.94
#> 476     4  0.3935     0.8023 0.06 0.00 0.10 0.84
#> 477     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 478     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 479     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 480     3  0.0000     0.9782 0.00 0.00 1.00 0.00
#> 481     1  0.4624     0.4511 0.66 0.00 0.00 0.34
#> 482     1  0.0000     0.9738 1.00 0.00 0.00 0.00
#> 483     4  0.3335     0.8005 0.12 0.00 0.02 0.86
#> 484     4  0.0000     0.9037 0.00 0.00 0.00 1.00
#> 485     4  0.2921     0.7975 0.00 0.00 0.14 0.86

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-011-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-011-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-011-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-011-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-011-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-011-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-011-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-011-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-011-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-011-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-011-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-011-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-011-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-011-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-011-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-011-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-011-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      476              3.77e-03 2
#> ATC:skmeans      480              5.10e-07 3
#> ATC:skmeans      466              3.65e-34 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node0113

Parent node: Node011. Child nodes: Node01131-leaf , Node01132-leaf , Node01133-leaf , Node01211-leaf , Node01212-leaf , Node01221-leaf , Node01222-leaf , Node01223-leaf , Node01231-leaf , Node01232-leaf , Node01233-leaf , Node01234-leaf , Node02111 , Node02112 , Node02113-leaf , Node02121-leaf , Node02122-leaf , Node02123-leaf , Node02221-leaf , Node02222-leaf , Node03111-leaf , Node03112-leaf , Node03121-leaf , Node03122 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0113"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 7277 rows and 119 columns.
#>   Top rows (728) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0113-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0113-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.982           0.963       0.984         0.4984 0.499   0.499
#> 3 3 1.000           0.964       0.985         0.3433 0.724   0.501
#> 4 4 0.814           0.855       0.898         0.0957 0.927   0.781

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       1   0.000      0.999 1.00 0.00
#> 2       1   0.000      0.999 1.00 0.00
#> 3       2   0.999      0.131 0.48 0.52
#> 4       1   0.000      0.999 1.00 0.00
#> 5       1   0.000      0.999 1.00 0.00
#> 6       1   0.000      0.999 1.00 0.00
#> 7       1   0.000      0.999 1.00 0.00
#> 8       1   0.000      0.999 1.00 0.00
#> 9       1   0.000      0.999 1.00 0.00
#> 10      2   0.242      0.935 0.04 0.96
#> 11      1   0.000      0.999 1.00 0.00
#> 12      1   0.000      0.999 1.00 0.00
#> 13      2   0.000      0.964 0.00 1.00
#> 14      1   0.000      0.999 1.00 0.00
#> 15      1   0.000      0.999 1.00 0.00
#> 16      2   0.722      0.762 0.20 0.80
#> 17      1   0.000      0.999 1.00 0.00
#> 18      2   0.722      0.767 0.20 0.80
#> 19      1   0.000      0.999 1.00 0.00
#> 20      1   0.000      0.999 1.00 0.00
#> 21      1   0.000      0.999 1.00 0.00
#> 22      1   0.000      0.999 1.00 0.00
#> 23      1   0.000      0.999 1.00 0.00
#> 24      1   0.000      0.999 1.00 0.00
#> 25      1   0.000      0.999 1.00 0.00
#> 26      2   0.000      0.964 0.00 1.00
#> 27      1   0.000      0.999 1.00 0.00
#> 28      1   0.000      0.999 1.00 0.00
#> 29      1   0.000      0.999 1.00 0.00
#> 30      1   0.000      0.999 1.00 0.00
#> 31      1   0.000      0.999 1.00 0.00
#> 32      2   0.327      0.918 0.06 0.94
#> 33      2   0.000      0.964 0.00 1.00
#> 34      2   0.000      0.964 0.00 1.00
#> 35      2   0.904      0.568 0.32 0.68
#> 36      2   0.904      0.564 0.32 0.68
#> 37      1   0.000      0.999 1.00 0.00
#> 38      1   0.000      0.999 1.00 0.00
#> 39      1   0.000      0.999 1.00 0.00
#> 40      1   0.000      0.999 1.00 0.00
#> 41      1   0.000      0.999 1.00 0.00
#> 42      1   0.000      0.999 1.00 0.00
#> 43      1   0.000      0.999 1.00 0.00
#> 44      1   0.000      0.999 1.00 0.00
#> 45      1   0.000      0.999 1.00 0.00
#> 46      1   0.000      0.999 1.00 0.00
#> 47      1   0.000      0.999 1.00 0.00
#> 48      1   0.000      0.999 1.00 0.00
#> 49      1   0.000      0.999 1.00 0.00
#> 50      1   0.000      0.999 1.00 0.00
#> 51      1   0.000      0.999 1.00 0.00
#> 52      1   0.000      0.999 1.00 0.00
#> 53      1   0.000      0.999 1.00 0.00
#> 54      1   0.000      0.999 1.00 0.00
#> 55      1   0.000      0.999 1.00 0.00
#> 56      1   0.000      0.999 1.00 0.00
#> 57      1   0.000      0.999 1.00 0.00
#> 58      1   0.000      0.999 1.00 0.00
#> 59      1   0.000      0.999 1.00 0.00
#> 60      1   0.000      0.999 1.00 0.00
#> 61      1   0.000      0.999 1.00 0.00
#> 62      1   0.000      0.999 1.00 0.00
#> 63      2   0.000      0.964 0.00 1.00
#> 64      1   0.000      0.999 1.00 0.00
#> 65      1   0.141      0.979 0.98 0.02
#> 66      1   0.000      0.999 1.00 0.00
#> 67      1   0.000      0.999 1.00 0.00
#> 68      2   0.000      0.964 0.00 1.00
#> 69      1   0.000      0.999 1.00 0.00
#> 70      2   0.402      0.901 0.08 0.92
#> 71      1   0.000      0.999 1.00 0.00
#> 72      2   0.469      0.883 0.10 0.90
#> 73      2   0.000      0.964 0.00 1.00
#> 74      1   0.000      0.999 1.00 0.00
#> 75      2   0.000      0.964 0.00 1.00
#> 76      2   0.000      0.964 0.00 1.00
#> 77      1   0.000      0.999 1.00 0.00
#> 78      2   0.529      0.862 0.12 0.88
#> 79      2   0.000      0.964 0.00 1.00
#> 80      2   0.000      0.964 0.00 1.00
#> 81      2   0.000      0.964 0.00 1.00
#> 82      2   0.000      0.964 0.00 1.00
#> 83      2   0.000      0.964 0.00 1.00
#> 84      2   0.000      0.964 0.00 1.00
#> 85      2   0.000      0.964 0.00 1.00
#> 86      2   0.000      0.964 0.00 1.00
#> 87      2   0.000      0.964 0.00 1.00
#> 88      2   0.000      0.964 0.00 1.00
#> 89      2   0.000      0.964 0.00 1.00
#> 90      2   0.000      0.964 0.00 1.00
#> 91      2   0.000      0.964 0.00 1.00
#> 92      2   0.000      0.964 0.00 1.00
#> 93      2   0.000      0.964 0.00 1.00
#> 94      2   0.000      0.964 0.00 1.00
#> 95      2   0.000      0.964 0.00 1.00
#> 96      2   0.000      0.964 0.00 1.00
#> 97      2   0.000      0.964 0.00 1.00
#> 98      2   0.000      0.964 0.00 1.00
#> 99      1   0.000      0.999 1.00 0.00
#> 100     2   0.000      0.964 0.00 1.00
#> 101     1   0.000      0.999 1.00 0.00
#> 102     2   0.000      0.964 0.00 1.00
#> 103     2   0.000      0.964 0.00 1.00
#> 104     2   0.000      0.964 0.00 1.00
#> 105     2   0.000      0.964 0.00 1.00
#> 106     1   0.000      0.999 1.00 0.00
#> 107     2   0.000      0.964 0.00 1.00
#> 108     2   0.000      0.964 0.00 1.00
#> 109     2   0.000      0.964 0.00 1.00
#> 110     2   0.000      0.964 0.00 1.00
#> 111     2   0.000      0.964 0.00 1.00
#> 112     1   0.141      0.979 0.98 0.02
#> 113     2   0.000      0.964 0.00 1.00
#> 114     2   0.000      0.964 0.00 1.00
#> 115     2   0.000      0.964 0.00 1.00
#> 116     1   0.000      0.999 1.00 0.00
#> 117     2   0.000      0.964 0.00 1.00
#> 118     2   0.000      0.964 0.00 1.00
#> 119     2   0.000      0.964 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       1  0.0000      0.988 1.00 0.00 0.00
#> 2       1  0.0000      0.988 1.00 0.00 0.00
#> 3       1  0.6176      0.767 0.78 0.12 0.10
#> 4       1  0.0000      0.988 1.00 0.00 0.00
#> 5       1  0.0000      0.988 1.00 0.00 0.00
#> 6       1  0.0000      0.988 1.00 0.00 0.00
#> 7       1  0.0000      0.988 1.00 0.00 0.00
#> 8       1  0.0000      0.988 1.00 0.00 0.00
#> 9       1  0.0000      0.988 1.00 0.00 0.00
#> 10      3  0.2959      0.886 0.00 0.10 0.90
#> 11      1  0.0000      0.988 1.00 0.00 0.00
#> 12      1  0.0000      0.988 1.00 0.00 0.00
#> 13      2  0.0000      0.974 0.00 1.00 0.00
#> 14      1  0.0000      0.988 1.00 0.00 0.00
#> 15      1  0.0000      0.988 1.00 0.00 0.00
#> 16      1  0.5016      0.687 0.76 0.24 0.00
#> 17      1  0.0000      0.988 1.00 0.00 0.00
#> 18      3  0.0000      0.990 0.00 0.00 1.00
#> 19      1  0.0000      0.988 1.00 0.00 0.00
#> 20      1  0.0000      0.988 1.00 0.00 0.00
#> 21      1  0.0000      0.988 1.00 0.00 0.00
#> 22      1  0.0000      0.988 1.00 0.00 0.00
#> 23      1  0.0000      0.988 1.00 0.00 0.00
#> 24      1  0.0000      0.988 1.00 0.00 0.00
#> 25      1  0.0000      0.988 1.00 0.00 0.00
#> 26      2  0.0000      0.974 0.00 1.00 0.00
#> 27      1  0.0000      0.988 1.00 0.00 0.00
#> 28      1  0.1529      0.952 0.96 0.00 0.04
#> 29      3  0.0000      0.990 0.00 0.00 1.00
#> 30      1  0.0000      0.988 1.00 0.00 0.00
#> 31      1  0.0000      0.988 1.00 0.00 0.00
#> 32      3  0.0000      0.990 0.00 0.00 1.00
#> 33      2  0.0000      0.974 0.00 1.00 0.00
#> 34      2  0.0000      0.974 0.00 1.00 0.00
#> 35      3  0.0000      0.990 0.00 0.00 1.00
#> 36      3  0.0000      0.990 0.00 0.00 1.00
#> 37      1  0.0892      0.971 0.98 0.00 0.02
#> 38      3  0.0000      0.990 0.00 0.00 1.00
#> 39      1  0.0000      0.988 1.00 0.00 0.00
#> 40      1  0.0000      0.988 1.00 0.00 0.00
#> 41      1  0.0000      0.988 1.00 0.00 0.00
#> 42      1  0.0000      0.988 1.00 0.00 0.00
#> 43      1  0.0000      0.988 1.00 0.00 0.00
#> 44      1  0.0000      0.988 1.00 0.00 0.00
#> 45      1  0.0000      0.988 1.00 0.00 0.00
#> 46      1  0.0000      0.988 1.00 0.00 0.00
#> 47      1  0.0000      0.988 1.00 0.00 0.00
#> 48      1  0.0000      0.988 1.00 0.00 0.00
#> 49      1  0.0892      0.971 0.98 0.00 0.02
#> 50      1  0.0000      0.988 1.00 0.00 0.00
#> 51      1  0.0000      0.988 1.00 0.00 0.00
#> 52      3  0.0000      0.990 0.00 0.00 1.00
#> 53      1  0.0000      0.988 1.00 0.00 0.00
#> 54      3  0.0000      0.990 0.00 0.00 1.00
#> 55      3  0.0000      0.990 0.00 0.00 1.00
#> 56      3  0.0000      0.990 0.00 0.00 1.00
#> 57      3  0.0000      0.990 0.00 0.00 1.00
#> 58      3  0.0000      0.990 0.00 0.00 1.00
#> 59      3  0.0000      0.990 0.00 0.00 1.00
#> 60      3  0.0000      0.990 0.00 0.00 1.00
#> 61      3  0.0000      0.990 0.00 0.00 1.00
#> 62      3  0.0000      0.990 0.00 0.00 1.00
#> 63      3  0.0000      0.990 0.00 0.00 1.00
#> 64      3  0.0000      0.990 0.00 0.00 1.00
#> 65      3  0.0000      0.990 0.00 0.00 1.00
#> 66      3  0.0000      0.990 0.00 0.00 1.00
#> 67      3  0.0000      0.990 0.00 0.00 1.00
#> 68      3  0.0000      0.990 0.00 0.00 1.00
#> 69      3  0.0000      0.990 0.00 0.00 1.00
#> 70      3  0.0000      0.990 0.00 0.00 1.00
#> 71      3  0.0000      0.990 0.00 0.00 1.00
#> 72      3  0.0000      0.990 0.00 0.00 1.00
#> 73      3  0.0000      0.990 0.00 0.00 1.00
#> 74      3  0.0000      0.990 0.00 0.00 1.00
#> 75      2  0.2537      0.898 0.00 0.92 0.08
#> 76      2  0.0000      0.974 0.00 1.00 0.00
#> 77      3  0.0000      0.990 0.00 0.00 1.00
#> 78      3  0.0000      0.990 0.00 0.00 1.00
#> 79      2  0.6045      0.393 0.00 0.62 0.38
#> 80      2  0.0000      0.974 0.00 1.00 0.00
#> 81      2  0.0000      0.974 0.00 1.00 0.00
#> 82      2  0.0000      0.974 0.00 1.00 0.00
#> 83      2  0.0000      0.974 0.00 1.00 0.00
#> 84      2  0.0000      0.974 0.00 1.00 0.00
#> 85      2  0.0000      0.974 0.00 1.00 0.00
#> 86      2  0.0000      0.974 0.00 1.00 0.00
#> 87      2  0.0000      0.974 0.00 1.00 0.00
#> 88      2  0.0000      0.974 0.00 1.00 0.00
#> 89      2  0.0000      0.974 0.00 1.00 0.00
#> 90      2  0.0000      0.974 0.00 1.00 0.00
#> 91      2  0.0000      0.974 0.00 1.00 0.00
#> 92      2  0.0000      0.974 0.00 1.00 0.00
#> 93      2  0.0000      0.974 0.00 1.00 0.00
#> 94      2  0.0000      0.974 0.00 1.00 0.00
#> 95      2  0.0000      0.974 0.00 1.00 0.00
#> 96      2  0.0000      0.974 0.00 1.00 0.00
#> 97      2  0.0000      0.974 0.00 1.00 0.00
#> 98      2  0.0000      0.974 0.00 1.00 0.00
#> 99      1  0.0000      0.988 1.00 0.00 0.00
#> 100     2  0.0000      0.974 0.00 1.00 0.00
#> 101     1  0.0000      0.988 1.00 0.00 0.00
#> 102     2  0.0000      0.974 0.00 1.00 0.00
#> 103     2  0.6244      0.231 0.00 0.56 0.44
#> 104     2  0.2066      0.920 0.00 0.94 0.06
#> 105     2  0.0000      0.974 0.00 1.00 0.00
#> 106     1  0.0000      0.988 1.00 0.00 0.00
#> 107     3  0.4291      0.778 0.00 0.18 0.82
#> 108     2  0.0000      0.974 0.00 1.00 0.00
#> 109     3  0.0000      0.990 0.00 0.00 1.00
#> 110     2  0.0000      0.974 0.00 1.00 0.00
#> 111     3  0.2066      0.932 0.00 0.06 0.94
#> 112     3  0.0000      0.990 0.00 0.00 1.00
#> 113     2  0.0000      0.974 0.00 1.00 0.00
#> 114     2  0.0000      0.974 0.00 1.00 0.00
#> 115     2  0.0000      0.974 0.00 1.00 0.00
#> 116     1  0.0000      0.988 1.00 0.00 0.00
#> 117     2  0.0000      0.974 0.00 1.00 0.00
#> 118     2  0.0000      0.974 0.00 1.00 0.00
#> 119     2  0.0000      0.974 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       4  0.4790      0.812 0.38 0.00 0.00 0.62
#> 2       4  0.4790      0.812 0.38 0.00 0.00 0.62
#> 3       4  0.6930      0.684 0.14 0.06 0.12 0.68
#> 4       4  0.4790      0.812 0.38 0.00 0.00 0.62
#> 5       4  0.4790      0.812 0.38 0.00 0.00 0.62
#> 6       4  0.4790      0.812 0.38 0.00 0.00 0.62
#> 7       4  0.4790      0.812 0.38 0.00 0.00 0.62
#> 8       4  0.4790      0.812 0.38 0.00 0.00 0.62
#> 9       4  0.4790      0.812 0.38 0.00 0.00 0.62
#> 10      4  0.5636      0.457 0.00 0.06 0.26 0.68
#> 11      4  0.4134      0.753 0.26 0.00 0.00 0.74
#> 12      1  0.3172      0.690 0.84 0.00 0.00 0.16
#> 13      4  0.4624      0.361 0.00 0.34 0.00 0.66
#> 14      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 15      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 16      4  0.1637      0.617 0.06 0.00 0.00 0.94
#> 17      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 18      3  0.4277      0.746 0.00 0.00 0.72 0.28
#> 19      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 20      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 21      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 22      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 23      4  0.4790      0.812 0.38 0.00 0.00 0.62
#> 24      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 25      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 26      2  0.4406      0.708 0.00 0.70 0.00 0.30
#> 27      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 28      1  0.2011      0.853 0.92 0.00 0.08 0.00
#> 29      3  0.2647      0.798 0.12 0.00 0.88 0.00
#> 30      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 31      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 32      3  0.4406      0.733 0.00 0.00 0.70 0.30
#> 33      2  0.4713      0.661 0.00 0.64 0.00 0.36
#> 34      2  0.4624      0.673 0.00 0.66 0.00 0.34
#> 35      3  0.1211      0.893 0.00 0.00 0.96 0.04
#> 36      3  0.4624      0.698 0.00 0.00 0.66 0.34
#> 37      1  0.5062      0.452 0.68 0.00 0.02 0.30
#> 38      3  0.1211      0.893 0.00 0.00 0.96 0.04
#> 39      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 40      1  0.1211      0.912 0.96 0.00 0.04 0.00
#> 41      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 42      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 43      1  0.0707      0.939 0.98 0.00 0.00 0.02
#> 44      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 45      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 46      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 47      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 48      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 49      1  0.1211      0.913 0.96 0.00 0.04 0.00
#> 50      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 51      1  0.2011      0.853 0.92 0.00 0.08 0.00
#> 52      3  0.2647      0.795 0.12 0.00 0.88 0.00
#> 53      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 54      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 55      3  0.0707      0.901 0.00 0.00 0.98 0.02
#> 56      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 57      3  0.4624      0.698 0.00 0.00 0.66 0.34
#> 58      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 59      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 60      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 61      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 62      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 63      3  0.2345      0.865 0.00 0.00 0.90 0.10
#> 64      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 65      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 66      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 67      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 68      3  0.4624      0.698 0.00 0.00 0.66 0.34
#> 69      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 70      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 71      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 72      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 73      3  0.4624      0.698 0.00 0.00 0.66 0.34
#> 74      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 75      2  0.1637      0.875 0.00 0.94 0.06 0.00
#> 76      2  0.4522      0.691 0.00 0.68 0.00 0.32
#> 77      3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 78      3  0.0707      0.900 0.00 0.00 0.98 0.02
#> 79      2  0.5915      0.286 0.00 0.56 0.40 0.04
#> 80      2  0.0707      0.906 0.00 0.98 0.00 0.02
#> 81      2  0.2011      0.885 0.00 0.92 0.00 0.08
#> 82      2  0.1211      0.900 0.00 0.96 0.00 0.04
#> 83      2  0.2647      0.864 0.00 0.88 0.00 0.12
#> 84      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 85      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 86      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 87      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 88      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 89      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 90      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 91      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 92      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 93      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 94      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 95      2  0.1211      0.898 0.00 0.96 0.00 0.04
#> 96      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 97      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 98      2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 99      1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 100     2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 101     1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 102     2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 103     2  0.3801      0.708 0.00 0.78 0.22 0.00
#> 104     2  0.1637      0.875 0.00 0.94 0.06 0.00
#> 105     2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 106     1  0.0000      0.962 1.00 0.00 0.00 0.00
#> 107     3  0.4936      0.575 0.00 0.28 0.70 0.02
#> 108     2  0.0707      0.906 0.00 0.98 0.00 0.02
#> 109     3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 110     2  0.0000      0.912 0.00 1.00 0.00 0.00
#> 111     3  0.5271      0.678 0.00 0.02 0.64 0.34
#> 112     3  0.0000      0.907 0.00 0.00 1.00 0.00
#> 113     2  0.0707      0.906 0.00 0.98 0.00 0.02
#> 114     2  0.4522      0.707 0.00 0.68 0.00 0.32
#> 115     2  0.0707      0.906 0.00 0.98 0.00 0.02
#> 116     4  0.4713      0.805 0.36 0.00 0.00 0.64
#> 117     2  0.2345      0.877 0.00 0.90 0.00 0.10
#> 118     2  0.2647      0.866 0.00 0.88 0.00 0.12
#> 119     2  0.4277      0.745 0.00 0.72 0.00 0.28

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0113-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0113-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0113-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0113-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0113-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0113-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0113-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0113-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0113-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0113-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0113-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0113-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0113-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0113-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0113-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0113-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0113-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      118              2.58e-06 2
#> ATC:skmeans      117              5.39e-09 3
#> ATC:skmeans      115              7.83e-08 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node012

Parent node: Node01. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["012"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 9007 rows and 448 columns.
#>   Top rows (901) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-012-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-012-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.886           0.950       0.977         0.5001 0.499   0.499
#> 3 3 1.000           0.988       0.995         0.3252 0.755   0.547
#> 4 4 0.789           0.447       0.552         0.0969 0.847   0.594

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.760      0.748 0.22 0.78
#> 2       2   0.722      0.776 0.20 0.80
#> 3       2   0.722      0.776 0.20 0.80
#> 4       1   0.327      0.926 0.94 0.06
#> 5       2   0.722      0.776 0.20 0.80
#> 6       2   0.722      0.776 0.20 0.80
#> 7       2   0.634      0.821 0.16 0.84
#> 8       2   0.722      0.776 0.20 0.80
#> 9       2   0.722      0.776 0.20 0.80
#> 10      2   0.722      0.776 0.20 0.80
#> 11      2   0.722      0.776 0.20 0.80
#> 12      2   0.722      0.776 0.20 0.80
#> 13      2   0.855      0.652 0.28 0.72
#> 14      2   0.722      0.776 0.20 0.80
#> 15      2   0.722      0.776 0.20 0.80
#> 16      2   0.722      0.776 0.20 0.80
#> 17      2   0.722      0.776 0.20 0.80
#> 18      2   0.722      0.776 0.20 0.80
#> 19      2   0.722      0.776 0.20 0.80
#> 20      2   0.722      0.776 0.20 0.80
#> 21      2   0.722      0.776 0.20 0.80
#> 22      2   0.722      0.776 0.20 0.80
#> 23      1   0.000      0.988 1.00 0.00
#> 24      2   0.760      0.748 0.22 0.78
#> 25      2   0.722      0.776 0.20 0.80
#> 26      1   0.943      0.405 0.64 0.36
#> 27      1   0.000      0.988 1.00 0.00
#> 28      1   0.000      0.988 1.00 0.00
#> 29      1   0.855      0.592 0.72 0.28
#> 30      2   0.722      0.776 0.20 0.80
#> 31      1   0.141      0.969 0.98 0.02
#> 32      1   0.981      0.228 0.58 0.42
#> 33      1   0.000      0.988 1.00 0.00
#> 34      1   0.827      0.632 0.74 0.26
#> 35      1   0.000      0.988 1.00 0.00
#> 36      1   0.402      0.903 0.92 0.08
#> 37      1   0.141      0.969 0.98 0.02
#> 38      1   0.000      0.988 1.00 0.00
#> 39      1   0.000      0.988 1.00 0.00
#> 40      1   0.000      0.988 1.00 0.00
#> 41      1   0.000      0.988 1.00 0.00
#> 42      1   0.000      0.988 1.00 0.00
#> 43      1   0.000      0.988 1.00 0.00
#> 44      1   0.000      0.988 1.00 0.00
#> 45      1   0.000      0.988 1.00 0.00
#> 46      1   0.000      0.988 1.00 0.00
#> 47      1   0.000      0.988 1.00 0.00
#> 48      1   0.000      0.988 1.00 0.00
#> 49      1   0.000      0.988 1.00 0.00
#> 50      1   0.000      0.988 1.00 0.00
#> 51      1   0.000      0.988 1.00 0.00
#> 52      1   0.000      0.988 1.00 0.00
#> 53      1   0.000      0.988 1.00 0.00
#> 54      1   0.000      0.988 1.00 0.00
#> 55      1   0.000      0.988 1.00 0.00
#> 56      1   0.000      0.988 1.00 0.00
#> 57      1   0.000      0.988 1.00 0.00
#> 58      1   0.000      0.988 1.00 0.00
#> 59      1   0.000      0.988 1.00 0.00
#> 60      1   0.000      0.988 1.00 0.00
#> 61      1   0.000      0.988 1.00 0.00
#> 62      1   0.000      0.988 1.00 0.00
#> 63      1   0.000      0.988 1.00 0.00
#> 64      1   0.000      0.988 1.00 0.00
#> 65      1   0.000      0.988 1.00 0.00
#> 66      1   0.000      0.988 1.00 0.00
#> 67      1   0.000      0.988 1.00 0.00
#> 68      1   0.000      0.988 1.00 0.00
#> 69      1   0.000      0.988 1.00 0.00
#> 70      1   0.000      0.988 1.00 0.00
#> 71      1   0.000      0.988 1.00 0.00
#> 72      1   0.000      0.988 1.00 0.00
#> 73      1   0.000      0.988 1.00 0.00
#> 74      1   0.000      0.988 1.00 0.00
#> 75      1   0.000      0.988 1.00 0.00
#> 76      1   0.000      0.988 1.00 0.00
#> 77      1   0.000      0.988 1.00 0.00
#> 78      1   0.000      0.988 1.00 0.00
#> 79      1   0.000      0.988 1.00 0.00
#> 80      1   0.000      0.988 1.00 0.00
#> 81      1   0.000      0.988 1.00 0.00
#> 82      1   0.000      0.988 1.00 0.00
#> 83      1   0.000      0.988 1.00 0.00
#> 84      1   0.000      0.988 1.00 0.00
#> 85      1   0.000      0.988 1.00 0.00
#> 86      1   0.000      0.988 1.00 0.00
#> 87      1   0.000      0.988 1.00 0.00
#> 88      1   0.000      0.988 1.00 0.00
#> 89      1   0.000      0.988 1.00 0.00
#> 90      1   0.000      0.988 1.00 0.00
#> 91      1   0.000      0.988 1.00 0.00
#> 92      1   0.000      0.988 1.00 0.00
#> 93      1   0.000      0.988 1.00 0.00
#> 94      1   0.000      0.988 1.00 0.00
#> 95      1   0.000      0.988 1.00 0.00
#> 96      1   0.000      0.988 1.00 0.00
#> 97      1   0.000      0.988 1.00 0.00
#> 98      1   0.000      0.988 1.00 0.00
#> 99      1   0.000      0.988 1.00 0.00
#> 100     1   0.000      0.988 1.00 0.00
#> 101     1   0.000      0.988 1.00 0.00
#> 102     1   0.000      0.988 1.00 0.00
#> 103     1   0.000      0.988 1.00 0.00
#> 104     1   0.000      0.988 1.00 0.00
#> 105     1   0.000      0.988 1.00 0.00
#> 106     1   0.000      0.988 1.00 0.00
#> 107     1   0.000      0.988 1.00 0.00
#> 108     1   0.000      0.988 1.00 0.00
#> 109     1   0.000      0.988 1.00 0.00
#> 110     1   0.000      0.988 1.00 0.00
#> 111     1   0.000      0.988 1.00 0.00
#> 112     1   0.000      0.988 1.00 0.00
#> 113     1   0.000      0.988 1.00 0.00
#> 114     1   0.000      0.988 1.00 0.00
#> 115     1   0.000      0.988 1.00 0.00
#> 116     1   0.000      0.988 1.00 0.00
#> 117     1   0.000      0.988 1.00 0.00
#> 118     1   0.000      0.988 1.00 0.00
#> 119     1   0.000      0.988 1.00 0.00
#> 120     1   0.000      0.988 1.00 0.00
#> 121     1   0.000      0.988 1.00 0.00
#> 122     1   0.000      0.988 1.00 0.00
#> 123     1   0.000      0.988 1.00 0.00
#> 124     1   0.000      0.988 1.00 0.00
#> 125     1   0.000      0.988 1.00 0.00
#> 126     1   0.000      0.988 1.00 0.00
#> 127     1   0.000      0.988 1.00 0.00
#> 128     1   0.000      0.988 1.00 0.00
#> 129     1   0.000      0.988 1.00 0.00
#> 130     1   0.000      0.988 1.00 0.00
#> 131     1   0.000      0.988 1.00 0.00
#> 132     1   0.000      0.988 1.00 0.00
#> 133     1   0.000      0.988 1.00 0.00
#> 134     1   0.000      0.988 1.00 0.00
#> 135     1   0.000      0.988 1.00 0.00
#> 136     1   0.000      0.988 1.00 0.00
#> 137     1   0.000      0.988 1.00 0.00
#> 138     1   0.000      0.988 1.00 0.00
#> 139     1   0.000      0.988 1.00 0.00
#> 140     1   0.000      0.988 1.00 0.00
#> 141     1   0.000      0.988 1.00 0.00
#> 142     1   0.000      0.988 1.00 0.00
#> 143     1   0.000      0.988 1.00 0.00
#> 144     1   0.000      0.988 1.00 0.00
#> 145     1   0.000      0.988 1.00 0.00
#> 146     1   0.000      0.988 1.00 0.00
#> 147     1   0.000      0.988 1.00 0.00
#> 148     1   0.000      0.988 1.00 0.00
#> 149     1   0.141      0.968 0.98 0.02
#> 150     1   0.000      0.988 1.00 0.00
#> 151     1   0.000      0.988 1.00 0.00
#> 152     1   0.000      0.988 1.00 0.00
#> 153     1   0.000      0.988 1.00 0.00
#> 154     1   0.000      0.988 1.00 0.00
#> 155     2   0.722      0.776 0.20 0.80
#> 156     1   0.000      0.988 1.00 0.00
#> 157     1   0.000      0.988 1.00 0.00
#> 158     1   0.000      0.988 1.00 0.00
#> 159     1   0.000      0.988 1.00 0.00
#> 160     1   0.000      0.988 1.00 0.00
#> 161     1   0.000      0.988 1.00 0.00
#> 162     1   0.000      0.988 1.00 0.00
#> 163     1   0.000      0.988 1.00 0.00
#> 164     1   0.000      0.988 1.00 0.00
#> 165     1   0.000      0.988 1.00 0.00
#> 166     1   0.000      0.988 1.00 0.00
#> 167     1   0.000      0.988 1.00 0.00
#> 168     1   0.000      0.988 1.00 0.00
#> 169     1   0.000      0.988 1.00 0.00
#> 170     1   0.000      0.988 1.00 0.00
#> 171     1   0.000      0.988 1.00 0.00
#> 172     1   0.000      0.988 1.00 0.00
#> 173     1   0.000      0.988 1.00 0.00
#> 174     1   0.000      0.988 1.00 0.00
#> 175     1   0.000      0.988 1.00 0.00
#> 176     1   0.000      0.988 1.00 0.00
#> 177     1   0.000      0.988 1.00 0.00
#> 178     1   0.000      0.988 1.00 0.00
#> 179     1   0.000      0.988 1.00 0.00
#> 180     1   0.000      0.988 1.00 0.00
#> 181     1   0.000      0.988 1.00 0.00
#> 182     1   0.000      0.988 1.00 0.00
#> 183     1   0.000      0.988 1.00 0.00
#> 184     1   0.000      0.988 1.00 0.00
#> 185     1   0.000      0.988 1.00 0.00
#> 186     1   0.000      0.988 1.00 0.00
#> 187     1   0.000      0.988 1.00 0.00
#> 188     1   0.000      0.988 1.00 0.00
#> 189     1   0.000      0.988 1.00 0.00
#> 190     1   0.000      0.988 1.00 0.00
#> 191     1   0.000      0.988 1.00 0.00
#> 192     1   0.000      0.988 1.00 0.00
#> 193     1   0.000      0.988 1.00 0.00
#> 194     1   0.000      0.988 1.00 0.00
#> 195     1   0.000      0.988 1.00 0.00
#> 196     1   0.000      0.988 1.00 0.00
#> 197     1   0.000      0.988 1.00 0.00
#> 198     1   0.000      0.988 1.00 0.00
#> 199     1   0.000      0.988 1.00 0.00
#> 200     1   0.000      0.988 1.00 0.00
#> 201     1   0.000      0.988 1.00 0.00
#> 202     1   0.000      0.988 1.00 0.00
#> 203     1   0.000      0.988 1.00 0.00
#> 204     1   0.000      0.988 1.00 0.00
#> 205     1   0.000      0.988 1.00 0.00
#> 206     1   0.000      0.988 1.00 0.00
#> 207     1   0.000      0.988 1.00 0.00
#> 208     1   0.000      0.988 1.00 0.00
#> 209     1   0.000      0.988 1.00 0.00
#> 210     1   0.000      0.988 1.00 0.00
#> 211     1   0.000      0.988 1.00 0.00
#> 212     1   0.000      0.988 1.00 0.00
#> 213     1   0.000      0.988 1.00 0.00
#> 214     1   0.000      0.988 1.00 0.00
#> 215     2   0.469      0.883 0.10 0.90
#> 216     2   0.327      0.917 0.06 0.94
#> 217     1   0.000      0.988 1.00 0.00
#> 218     2   0.000      0.965 0.00 1.00
#> 219     1   0.000      0.988 1.00 0.00
#> 220     2   0.000      0.965 0.00 1.00
#> 221     2   0.000      0.965 0.00 1.00
#> 222     2   0.242      0.934 0.04 0.96
#> 223     2   0.000      0.965 0.00 1.00
#> 224     1   0.000      0.988 1.00 0.00
#> 225     1   0.000      0.988 1.00 0.00
#> 226     1   0.000      0.988 1.00 0.00
#> 227     1   0.000      0.988 1.00 0.00
#> 228     1   0.000      0.988 1.00 0.00
#> 229     1   0.000      0.988 1.00 0.00
#> 230     1   0.000      0.988 1.00 0.00
#> 231     1   0.000      0.988 1.00 0.00
#> 232     1   0.000      0.988 1.00 0.00
#> 233     1   0.000      0.988 1.00 0.00
#> 234     1   0.000      0.988 1.00 0.00
#> 235     1   0.000      0.988 1.00 0.00
#> 236     1   0.000      0.988 1.00 0.00
#> 237     2   0.000      0.965 0.00 1.00
#> 238     2   0.722      0.776 0.20 0.80
#> 239     2   0.881      0.611 0.30 0.70
#> 240     1   0.760      0.704 0.78 0.22
#> 241     1   0.000      0.988 1.00 0.00
#> 242     2   0.141      0.950 0.02 0.98
#> 243     2   0.000      0.965 0.00 1.00
#> 244     2   0.000      0.965 0.00 1.00
#> 245     1   0.000      0.988 1.00 0.00
#> 246     2   0.000      0.965 0.00 1.00
#> 247     2   0.000      0.965 0.00 1.00
#> 248     2   0.000      0.965 0.00 1.00
#> 249     1   0.855      0.598 0.72 0.28
#> 250     2   0.000      0.965 0.00 1.00
#> 251     2   0.000      0.965 0.00 1.00
#> 252     2   0.000      0.965 0.00 1.00
#> 253     2   0.000      0.965 0.00 1.00
#> 254     2   0.000      0.965 0.00 1.00
#> 255     2   0.402      0.898 0.08 0.92
#> 256     2   0.000      0.965 0.00 1.00
#> 257     2   0.000      0.965 0.00 1.00
#> 258     2   0.000      0.965 0.00 1.00
#> 259     2   0.904      0.576 0.32 0.68
#> 260     2   0.000      0.965 0.00 1.00
#> 261     2   0.000      0.965 0.00 1.00
#> 262     2   0.000      0.965 0.00 1.00
#> 263     2   0.000      0.965 0.00 1.00
#> 264     2   0.000      0.965 0.00 1.00
#> 265     2   0.000      0.965 0.00 1.00
#> 266     2   0.242      0.935 0.04 0.96
#> 267     2   0.000      0.965 0.00 1.00
#> 268     2   0.000      0.965 0.00 1.00
#> 269     2   0.000      0.965 0.00 1.00
#> 270     2   0.000      0.965 0.00 1.00
#> 271     2   0.000      0.965 0.00 1.00
#> 272     1   0.000      0.988 1.00 0.00
#> 273     2   0.000      0.965 0.00 1.00
#> 274     2   0.000      0.965 0.00 1.00
#> 275     2   0.000      0.965 0.00 1.00
#> 276     2   0.000      0.965 0.00 1.00
#> 277     2   0.000      0.965 0.00 1.00
#> 278     2   0.000      0.965 0.00 1.00
#> 279     2   0.000      0.965 0.00 1.00
#> 280     2   0.000      0.965 0.00 1.00
#> 281     1   0.000      0.988 1.00 0.00
#> 282     1   0.000      0.988 1.00 0.00
#> 283     2   0.000      0.965 0.00 1.00
#> 284     2   0.000      0.965 0.00 1.00
#> 285     2   0.000      0.965 0.00 1.00
#> 286     2   0.000      0.965 0.00 1.00
#> 287     1   0.584      0.827 0.86 0.14
#> 288     2   0.000      0.965 0.00 1.00
#> 289     2   0.000      0.965 0.00 1.00
#> 290     2   0.000      0.965 0.00 1.00
#> 291     2   0.000      0.965 0.00 1.00
#> 292     2   0.000      0.965 0.00 1.00
#> 293     2   0.000      0.965 0.00 1.00
#> 294     2   0.000      0.965 0.00 1.00
#> 295     2   0.000      0.965 0.00 1.00
#> 296     2   0.000      0.965 0.00 1.00
#> 297     2   0.000      0.965 0.00 1.00
#> 298     2   0.000      0.965 0.00 1.00
#> 299     2   0.000      0.965 0.00 1.00
#> 300     2   0.000      0.965 0.00 1.00
#> 301     2   0.000      0.965 0.00 1.00
#> 302     2   0.000      0.965 0.00 1.00
#> 303     2   0.000      0.965 0.00 1.00
#> 304     2   0.000      0.965 0.00 1.00
#> 305     2   0.000      0.965 0.00 1.00
#> 306     2   0.000      0.965 0.00 1.00
#> 307     2   0.000      0.965 0.00 1.00
#> 308     2   0.000      0.965 0.00 1.00
#> 309     2   0.000      0.965 0.00 1.00
#> 310     2   0.000      0.965 0.00 1.00
#> 311     2   0.000      0.965 0.00 1.00
#> 312     1   0.000      0.988 1.00 0.00
#> 313     2   0.000      0.965 0.00 1.00
#> 314     2   0.000      0.965 0.00 1.00
#> 315     2   0.000      0.965 0.00 1.00
#> 316     2   0.000      0.965 0.00 1.00
#> 317     2   0.000      0.965 0.00 1.00
#> 318     2   0.000      0.965 0.00 1.00
#> 319     2   0.000      0.965 0.00 1.00
#> 320     2   0.000      0.965 0.00 1.00
#> 321     2   0.000      0.965 0.00 1.00
#> 322     2   0.000      0.965 0.00 1.00
#> 323     2   0.000      0.965 0.00 1.00
#> 324     2   0.000      0.965 0.00 1.00
#> 325     2   0.000      0.965 0.00 1.00
#> 326     2   0.000      0.965 0.00 1.00
#> 327     2   0.469      0.877 0.10 0.90
#> 328     2   0.000      0.965 0.00 1.00
#> 329     2   0.000      0.965 0.00 1.00
#> 330     2   0.000      0.965 0.00 1.00
#> 331     2   0.000      0.965 0.00 1.00
#> 332     2   0.000      0.965 0.00 1.00
#> 333     2   0.000      0.965 0.00 1.00
#> 334     2   0.000      0.965 0.00 1.00
#> 335     2   0.000      0.965 0.00 1.00
#> 336     2   0.000      0.965 0.00 1.00
#> 337     2   0.000      0.965 0.00 1.00
#> 338     2   0.000      0.965 0.00 1.00
#> 339     2   0.000      0.965 0.00 1.00
#> 340     2   0.000      0.965 0.00 1.00
#> 341     2   0.000      0.965 0.00 1.00
#> 342     2   0.000      0.965 0.00 1.00
#> 343     2   0.000      0.965 0.00 1.00
#> 344     2   0.000      0.965 0.00 1.00
#> 345     2   0.000      0.965 0.00 1.00
#> 346     2   0.000      0.965 0.00 1.00
#> 347     2   0.000      0.965 0.00 1.00
#> 348     2   0.000      0.965 0.00 1.00
#> 349     2   0.000      0.965 0.00 1.00
#> 350     2   0.000      0.965 0.00 1.00
#> 351     1   0.904      0.530 0.68 0.32
#> 352     2   0.000      0.965 0.00 1.00
#> 353     2   0.000      0.965 0.00 1.00
#> 354     2   0.000      0.965 0.00 1.00
#> 355     2   0.000      0.965 0.00 1.00
#> 356     2   0.000      0.965 0.00 1.00
#> 357     2   0.000      0.965 0.00 1.00
#> 358     2   0.000      0.965 0.00 1.00
#> 359     2   0.000      0.965 0.00 1.00
#> 360     2   0.000      0.965 0.00 1.00
#> 361     2   0.000      0.965 0.00 1.00
#> 362     2   0.000      0.965 0.00 1.00
#> 363     2   0.000      0.965 0.00 1.00
#> 364     2   0.000      0.965 0.00 1.00
#> 365     2   0.000      0.965 0.00 1.00
#> 366     2   0.000      0.965 0.00 1.00
#> 367     2   0.000      0.965 0.00 1.00
#> 368     2   0.000      0.965 0.00 1.00
#> 369     2   0.000      0.965 0.00 1.00
#> 370     2   0.000      0.965 0.00 1.00
#> 371     2   0.000      0.965 0.00 1.00
#> 372     2   0.000      0.965 0.00 1.00
#> 373     2   0.000      0.965 0.00 1.00
#> 374     2   0.000      0.965 0.00 1.00
#> 375     2   0.000      0.965 0.00 1.00
#> 376     2   0.000      0.965 0.00 1.00
#> 377     2   0.000      0.965 0.00 1.00
#> 378     2   0.000      0.965 0.00 1.00
#> 379     2   0.000      0.965 0.00 1.00
#> 380     2   0.000      0.965 0.00 1.00
#> 381     2   0.000      0.965 0.00 1.00
#> 382     2   0.000      0.965 0.00 1.00
#> 383     2   0.000      0.965 0.00 1.00
#> 384     2   0.000      0.965 0.00 1.00
#> 385     2   0.000      0.965 0.00 1.00
#> 386     2   0.000      0.965 0.00 1.00
#> 387     2   0.000      0.965 0.00 1.00
#> 388     2   0.000      0.965 0.00 1.00
#> 389     2   0.000      0.965 0.00 1.00
#> 390     2   0.000      0.965 0.00 1.00
#> 391     2   0.925      0.496 0.34 0.66
#> 392     2   0.000      0.965 0.00 1.00
#> 393     2   0.000      0.965 0.00 1.00
#> 394     1   0.000      0.988 1.00 0.00
#> 395     2   0.000      0.965 0.00 1.00
#> 396     2   0.000      0.965 0.00 1.00
#> 397     2   0.000      0.965 0.00 1.00
#> 398     2   0.000      0.965 0.00 1.00
#> 399     2   0.000      0.965 0.00 1.00
#> 400     2   0.000      0.965 0.00 1.00
#> 401     2   0.000      0.965 0.00 1.00
#> 402     2   0.000      0.965 0.00 1.00
#> 403     2   0.000      0.965 0.00 1.00
#> 404     2   0.000      0.965 0.00 1.00
#> 405     2   0.000      0.965 0.00 1.00
#> 406     2   0.000      0.965 0.00 1.00
#> 407     2   0.000      0.965 0.00 1.00
#> 408     2   0.000      0.965 0.00 1.00
#> 409     2   0.000      0.965 0.00 1.00
#> 410     2   0.000      0.965 0.00 1.00
#> 411     2   0.000      0.965 0.00 1.00
#> 412     2   0.000      0.965 0.00 1.00
#> 413     2   0.000      0.965 0.00 1.00
#> 414     2   0.000      0.965 0.00 1.00
#> 415     2   0.000      0.965 0.00 1.00
#> 416     2   0.000      0.965 0.00 1.00
#> 417     2   0.000      0.965 0.00 1.00
#> 418     2   0.000      0.965 0.00 1.00
#> 419     2   0.000      0.965 0.00 1.00
#> 420     2   0.000      0.965 0.00 1.00
#> 421     2   0.000      0.965 0.00 1.00
#> 422     2   0.000      0.965 0.00 1.00
#> 423     2   0.000      0.965 0.00 1.00
#> 424     2   0.000      0.965 0.00 1.00
#> 425     2   0.000      0.965 0.00 1.00
#> 426     2   0.000      0.965 0.00 1.00
#> 427     2   0.000      0.965 0.00 1.00
#> 428     2   0.000      0.965 0.00 1.00
#> 429     2   0.000      0.965 0.00 1.00
#> 430     2   0.000      0.965 0.00 1.00
#> 431     2   0.000      0.965 0.00 1.00
#> 432     2   0.000      0.965 0.00 1.00
#> 433     2   0.000      0.965 0.00 1.00
#> 434     2   0.000      0.965 0.00 1.00
#> 435     2   0.000      0.965 0.00 1.00
#> 436     2   0.000      0.965 0.00 1.00
#> 437     2   0.000      0.965 0.00 1.00
#> 438     2   0.000      0.965 0.00 1.00
#> 439     2   0.000      0.965 0.00 1.00
#> 440     1   0.141      0.969 0.98 0.02
#> 441     1   0.000      0.988 1.00 0.00
#> 442     2   0.242      0.935 0.04 0.96
#> 443     2   0.000      0.965 0.00 1.00
#> 444     2   0.795      0.718 0.24 0.76
#> 445     2   0.904      0.576 0.32 0.68
#> 446     2   0.990      0.275 0.44 0.56
#> 447     1   0.000      0.988 1.00 0.00
#> 448     1   0.141      0.969 0.98 0.02

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       3  0.0000      0.994 0.00 0.00 1.00
#> 2       3  0.0000      0.994 0.00 0.00 1.00
#> 3       3  0.0000      0.994 0.00 0.00 1.00
#> 4       3  0.0000      0.994 0.00 0.00 1.00
#> 5       3  0.0000      0.994 0.00 0.00 1.00
#> 6       3  0.0000      0.994 0.00 0.00 1.00
#> 7       3  0.0000      0.994 0.00 0.00 1.00
#> 8       3  0.0000      0.994 0.00 0.00 1.00
#> 9       3  0.0000      0.994 0.00 0.00 1.00
#> 10      3  0.0000      0.994 0.00 0.00 1.00
#> 11      3  0.0000      0.994 0.00 0.00 1.00
#> 12      3  0.0000      0.994 0.00 0.00 1.00
#> 13      3  0.0000      0.994 0.00 0.00 1.00
#> 14      3  0.0000      0.994 0.00 0.00 1.00
#> 15      3  0.0000      0.994 0.00 0.00 1.00
#> 16      3  0.0000      0.994 0.00 0.00 1.00
#> 17      3  0.0000      0.994 0.00 0.00 1.00
#> 18      3  0.0000      0.994 0.00 0.00 1.00
#> 19      3  0.0000      0.994 0.00 0.00 1.00
#> 20      3  0.0000      0.994 0.00 0.00 1.00
#> 21      3  0.0000      0.994 0.00 0.00 1.00
#> 22      3  0.0000      0.994 0.00 0.00 1.00
#> 23      3  0.0000      0.994 0.00 0.00 1.00
#> 24      3  0.0000      0.994 0.00 0.00 1.00
#> 25      3  0.0000      0.994 0.00 0.00 1.00
#> 26      3  0.0000      0.994 0.00 0.00 1.00
#> 27      3  0.0000      0.994 0.00 0.00 1.00
#> 28      3  0.0000      0.994 0.00 0.00 1.00
#> 29      3  0.0000      0.994 0.00 0.00 1.00
#> 30      3  0.0000      0.994 0.00 0.00 1.00
#> 31      3  0.0000      0.994 0.00 0.00 1.00
#> 32      3  0.0000      0.994 0.00 0.00 1.00
#> 33      3  0.0000      0.994 0.00 0.00 1.00
#> 34      3  0.0000      0.994 0.00 0.00 1.00
#> 35      3  0.0000      0.994 0.00 0.00 1.00
#> 36      3  0.0000      0.994 0.00 0.00 1.00
#> 37      3  0.0000      0.994 0.00 0.00 1.00
#> 38      1  0.0000      0.996 1.00 0.00 0.00
#> 39      1  0.0000      0.996 1.00 0.00 0.00
#> 40      1  0.0000      0.996 1.00 0.00 0.00
#> 41      1  0.0000      0.996 1.00 0.00 0.00
#> 42      1  0.0000      0.996 1.00 0.00 0.00
#> 43      1  0.0000      0.996 1.00 0.00 0.00
#> 44      1  0.0000      0.996 1.00 0.00 0.00
#> 45      1  0.0000      0.996 1.00 0.00 0.00
#> 46      1  0.0000      0.996 1.00 0.00 0.00
#> 47      1  0.0000      0.996 1.00 0.00 0.00
#> 48      1  0.0000      0.996 1.00 0.00 0.00
#> 49      1  0.0000      0.996 1.00 0.00 0.00
#> 50      1  0.0000      0.996 1.00 0.00 0.00
#> 51      1  0.0000      0.996 1.00 0.00 0.00
#> 52      1  0.0000      0.996 1.00 0.00 0.00
#> 53      1  0.0000      0.996 1.00 0.00 0.00
#> 54      1  0.0000      0.996 1.00 0.00 0.00
#> 55      1  0.0000      0.996 1.00 0.00 0.00
#> 56      1  0.0000      0.996 1.00 0.00 0.00
#> 57      1  0.0000      0.996 1.00 0.00 0.00
#> 58      1  0.0000      0.996 1.00 0.00 0.00
#> 59      1  0.0000      0.996 1.00 0.00 0.00
#> 60      1  0.0000      0.996 1.00 0.00 0.00
#> 61      1  0.0000      0.996 1.00 0.00 0.00
#> 62      1  0.0000      0.996 1.00 0.00 0.00
#> 63      1  0.0000      0.996 1.00 0.00 0.00
#> 64      1  0.0000      0.996 1.00 0.00 0.00
#> 65      1  0.0000      0.996 1.00 0.00 0.00
#> 66      1  0.0000      0.996 1.00 0.00 0.00
#> 67      1  0.0000      0.996 1.00 0.00 0.00
#> 68      1  0.0000      0.996 1.00 0.00 0.00
#> 69      1  0.0000      0.996 1.00 0.00 0.00
#> 70      1  0.0000      0.996 1.00 0.00 0.00
#> 71      1  0.0000      0.996 1.00 0.00 0.00
#> 72      1  0.0000      0.996 1.00 0.00 0.00
#> 73      1  0.0000      0.996 1.00 0.00 0.00
#> 74      1  0.0000      0.996 1.00 0.00 0.00
#> 75      1  0.0000      0.996 1.00 0.00 0.00
#> 76      1  0.0000      0.996 1.00 0.00 0.00
#> 77      1  0.0000      0.996 1.00 0.00 0.00
#> 78      1  0.0000      0.996 1.00 0.00 0.00
#> 79      1  0.0000      0.996 1.00 0.00 0.00
#> 80      1  0.0000      0.996 1.00 0.00 0.00
#> 81      1  0.0000      0.996 1.00 0.00 0.00
#> 82      1  0.0000      0.996 1.00 0.00 0.00
#> 83      1  0.0000      0.996 1.00 0.00 0.00
#> 84      1  0.0000      0.996 1.00 0.00 0.00
#> 85      1  0.0000      0.996 1.00 0.00 0.00
#> 86      1  0.0000      0.996 1.00 0.00 0.00
#> 87      1  0.0000      0.996 1.00 0.00 0.00
#> 88      1  0.0000      0.996 1.00 0.00 0.00
#> 89      1  0.0000      0.996 1.00 0.00 0.00
#> 90      1  0.0000      0.996 1.00 0.00 0.00
#> 91      1  0.0000      0.996 1.00 0.00 0.00
#> 92      1  0.0000      0.996 1.00 0.00 0.00
#> 93      1  0.0000      0.996 1.00 0.00 0.00
#> 94      1  0.0000      0.996 1.00 0.00 0.00
#> 95      1  0.0000      0.996 1.00 0.00 0.00
#> 96      1  0.0000      0.996 1.00 0.00 0.00
#> 97      1  0.0000      0.996 1.00 0.00 0.00
#> 98      1  0.0000      0.996 1.00 0.00 0.00
#> 99      1  0.0000      0.996 1.00 0.00 0.00
#> 100     1  0.0000      0.996 1.00 0.00 0.00
#> 101     1  0.0000      0.996 1.00 0.00 0.00
#> 102     1  0.0000      0.996 1.00 0.00 0.00
#> 103     1  0.0000      0.996 1.00 0.00 0.00
#> 104     1  0.0000      0.996 1.00 0.00 0.00
#> 105     1  0.0000      0.996 1.00 0.00 0.00
#> 106     1  0.0000      0.996 1.00 0.00 0.00
#> 107     1  0.0000      0.996 1.00 0.00 0.00
#> 108     1  0.0000      0.996 1.00 0.00 0.00
#> 109     1  0.0000      0.996 1.00 0.00 0.00
#> 110     1  0.0000      0.996 1.00 0.00 0.00
#> 111     1  0.0000      0.996 1.00 0.00 0.00
#> 112     1  0.0000      0.996 1.00 0.00 0.00
#> 113     1  0.0000      0.996 1.00 0.00 0.00
#> 114     1  0.0000      0.996 1.00 0.00 0.00
#> 115     1  0.0000      0.996 1.00 0.00 0.00
#> 116     1  0.0000      0.996 1.00 0.00 0.00
#> 117     1  0.0000      0.996 1.00 0.00 0.00
#> 118     1  0.0000      0.996 1.00 0.00 0.00
#> 119     1  0.0000      0.996 1.00 0.00 0.00
#> 120     1  0.0000      0.996 1.00 0.00 0.00
#> 121     1  0.0000      0.996 1.00 0.00 0.00
#> 122     1  0.0000      0.996 1.00 0.00 0.00
#> 123     1  0.0000      0.996 1.00 0.00 0.00
#> 124     1  0.0000      0.996 1.00 0.00 0.00
#> 125     1  0.0000      0.996 1.00 0.00 0.00
#> 126     1  0.0000      0.996 1.00 0.00 0.00
#> 127     1  0.0000      0.996 1.00 0.00 0.00
#> 128     1  0.0000      0.996 1.00 0.00 0.00
#> 129     1  0.0000      0.996 1.00 0.00 0.00
#> 130     1  0.0000      0.996 1.00 0.00 0.00
#> 131     1  0.0000      0.996 1.00 0.00 0.00
#> 132     1  0.0000      0.996 1.00 0.00 0.00
#> 133     1  0.0000      0.996 1.00 0.00 0.00
#> 134     1  0.0000      0.996 1.00 0.00 0.00
#> 135     1  0.0000      0.996 1.00 0.00 0.00
#> 136     1  0.0000      0.996 1.00 0.00 0.00
#> 137     1  0.0000      0.996 1.00 0.00 0.00
#> 138     1  0.0000      0.996 1.00 0.00 0.00
#> 139     1  0.0000      0.996 1.00 0.00 0.00
#> 140     1  0.0000      0.996 1.00 0.00 0.00
#> 141     1  0.0000      0.996 1.00 0.00 0.00
#> 142     1  0.0000      0.996 1.00 0.00 0.00
#> 143     1  0.0000      0.996 1.00 0.00 0.00
#> 144     1  0.0000      0.996 1.00 0.00 0.00
#> 145     1  0.0000      0.996 1.00 0.00 0.00
#> 146     1  0.0000      0.996 1.00 0.00 0.00
#> 147     1  0.0000      0.996 1.00 0.00 0.00
#> 148     1  0.0000      0.996 1.00 0.00 0.00
#> 149     3  0.0000      0.994 0.00 0.00 1.00
#> 150     1  0.0000      0.996 1.00 0.00 0.00
#> 151     1  0.0000      0.996 1.00 0.00 0.00
#> 152     1  0.0000      0.996 1.00 0.00 0.00
#> 153     1  0.0000      0.996 1.00 0.00 0.00
#> 154     3  0.0000      0.994 0.00 0.00 1.00
#> 155     3  0.0000      0.994 0.00 0.00 1.00
#> 156     1  0.0000      0.996 1.00 0.00 0.00
#> 157     1  0.0000      0.996 1.00 0.00 0.00
#> 158     1  0.0000      0.996 1.00 0.00 0.00
#> 159     1  0.0000      0.996 1.00 0.00 0.00
#> 160     1  0.0000      0.996 1.00 0.00 0.00
#> 161     1  0.0000      0.996 1.00 0.00 0.00
#> 162     3  0.0000      0.994 0.00 0.00 1.00
#> 163     1  0.0000      0.996 1.00 0.00 0.00
#> 164     1  0.0000      0.996 1.00 0.00 0.00
#> 165     1  0.0000      0.996 1.00 0.00 0.00
#> 166     1  0.0000      0.996 1.00 0.00 0.00
#> 167     3  0.0000      0.994 0.00 0.00 1.00
#> 168     1  0.0000      0.996 1.00 0.00 0.00
#> 169     1  0.0000      0.996 1.00 0.00 0.00
#> 170     1  0.0000      0.996 1.00 0.00 0.00
#> 171     1  0.0000      0.996 1.00 0.00 0.00
#> 172     1  0.0000      0.996 1.00 0.00 0.00
#> 173     1  0.0000      0.996 1.00 0.00 0.00
#> 174     1  0.0000      0.996 1.00 0.00 0.00
#> 175     1  0.0000      0.996 1.00 0.00 0.00
#> 176     1  0.0000      0.996 1.00 0.00 0.00
#> 177     1  0.0000      0.996 1.00 0.00 0.00
#> 178     1  0.0000      0.996 1.00 0.00 0.00
#> 179     1  0.0000      0.996 1.00 0.00 0.00
#> 180     1  0.0000      0.996 1.00 0.00 0.00
#> 181     1  0.0000      0.996 1.00 0.00 0.00
#> 182     1  0.0000      0.996 1.00 0.00 0.00
#> 183     1  0.0000      0.996 1.00 0.00 0.00
#> 184     3  0.0000      0.994 0.00 0.00 1.00
#> 185     1  0.0000      0.996 1.00 0.00 0.00
#> 186     1  0.0000      0.996 1.00 0.00 0.00
#> 187     1  0.0000      0.996 1.00 0.00 0.00
#> 188     1  0.0000      0.996 1.00 0.00 0.00
#> 189     1  0.3340      0.863 0.88 0.00 0.12
#> 190     1  0.0000      0.996 1.00 0.00 0.00
#> 191     1  0.0000      0.996 1.00 0.00 0.00
#> 192     1  0.0000      0.996 1.00 0.00 0.00
#> 193     1  0.0000      0.996 1.00 0.00 0.00
#> 194     1  0.0000      0.996 1.00 0.00 0.00
#> 195     3  0.0000      0.994 0.00 0.00 1.00
#> 196     1  0.0000      0.996 1.00 0.00 0.00
#> 197     1  0.0000      0.996 1.00 0.00 0.00
#> 198     1  0.0000      0.996 1.00 0.00 0.00
#> 199     1  0.0000      0.996 1.00 0.00 0.00
#> 200     1  0.0892      0.976 0.98 0.00 0.02
#> 201     1  0.0000      0.996 1.00 0.00 0.00
#> 202     3  0.0000      0.994 0.00 0.00 1.00
#> 203     1  0.0000      0.996 1.00 0.00 0.00
#> 204     1  0.0000      0.996 1.00 0.00 0.00
#> 205     1  0.0000      0.996 1.00 0.00 0.00
#> 206     1  0.0000      0.996 1.00 0.00 0.00
#> 207     1  0.0000      0.996 1.00 0.00 0.00
#> 208     1  0.0000      0.996 1.00 0.00 0.00
#> 209     1  0.0000      0.996 1.00 0.00 0.00
#> 210     1  0.0000      0.996 1.00 0.00 0.00
#> 211     1  0.2537      0.911 0.92 0.00 0.08
#> 212     1  0.0000      0.996 1.00 0.00 0.00
#> 213     1  0.0000      0.996 1.00 0.00 0.00
#> 214     1  0.0000      0.996 1.00 0.00 0.00
#> 215     3  0.0000      0.994 0.00 0.00 1.00
#> 216     2  0.4291      0.780 0.18 0.82 0.00
#> 217     1  0.0000      0.996 1.00 0.00 0.00
#> 218     2  0.0000      0.992 0.00 1.00 0.00
#> 219     1  0.0000      0.996 1.00 0.00 0.00
#> 220     3  0.0000      0.994 0.00 0.00 1.00
#> 221     2  0.5397      0.613 0.00 0.72 0.28
#> 222     3  0.0000      0.994 0.00 0.00 1.00
#> 223     2  0.0000      0.992 0.00 1.00 0.00
#> 224     3  0.0000      0.994 0.00 0.00 1.00
#> 225     3  0.0892      0.974 0.02 0.00 0.98
#> 226     3  0.0000      0.994 0.00 0.00 1.00
#> 227     3  0.0000      0.994 0.00 0.00 1.00
#> 228     3  0.0000      0.994 0.00 0.00 1.00
#> 229     3  0.0000      0.994 0.00 0.00 1.00
#> 230     3  0.0000      0.994 0.00 0.00 1.00
#> 231     3  0.0000      0.994 0.00 0.00 1.00
#> 232     3  0.0000      0.994 0.00 0.00 1.00
#> 233     3  0.0000      0.994 0.00 0.00 1.00
#> 234     3  0.0000      0.994 0.00 0.00 1.00
#> 235     3  0.0000      0.994 0.00 0.00 1.00
#> 236     3  0.0000      0.994 0.00 0.00 1.00
#> 237     2  0.0000      0.992 0.00 1.00 0.00
#> 238     3  0.0000      0.994 0.00 0.00 1.00
#> 239     3  0.0000      0.994 0.00 0.00 1.00
#> 240     3  0.0000      0.994 0.00 0.00 1.00
#> 241     3  0.0000      0.994 0.00 0.00 1.00
#> 242     3  0.0000      0.994 0.00 0.00 1.00
#> 243     3  0.0000      0.994 0.00 0.00 1.00
#> 244     3  0.0000      0.994 0.00 0.00 1.00
#> 245     3  0.0000      0.994 0.00 0.00 1.00
#> 246     3  0.0000      0.994 0.00 0.00 1.00
#> 247     3  0.0000      0.994 0.00 0.00 1.00
#> 248     3  0.0000      0.994 0.00 0.00 1.00
#> 249     3  0.0000      0.994 0.00 0.00 1.00
#> 250     3  0.0000      0.994 0.00 0.00 1.00
#> 251     3  0.0000      0.994 0.00 0.00 1.00
#> 252     3  0.0000      0.994 0.00 0.00 1.00
#> 253     3  0.0000      0.994 0.00 0.00 1.00
#> 254     3  0.0000      0.994 0.00 0.00 1.00
#> 255     3  0.1529      0.952 0.04 0.00 0.96
#> 256     3  0.0000      0.994 0.00 0.00 1.00
#> 257     3  0.0000      0.994 0.00 0.00 1.00
#> 258     3  0.0000      0.994 0.00 0.00 1.00
#> 259     3  0.0000      0.994 0.00 0.00 1.00
#> 260     3  0.0000      0.994 0.00 0.00 1.00
#> 261     3  0.0000      0.994 0.00 0.00 1.00
#> 262     3  0.0000      0.994 0.00 0.00 1.00
#> 263     3  0.0000      0.994 0.00 0.00 1.00
#> 264     3  0.0000      0.994 0.00 0.00 1.00
#> 265     3  0.0000      0.994 0.00 0.00 1.00
#> 266     3  0.0000      0.994 0.00 0.00 1.00
#> 267     3  0.0000      0.994 0.00 0.00 1.00
#> 268     3  0.0000      0.994 0.00 0.00 1.00
#> 269     3  0.5948      0.435 0.00 0.36 0.64
#> 270     3  0.0000      0.994 0.00 0.00 1.00
#> 271     3  0.0000      0.994 0.00 0.00 1.00
#> 272     3  0.0000      0.994 0.00 0.00 1.00
#> 273     3  0.0000      0.994 0.00 0.00 1.00
#> 274     3  0.0000      0.994 0.00 0.00 1.00
#> 275     3  0.0000      0.994 0.00 0.00 1.00
#> 276     3  0.0000      0.994 0.00 0.00 1.00
#> 277     3  0.0000      0.994 0.00 0.00 1.00
#> 278     3  0.0000      0.994 0.00 0.00 1.00
#> 279     2  0.2959      0.888 0.00 0.90 0.10
#> 280     3  0.0000      0.994 0.00 0.00 1.00
#> 281     1  0.0000      0.996 1.00 0.00 0.00
#> 282     1  0.0000      0.996 1.00 0.00 0.00
#> 283     3  0.0000      0.994 0.00 0.00 1.00
#> 284     2  0.0000      0.992 0.00 1.00 0.00
#> 285     3  0.0000      0.994 0.00 0.00 1.00
#> 286     3  0.0000      0.994 0.00 0.00 1.00
#> 287     1  0.0000      0.996 1.00 0.00 0.00
#> 288     3  0.0000      0.994 0.00 0.00 1.00
#> 289     3  0.0000      0.994 0.00 0.00 1.00
#> 290     3  0.0000      0.994 0.00 0.00 1.00
#> 291     3  0.0000      0.994 0.00 0.00 1.00
#> 292     3  0.0000      0.994 0.00 0.00 1.00
#> 293     3  0.0000      0.994 0.00 0.00 1.00
#> 294     3  0.0000      0.994 0.00 0.00 1.00
#> 295     3  0.0000      0.994 0.00 0.00 1.00
#> 296     2  0.0892      0.974 0.00 0.98 0.02
#> 297     2  0.0000      0.992 0.00 1.00 0.00
#> 298     3  0.0000      0.994 0.00 0.00 1.00
#> 299     3  0.0000      0.994 0.00 0.00 1.00
#> 300     3  0.0000      0.994 0.00 0.00 1.00
#> 301     3  0.0000      0.994 0.00 0.00 1.00
#> 302     2  0.0000      0.992 0.00 1.00 0.00
#> 303     3  0.0000      0.994 0.00 0.00 1.00
#> 304     3  0.0892      0.976 0.00 0.02 0.98
#> 305     3  0.1529      0.956 0.00 0.04 0.96
#> 306     3  0.0000      0.994 0.00 0.00 1.00
#> 307     3  0.0000      0.994 0.00 0.00 1.00
#> 308     3  0.0000      0.994 0.00 0.00 1.00
#> 309     3  0.0000      0.994 0.00 0.00 1.00
#> 310     3  0.0000      0.994 0.00 0.00 1.00
#> 311     3  0.0000      0.994 0.00 0.00 1.00
#> 312     1  0.6244      0.214 0.56 0.00 0.44
#> 313     3  0.0000      0.994 0.00 0.00 1.00
#> 314     2  0.0000      0.992 0.00 1.00 0.00
#> 315     2  0.0000      0.992 0.00 1.00 0.00
#> 316     2  0.0000      0.992 0.00 1.00 0.00
#> 317     2  0.2066      0.933 0.00 0.94 0.06
#> 318     2  0.0000      0.992 0.00 1.00 0.00
#> 319     2  0.0000      0.992 0.00 1.00 0.00
#> 320     2  0.0000      0.992 0.00 1.00 0.00
#> 321     2  0.0000      0.992 0.00 1.00 0.00
#> 322     2  0.0000      0.992 0.00 1.00 0.00
#> 323     2  0.0000      0.992 0.00 1.00 0.00
#> 324     2  0.0000      0.992 0.00 1.00 0.00
#> 325     2  0.0000      0.992 0.00 1.00 0.00
#> 326     2  0.0000      0.992 0.00 1.00 0.00
#> 327     2  0.0000      0.992 0.00 1.00 0.00
#> 328     2  0.0000      0.992 0.00 1.00 0.00
#> 329     2  0.0000      0.992 0.00 1.00 0.00
#> 330     2  0.0000      0.992 0.00 1.00 0.00
#> 331     2  0.0000      0.992 0.00 1.00 0.00
#> 332     2  0.0000      0.992 0.00 1.00 0.00
#> 333     2  0.0000      0.992 0.00 1.00 0.00
#> 334     2  0.0000      0.992 0.00 1.00 0.00
#> 335     2  0.0000      0.992 0.00 1.00 0.00
#> 336     2  0.0000      0.992 0.00 1.00 0.00
#> 337     2  0.0000      0.992 0.00 1.00 0.00
#> 338     2  0.0000      0.992 0.00 1.00 0.00
#> 339     2  0.0000      0.992 0.00 1.00 0.00
#> 340     2  0.0000      0.992 0.00 1.00 0.00
#> 341     2  0.0000      0.992 0.00 1.00 0.00
#> 342     2  0.0000      0.992 0.00 1.00 0.00
#> 343     2  0.0000      0.992 0.00 1.00 0.00
#> 344     2  0.0000      0.992 0.00 1.00 0.00
#> 345     2  0.0000      0.992 0.00 1.00 0.00
#> 346     2  0.0000      0.992 0.00 1.00 0.00
#> 347     2  0.0000      0.992 0.00 1.00 0.00
#> 348     2  0.0000      0.992 0.00 1.00 0.00
#> 349     2  0.0000      0.992 0.00 1.00 0.00
#> 350     2  0.0000      0.992 0.00 1.00 0.00
#> 351     2  0.0892      0.973 0.02 0.98 0.00
#> 352     2  0.0000      0.992 0.00 1.00 0.00
#> 353     2  0.0000      0.992 0.00 1.00 0.00
#> 354     2  0.0000      0.992 0.00 1.00 0.00
#> 355     2  0.0000      0.992 0.00 1.00 0.00
#> 356     2  0.0000      0.992 0.00 1.00 0.00
#> 357     2  0.0000      0.992 0.00 1.00 0.00
#> 358     2  0.0000      0.992 0.00 1.00 0.00
#> 359     2  0.0000      0.992 0.00 1.00 0.00
#> 360     2  0.0000      0.992 0.00 1.00 0.00
#> 361     2  0.0000      0.992 0.00 1.00 0.00
#> 362     2  0.0000      0.992 0.00 1.00 0.00
#> 363     2  0.0000      0.992 0.00 1.00 0.00
#> 364     2  0.0000      0.992 0.00 1.00 0.00
#> 365     2  0.0000      0.992 0.00 1.00 0.00
#> 366     2  0.0000      0.992 0.00 1.00 0.00
#> 367     2  0.0000      0.992 0.00 1.00 0.00
#> 368     2  0.0000      0.992 0.00 1.00 0.00
#> 369     2  0.0000      0.992 0.00 1.00 0.00
#> 370     2  0.0000      0.992 0.00 1.00 0.00
#> 371     2  0.0000      0.992 0.00 1.00 0.00
#> 372     2  0.0000      0.992 0.00 1.00 0.00
#> 373     2  0.0000      0.992 0.00 1.00 0.00
#> 374     2  0.0000      0.992 0.00 1.00 0.00
#> 375     2  0.0000      0.992 0.00 1.00 0.00
#> 376     2  0.0000      0.992 0.00 1.00 0.00
#> 377     2  0.0000      0.992 0.00 1.00 0.00
#> 378     2  0.0000      0.992 0.00 1.00 0.00
#> 379     2  0.0000      0.992 0.00 1.00 0.00
#> 380     2  0.0000      0.992 0.00 1.00 0.00
#> 381     3  0.1529      0.955 0.00 0.04 0.96
#> 382     3  0.3686      0.837 0.00 0.14 0.86
#> 383     2  0.0000      0.992 0.00 1.00 0.00
#> 384     3  0.0000      0.994 0.00 0.00 1.00
#> 385     3  0.0000      0.994 0.00 0.00 1.00
#> 386     3  0.2959      0.888 0.00 0.10 0.90
#> 387     2  0.0000      0.992 0.00 1.00 0.00
#> 388     2  0.0000      0.992 0.00 1.00 0.00
#> 389     2  0.0000      0.992 0.00 1.00 0.00
#> 390     2  0.0000      0.992 0.00 1.00 0.00
#> 391     2  0.0000      0.992 0.00 1.00 0.00
#> 392     2  0.0892      0.974 0.00 0.98 0.02
#> 393     2  0.0000      0.992 0.00 1.00 0.00
#> 394     1  0.0000      0.996 1.00 0.00 0.00
#> 395     2  0.0000      0.992 0.00 1.00 0.00
#> 396     2  0.4555      0.750 0.00 0.80 0.20
#> 397     2  0.0000      0.992 0.00 1.00 0.00
#> 398     2  0.0000      0.992 0.00 1.00 0.00
#> 399     2  0.0000      0.992 0.00 1.00 0.00
#> 400     2  0.0000      0.992 0.00 1.00 0.00
#> 401     2  0.0000      0.992 0.00 1.00 0.00
#> 402     2  0.0000      0.992 0.00 1.00 0.00
#> 403     2  0.0000      0.992 0.00 1.00 0.00
#> 404     2  0.0000      0.992 0.00 1.00 0.00
#> 405     2  0.0000      0.992 0.00 1.00 0.00
#> 406     2  0.0000      0.992 0.00 1.00 0.00
#> 407     2  0.0000      0.992 0.00 1.00 0.00
#> 408     2  0.0000      0.992 0.00 1.00 0.00
#> 409     2  0.0000      0.992 0.00 1.00 0.00
#> 410     2  0.2537      0.911 0.00 0.92 0.08
#> 411     2  0.0000      0.992 0.00 1.00 0.00
#> 412     2  0.0000      0.992 0.00 1.00 0.00
#> 413     2  0.0000      0.992 0.00 1.00 0.00
#> 414     2  0.0000      0.992 0.00 1.00 0.00
#> 415     2  0.0000      0.992 0.00 1.00 0.00
#> 416     2  0.0000      0.992 0.00 1.00 0.00
#> 417     2  0.0000      0.992 0.00 1.00 0.00
#> 418     2  0.0000      0.992 0.00 1.00 0.00
#> 419     2  0.0000      0.992 0.00 1.00 0.00
#> 420     2  0.0000      0.992 0.00 1.00 0.00
#> 421     2  0.0000      0.992 0.00 1.00 0.00
#> 422     2  0.0000      0.992 0.00 1.00 0.00
#> 423     2  0.0000      0.992 0.00 1.00 0.00
#> 424     2  0.0000      0.992 0.00 1.00 0.00
#> 425     2  0.0000      0.992 0.00 1.00 0.00
#> 426     2  0.0000      0.992 0.00 1.00 0.00
#> 427     2  0.0000      0.992 0.00 1.00 0.00
#> 428     2  0.0000      0.992 0.00 1.00 0.00
#> 429     2  0.0000      0.992 0.00 1.00 0.00
#> 430     2  0.0000      0.992 0.00 1.00 0.00
#> 431     2  0.0000      0.992 0.00 1.00 0.00
#> 432     2  0.0000      0.992 0.00 1.00 0.00
#> 433     2  0.0000      0.992 0.00 1.00 0.00
#> 434     2  0.0000      0.992 0.00 1.00 0.00
#> 435     2  0.0000      0.992 0.00 1.00 0.00
#> 436     2  0.0000      0.992 0.00 1.00 0.00
#> 437     2  0.0000      0.992 0.00 1.00 0.00
#> 438     2  0.0000      0.992 0.00 1.00 0.00
#> 439     2  0.0000      0.992 0.00 1.00 0.00
#> 440     3  0.0000      0.994 0.00 0.00 1.00
#> 441     3  0.0000      0.994 0.00 0.00 1.00
#> 442     3  0.0000      0.994 0.00 0.00 1.00
#> 443     2  0.0000      0.992 0.00 1.00 0.00
#> 444     3  0.0000      0.994 0.00 0.00 1.00
#> 445     3  0.0000      0.994 0.00 0.00 1.00
#> 446     3  0.0000      0.994 0.00 0.00 1.00
#> 447     1  0.0000      0.996 1.00 0.00 0.00
#> 448     3  0.0000      0.994 0.00 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 2       4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 3       4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 4       4  0.2345     0.5788 0.00 0.00 0.10 0.90
#> 5       4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 6       4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 7       4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 8       4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 9       4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 10      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 11      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 12      4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 13      4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 14      4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 15      4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 16      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 17      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 18      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 19      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 20      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 21      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 22      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 23      4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 24      4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 25      4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 26      4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 27      3  0.4855    -0.2361 0.00 0.00 0.60 0.40
#> 28      3  0.3975    -0.0477 0.00 0.00 0.76 0.24
#> 29      4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 30      4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 31      3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 32      4  0.4855     0.3934 0.00 0.00 0.40 0.60
#> 33      3  0.4994    -0.3112 0.00 0.00 0.52 0.48
#> 34      3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 35      3  0.4994    -0.3112 0.00 0.00 0.52 0.48
#> 36      4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 37      3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 38      1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 39      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 40      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 41      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 42      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 43      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 44      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 45      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 46      1  0.3172     0.7295 0.84 0.00 0.16 0.00
#> 47      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 48      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 49      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 50      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 51      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 52      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 53      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 54      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 55      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 56      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 57      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 58      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 59      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 60      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 61      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 62      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 63      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 64      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 65      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 66      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 67      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 68      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 69      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 70      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 71      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 72      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 73      1  0.2921     0.7360 0.86 0.00 0.14 0.00
#> 74      3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 75      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 76      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 77      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 78      1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 79      1  0.3172     0.7295 0.84 0.00 0.16 0.00
#> 80      3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 81      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 82      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 83      1  0.3172     0.7303 0.84 0.00 0.16 0.00
#> 84      1  0.3400     0.7225 0.82 0.00 0.18 0.00
#> 85      1  0.1637     0.7560 0.94 0.00 0.06 0.00
#> 86      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 87      3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 88      1  0.3975     0.6962 0.76 0.00 0.24 0.00
#> 89      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 90      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 91      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 92      1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 93      3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 94      1  0.3975     0.6961 0.76 0.00 0.24 0.00
#> 95      1  0.1637     0.7560 0.94 0.00 0.06 0.00
#> 96      1  0.1637     0.7560 0.94 0.00 0.06 0.00
#> 97      1  0.4907     0.5915 0.58 0.00 0.42 0.00
#> 98      1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 99      3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 100     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 101     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 102     1  0.4790     0.6179 0.62 0.00 0.38 0.00
#> 103     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 104     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 105     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 106     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 107     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 108     1  0.2011     0.7520 0.92 0.00 0.08 0.00
#> 109     1  0.2921     0.7360 0.86 0.00 0.14 0.00
#> 110     1  0.1637     0.7560 0.94 0.00 0.06 0.00
#> 111     1  0.4790     0.6177 0.62 0.00 0.38 0.00
#> 112     1  0.3400     0.7224 0.82 0.00 0.18 0.00
#> 113     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 114     1  0.0707     0.7611 0.98 0.00 0.02 0.00
#> 115     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 116     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 117     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 118     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 119     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 120     1  0.1637     0.7560 0.94 0.00 0.06 0.00
#> 121     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 122     1  0.1637     0.7560 0.94 0.00 0.06 0.00
#> 123     1  0.4994     0.5495 0.52 0.00 0.48 0.00
#> 124     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 125     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 126     1  0.1211     0.7588 0.96 0.00 0.04 0.00
#> 127     1  0.1637     0.7560 0.94 0.00 0.06 0.00
#> 128     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 129     1  0.3801     0.7061 0.78 0.00 0.22 0.00
#> 130     1  0.1637     0.7560 0.94 0.00 0.06 0.00
#> 131     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 132     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 133     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 134     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 135     1  0.4790     0.6180 0.62 0.00 0.38 0.00
#> 136     1  0.1637     0.7560 0.94 0.00 0.06 0.00
#> 137     1  0.4977     0.5639 0.54 0.00 0.46 0.00
#> 138     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 139     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 140     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 141     1  0.3400     0.7224 0.82 0.00 0.18 0.00
#> 142     1  0.4277     0.6712 0.72 0.00 0.28 0.00
#> 143     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 144     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 145     1  0.2921     0.7365 0.86 0.00 0.14 0.00
#> 146     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 147     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 148     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 149     4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 150     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 151     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 152     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 153     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 154     3  0.1637     0.1092 0.00 0.00 0.94 0.06
#> 155     4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 156     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 157     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 158     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 159     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 160     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 161     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 162     4  0.2647     0.5329 0.12 0.00 0.00 0.88
#> 163     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 164     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 165     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 166     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 167     3  0.0707     0.1267 0.00 0.00 0.98 0.02
#> 168     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 169     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 170     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 171     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 172     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 173     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 174     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 175     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 176     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 177     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 178     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 179     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 180     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 181     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 182     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 183     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 184     3  0.2921     0.0614 0.00 0.00 0.86 0.14
#> 185     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 186     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 187     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 188     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 189     3  0.0707     0.1428 0.02 0.00 0.98 0.00
#> 190     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 191     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 192     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 193     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 194     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 195     4  0.4624     0.3915 0.00 0.00 0.34 0.66
#> 196     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 197     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 198     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 199     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 200     3  0.2647     0.1436 0.12 0.00 0.88 0.00
#> 201     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 202     4  0.4948     0.0939 0.00 0.00 0.44 0.56
#> 203     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 204     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 205     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 206     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 207     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 208     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 209     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 210     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 211     3  0.1637     0.1580 0.06 0.00 0.94 0.00
#> 212     3  0.4624    -0.3252 0.34 0.00 0.66 0.00
#> 213     3  0.5000    -0.5417 0.50 0.00 0.50 0.00
#> 214     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 215     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 216     1  0.5606     0.0367 0.50 0.02 0.00 0.48
#> 217     1  0.0707     0.7611 0.98 0.00 0.02 0.00
#> 218     1  0.6323     0.0519 0.50 0.06 0.00 0.44
#> 219     1  0.5000     0.5345 0.50 0.00 0.50 0.00
#> 220     4  0.1913     0.6084 0.02 0.00 0.04 0.94
#> 221     4  0.6011    -0.0220 0.48 0.04 0.00 0.48
#> 222     3  0.5606    -0.3231 0.02 0.00 0.50 0.48
#> 223     1  0.6005     0.0442 0.50 0.04 0.00 0.46
#> 224     3  0.4977    -0.2937 0.00 0.00 0.54 0.46
#> 225     3  0.3975    -0.0482 0.00 0.00 0.76 0.24
#> 226     3  0.3172     0.0467 0.00 0.00 0.84 0.16
#> 227     3  0.4855    -0.2370 0.00 0.00 0.60 0.40
#> 228     3  0.3801    -0.0227 0.00 0.00 0.78 0.22
#> 229     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 230     3  0.4277    -0.0986 0.00 0.00 0.72 0.28
#> 231     4  0.4948     0.3634 0.00 0.00 0.44 0.56
#> 232     3  0.2921     0.0616 0.00 0.00 0.86 0.14
#> 233     3  0.3172     0.0467 0.00 0.00 0.84 0.16
#> 234     3  0.3172     0.0467 0.00 0.00 0.84 0.16
#> 235     3  0.3172     0.0467 0.00 0.00 0.84 0.16
#> 236     3  0.2345     0.0872 0.00 0.00 0.90 0.10
#> 237     2  0.2345     0.8634 0.00 0.90 0.00 0.10
#> 238     4  0.0000     0.6150 0.00 0.00 0.00 1.00
#> 239     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 240     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 241     3  0.3172     0.0467 0.00 0.00 0.84 0.16
#> 242     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 243     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 244     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 245     3  0.3172     0.0370 0.00 0.00 0.84 0.16
#> 246     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 247     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 248     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 249     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 250     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 251     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 252     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 253     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 254     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 255     3  0.6005    -0.3146 0.04 0.00 0.50 0.46
#> 256     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 257     4  0.4994     0.3314 0.00 0.00 0.48 0.52
#> 258     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 259     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 260     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 261     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 262     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 263     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 264     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 265     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 266     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 267     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 268     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 269     4  0.7748     0.3138 0.00 0.28 0.28 0.44
#> 270     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 271     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 272     3  0.3172     0.0467 0.00 0.00 0.84 0.16
#> 273     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 274     3  0.6586    -0.2935 0.00 0.08 0.50 0.42
#> 275     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 276     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 277     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 278     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 279     3  0.6323    -0.1350 0.00 0.44 0.50 0.06
#> 280     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 281     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 282     1  0.0707     0.7611 0.98 0.00 0.02 0.00
#> 283     4  0.1637     0.5964 0.06 0.00 0.00 0.94
#> 284     2  0.1211     0.9325 0.00 0.96 0.00 0.04
#> 285     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 286     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 287     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 288     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 289     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 290     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 291     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 292     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 293     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 294     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 295     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 296     3  0.6988    -0.1634 0.00 0.38 0.50 0.12
#> 297     2  0.2411     0.8932 0.00 0.92 0.04 0.04
#> 298     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 299     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 300     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 301     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 302     2  0.0707     0.9525 0.00 0.98 0.00 0.02
#> 303     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 304     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 305     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 306     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 307     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 308     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 309     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 310     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 311     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 312     3  0.0000     0.1346 0.00 0.00 1.00 0.00
#> 313     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 314     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 315     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 316     2  0.1637     0.9114 0.00 0.94 0.00 0.06
#> 317     2  0.5957     0.1791 0.00 0.54 0.42 0.04
#> 318     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 319     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 320     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 321     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 322     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 323     2  0.0707     0.9526 0.00 0.98 0.02 0.00
#> 324     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 325     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 326     2  0.3172     0.7884 0.00 0.84 0.16 0.00
#> 327     1  0.5000    -0.2564 0.50 0.50 0.00 0.00
#> 328     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 329     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 330     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 331     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 332     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 333     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 334     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 335     2  0.5713     0.3856 0.00 0.62 0.34 0.04
#> 336     2  0.3975     0.6653 0.00 0.76 0.24 0.00
#> 337     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 338     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 339     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 340     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 341     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 342     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 343     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 344     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 345     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 346     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 347     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 348     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 349     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 350     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 351     2  0.5000     0.2321 0.50 0.50 0.00 0.00
#> 352     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 353     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 354     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 355     2  0.1637     0.9121 0.00 0.94 0.06 0.00
#> 356     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 357     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 358     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 359     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 360     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 361     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 362     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 363     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 364     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 365     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 366     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 367     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 368     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 369     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 370     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 371     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 372     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 373     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 374     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 375     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 376     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 377     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 378     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 379     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 380     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 381     4  0.6336     0.3135 0.00 0.06 0.46 0.48
#> 382     3  0.6005    -0.3097 0.00 0.04 0.50 0.46
#> 383     2  0.3172     0.8081 0.16 0.84 0.00 0.00
#> 384     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 385     3  0.5606    -0.3138 0.00 0.02 0.50 0.48
#> 386     3  0.6005    -0.3101 0.00 0.04 0.50 0.46
#> 387     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 388     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 389     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 390     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 391     2  0.5000     0.2450 0.50 0.50 0.00 0.00
#> 392     2  0.4797     0.5945 0.00 0.72 0.26 0.02
#> 393     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 394     1  0.2345     0.7473 0.90 0.00 0.10 0.00
#> 395     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 396     3  0.7583    -0.2138 0.00 0.28 0.48 0.24
#> 397     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 398     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 399     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 400     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 401     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 402     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 403     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 404     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 405     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 406     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 407     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 408     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 409     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 410     2  0.3853     0.7529 0.00 0.82 0.02 0.16
#> 411     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 412     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 413     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 414     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 415     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 416     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 417     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 418     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 419     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 420     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 421     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 422     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 423     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 424     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 425     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 426     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 427     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 428     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 429     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 430     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 431     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 432     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 433     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 434     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 435     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 436     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 437     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 438     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 439     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 440     3  0.4994    -0.3112 0.00 0.00 0.52 0.48
#> 441     3  0.3172     0.0467 0.00 0.00 0.84 0.16
#> 442     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 443     2  0.0000     0.9711 0.00 1.00 0.00 0.00
#> 444     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 445     4  0.5000     0.3171 0.00 0.00 0.50 0.50
#> 446     3  0.5000    -0.3333 0.00 0.00 0.50 0.50
#> 447     1  0.0000     0.7625 1.00 0.00 0.00 0.00
#> 448     3  0.4994    -0.3112 0.00 0.00 0.52 0.48

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-012-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-012-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-012-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-012-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-012-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-012-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-012-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-012-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-012-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-012-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-012-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-012-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-012-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-012-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-012-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-012-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-012-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      444              1.62e-69 2
#> ATC:skmeans      446             1.88e-143 3
#> ATC:skmeans      289             3.24e-102 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node0121

Parent node: Node012. Child nodes: Node01131-leaf , Node01132-leaf , Node01133-leaf , Node01211-leaf , Node01212-leaf , Node01221-leaf , Node01222-leaf , Node01223-leaf , Node01231-leaf , Node01232-leaf , Node01233-leaf , Node01234-leaf , Node02111 , Node02112 , Node02113-leaf , Node02121-leaf , Node02122-leaf , Node02123-leaf , Node02221-leaf , Node02222-leaf , Node03111-leaf , Node03112-leaf , Node03121-leaf , Node03122 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0121"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 7298 rows and 177 columns.
#>   Top rows (730) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0121-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0121-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.972       0.989          0.491 0.509   0.509
#> 3 3 0.755           0.794       0.906          0.210 0.895   0.796
#> 4 4 0.708           0.738       0.882          0.103 0.936   0.849

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       1   0.000     0.9919 1.00 0.00
#> 2       2   0.000     0.9850 0.00 1.00
#> 3       2   0.000     0.9850 0.00 1.00
#> 4       2   0.000     0.9850 0.00 1.00
#> 5       2   0.000     0.9850 0.00 1.00
#> 6       2   0.000     0.9850 0.00 1.00
#> 7       2   0.000     0.9850 0.00 1.00
#> 8       2   0.000     0.9850 0.00 1.00
#> 9       2   0.958     0.3950 0.38 0.62
#> 10      2   0.000     0.9850 0.00 1.00
#> 11      2   0.000     0.9850 0.00 1.00
#> 12      2   0.000     0.9850 0.00 1.00
#> 13      2   0.000     0.9850 0.00 1.00
#> 14      2   0.000     0.9850 0.00 1.00
#> 15      2   0.000     0.9850 0.00 1.00
#> 16      2   0.000     0.9850 0.00 1.00
#> 17      2   0.000     0.9850 0.00 1.00
#> 18      2   0.000     0.9850 0.00 1.00
#> 19      2   0.000     0.9850 0.00 1.00
#> 20      2   0.000     0.9850 0.00 1.00
#> 21      2   0.000     0.9850 0.00 1.00
#> 22      2   0.000     0.9850 0.00 1.00
#> 23      2   0.000     0.9850 0.00 1.00
#> 24      2   0.000     0.9850 0.00 1.00
#> 25      2   0.000     0.9850 0.00 1.00
#> 26      2   0.000     0.9850 0.00 1.00
#> 27      2   0.000     0.9850 0.00 1.00
#> 28      2   0.000     0.9850 0.00 1.00
#> 29      2   0.000     0.9850 0.00 1.00
#> 30      2   0.000     0.9850 0.00 1.00
#> 31      2   0.000     0.9850 0.00 1.00
#> 32      2   0.000     0.9850 0.00 1.00
#> 33      2   0.000     0.9850 0.00 1.00
#> 34      2   0.000     0.9850 0.00 1.00
#> 35      2   0.000     0.9850 0.00 1.00
#> 36      1   0.000     0.9919 1.00 0.00
#> 37      1   0.000     0.9919 1.00 0.00
#> 38      2   0.000     0.9850 0.00 1.00
#> 39      2   0.000     0.9850 0.00 1.00
#> 40      2   0.000     0.9850 0.00 1.00
#> 41      1   0.000     0.9919 1.00 0.00
#> 42      1   0.000     0.9919 1.00 0.00
#> 43      1   0.000     0.9919 1.00 0.00
#> 44      2   0.000     0.9850 0.00 1.00
#> 45      2   0.000     0.9850 0.00 1.00
#> 46      1   0.141     0.9718 0.98 0.02
#> 47      1   0.000     0.9919 1.00 0.00
#> 48      2   0.141     0.9668 0.02 0.98
#> 49      2   0.000     0.9850 0.00 1.00
#> 50      1   0.000     0.9919 1.00 0.00
#> 51      1   0.000     0.9919 1.00 0.00
#> 52      2   0.000     0.9850 0.00 1.00
#> 53      2   0.000     0.9850 0.00 1.00
#> 54      2   0.000     0.9850 0.00 1.00
#> 55      2   0.000     0.9850 0.00 1.00
#> 56      1   0.000     0.9919 1.00 0.00
#> 57      1   0.000     0.9919 1.00 0.00
#> 58      2   0.000     0.9850 0.00 1.00
#> 59      2   0.000     0.9850 0.00 1.00
#> 60      1   0.000     0.9919 1.00 0.00
#> 61      1   0.000     0.9919 1.00 0.00
#> 62      1   0.000     0.9919 1.00 0.00
#> 63      1   0.000     0.9919 1.00 0.00
#> 64      2   0.000     0.9850 0.00 1.00
#> 65      1   0.000     0.9919 1.00 0.00
#> 66      1   0.000     0.9919 1.00 0.00
#> 67      1   0.000     0.9919 1.00 0.00
#> 68      1   0.000     0.9919 1.00 0.00
#> 69      1   0.000     0.9919 1.00 0.00
#> 70      1   0.000     0.9919 1.00 0.00
#> 71      2   0.943     0.4458 0.36 0.64
#> 72      1   0.855     0.6031 0.72 0.28
#> 73      2   0.000     0.9850 0.00 1.00
#> 74      1   0.000     0.9919 1.00 0.00
#> 75      1   0.000     0.9919 1.00 0.00
#> 76      1   0.000     0.9919 1.00 0.00
#> 77      2   0.000     0.9850 0.00 1.00
#> 78      1   0.000     0.9919 1.00 0.00
#> 79      2   0.000     0.9850 0.00 1.00
#> 80      2   0.000     0.9850 0.00 1.00
#> 81      2   0.000     0.9850 0.00 1.00
#> 82      2   0.000     0.9850 0.00 1.00
#> 83      2   0.000     0.9850 0.00 1.00
#> 84      2   0.000     0.9850 0.00 1.00
#> 85      1   0.000     0.9919 1.00 0.00
#> 86      1   0.000     0.9919 1.00 0.00
#> 87      2   0.000     0.9850 0.00 1.00
#> 88      2   0.000     0.9850 0.00 1.00
#> 89      2   0.000     0.9850 0.00 1.00
#> 90      2   0.141     0.9668 0.02 0.98
#> 91      2   0.000     0.9850 0.00 1.00
#> 92      2   0.827     0.6507 0.26 0.74
#> 93      2   0.000     0.9850 0.00 1.00
#> 94      2   0.000     0.9850 0.00 1.00
#> 95      2   0.000     0.9850 0.00 1.00
#> 96      2   0.000     0.9850 0.00 1.00
#> 97      2   0.000     0.9850 0.00 1.00
#> 98      1   0.000     0.9919 1.00 0.00
#> 99      2   0.000     0.9850 0.00 1.00
#> 100     1   0.000     0.9919 1.00 0.00
#> 101     2   0.000     0.9850 0.00 1.00
#> 102     1   0.000     0.9919 1.00 0.00
#> 103     1   0.000     0.9919 1.00 0.00
#> 104     1   0.000     0.9919 1.00 0.00
#> 105     1   0.000     0.9919 1.00 0.00
#> 106     2   0.000     0.9850 0.00 1.00
#> 107     1   0.000     0.9919 1.00 0.00
#> 108     1   0.000     0.9919 1.00 0.00
#> 109     1   0.000     0.9919 1.00 0.00
#> 110     1   0.000     0.9919 1.00 0.00
#> 111     1   0.000     0.9919 1.00 0.00
#> 112     1   0.000     0.9919 1.00 0.00
#> 113     1   0.000     0.9919 1.00 0.00
#> 114     1   0.000     0.9919 1.00 0.00
#> 115     1   0.000     0.9919 1.00 0.00
#> 116     1   0.000     0.9919 1.00 0.00
#> 117     1   0.000     0.9919 1.00 0.00
#> 118     1   0.000     0.9919 1.00 0.00
#> 119     1   0.000     0.9919 1.00 0.00
#> 120     1   0.000     0.9919 1.00 0.00
#> 121     1   0.000     0.9919 1.00 0.00
#> 122     1   0.000     0.9919 1.00 0.00
#> 123     1   0.000     0.9919 1.00 0.00
#> 124     1   0.000     0.9919 1.00 0.00
#> 125     1   0.000     0.9919 1.00 0.00
#> 126     1   0.000     0.9919 1.00 0.00
#> 127     1   0.000     0.9919 1.00 0.00
#> 128     1   0.000     0.9919 1.00 0.00
#> 129     1   0.000     0.9919 1.00 0.00
#> 130     1   0.000     0.9919 1.00 0.00
#> 131     1   0.000     0.9919 1.00 0.00
#> 132     1   0.000     0.9919 1.00 0.00
#> 133     1   0.000     0.9919 1.00 0.00
#> 134     1   0.000     0.9919 1.00 0.00
#> 135     1   0.000     0.9919 1.00 0.00
#> 136     1   0.000     0.9919 1.00 0.00
#> 137     1   0.000     0.9919 1.00 0.00
#> 138     1   0.000     0.9919 1.00 0.00
#> 139     1   0.000     0.9919 1.00 0.00
#> 140     1   0.000     0.9919 1.00 0.00
#> 141     1   0.000     0.9919 1.00 0.00
#> 142     1   0.000     0.9919 1.00 0.00
#> 143     1   0.000     0.9919 1.00 0.00
#> 144     1   0.000     0.9919 1.00 0.00
#> 145     1   0.000     0.9919 1.00 0.00
#> 146     1   0.000     0.9919 1.00 0.00
#> 147     1   0.000     0.9919 1.00 0.00
#> 148     1   0.000     0.9919 1.00 0.00
#> 149     1   0.000     0.9919 1.00 0.00
#> 150     1   0.000     0.9919 1.00 0.00
#> 151     1   0.000     0.9919 1.00 0.00
#> 152     1   0.000     0.9919 1.00 0.00
#> 153     1   0.000     0.9919 1.00 0.00
#> 154     1   0.000     0.9919 1.00 0.00
#> 155     1   0.000     0.9919 1.00 0.00
#> 156     1   0.000     0.9919 1.00 0.00
#> 157     1   0.000     0.9919 1.00 0.00
#> 158     1   0.000     0.9919 1.00 0.00
#> 159     1   0.000     0.9919 1.00 0.00
#> 160     1   0.000     0.9919 1.00 0.00
#> 161     1   0.000     0.9919 1.00 0.00
#> 162     1   0.000     0.9919 1.00 0.00
#> 163     1   0.000     0.9919 1.00 0.00
#> 164     1   0.000     0.9919 1.00 0.00
#> 165     1   0.000     0.9919 1.00 0.00
#> 166     1   0.000     0.9919 1.00 0.00
#> 167     1   0.000     0.9919 1.00 0.00
#> 168     1   0.000     0.9919 1.00 0.00
#> 169     1   0.000     0.9919 1.00 0.00
#> 170     2   0.327     0.9263 0.06 0.94
#> 171     1   0.000     0.9919 1.00 0.00
#> 172     2   0.000     0.9850 0.00 1.00
#> 173     1   1.000    -0.0219 0.50 0.50
#> 174     2   0.000     0.9850 0.00 1.00
#> 175     1   0.000     0.9919 1.00 0.00
#> 176     1   0.000     0.9919 1.00 0.00
#> 177     2   0.000     0.9850 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       1  0.0892     0.9261 0.98 0.00 0.02
#> 2       2  0.0000     0.8959 0.00 1.00 0.00
#> 3       2  0.0000     0.8959 0.00 1.00 0.00
#> 4       2  0.0000     0.8959 0.00 1.00 0.00
#> 5       2  0.0000     0.8959 0.00 1.00 0.00
#> 6       2  0.6309    -0.0244 0.00 0.50 0.50
#> 7       2  0.0000     0.8959 0.00 1.00 0.00
#> 8       2  0.0000     0.8959 0.00 1.00 0.00
#> 9       3  0.8859     0.2933 0.12 0.40 0.48
#> 10      2  0.0000     0.8959 0.00 1.00 0.00
#> 11      2  0.0000     0.8959 0.00 1.00 0.00
#> 12      2  0.0000     0.8959 0.00 1.00 0.00
#> 13      2  0.0000     0.8959 0.00 1.00 0.00
#> 14      2  0.0000     0.8959 0.00 1.00 0.00
#> 15      2  0.4796     0.6716 0.00 0.78 0.22
#> 16      2  0.0000     0.8959 0.00 1.00 0.00
#> 17      2  0.0000     0.8959 0.00 1.00 0.00
#> 18      2  0.0000     0.8959 0.00 1.00 0.00
#> 19      2  0.0000     0.8959 0.00 1.00 0.00
#> 20      2  0.0000     0.8959 0.00 1.00 0.00
#> 21      2  0.0000     0.8959 0.00 1.00 0.00
#> 22      2  0.0000     0.8959 0.00 1.00 0.00
#> 23      2  0.0000     0.8959 0.00 1.00 0.00
#> 24      2  0.0000     0.8959 0.00 1.00 0.00
#> 25      2  0.0000     0.8959 0.00 1.00 0.00
#> 26      2  0.0000     0.8959 0.00 1.00 0.00
#> 27      2  0.0000     0.8959 0.00 1.00 0.00
#> 28      2  0.0000     0.8959 0.00 1.00 0.00
#> 29      2  0.0000     0.8959 0.00 1.00 0.00
#> 30      2  0.0000     0.8959 0.00 1.00 0.00
#> 31      2  0.0000     0.8959 0.00 1.00 0.00
#> 32      2  0.0000     0.8959 0.00 1.00 0.00
#> 33      2  0.0000     0.8959 0.00 1.00 0.00
#> 34      2  0.0000     0.8959 0.00 1.00 0.00
#> 35      2  0.0000     0.8959 0.00 1.00 0.00
#> 36      3  0.6045     0.4570 0.38 0.00 0.62
#> 37      1  0.1529     0.9095 0.96 0.00 0.04
#> 38      2  0.4796     0.6664 0.00 0.78 0.22
#> 39      2  0.0000     0.8959 0.00 1.00 0.00
#> 40      2  0.6045     0.3691 0.00 0.62 0.38
#> 41      1  0.0892     0.9261 0.98 0.00 0.02
#> 42      3  0.6302     0.2159 0.48 0.00 0.52
#> 43      1  0.2066     0.8860 0.94 0.00 0.06
#> 44      2  0.4796     0.6677 0.00 0.78 0.22
#> 45      2  0.6192     0.2346 0.00 0.58 0.42
#> 46      3  0.4796     0.6312 0.22 0.00 0.78
#> 47      3  0.5948     0.5063 0.36 0.00 0.64
#> 48      3  0.5706     0.4458 0.00 0.32 0.68
#> 49      2  0.5835     0.4503 0.00 0.66 0.34
#> 50      1  0.3686     0.7895 0.86 0.00 0.14
#> 51      1  0.6192     0.0909 0.58 0.00 0.42
#> 52      2  0.5706     0.4997 0.00 0.68 0.32
#> 53      2  0.0892     0.8797 0.00 0.98 0.02
#> 54      2  0.0000     0.8959 0.00 1.00 0.00
#> 55      3  0.5397     0.4831 0.00 0.28 0.72
#> 56      1  0.2066     0.8896 0.94 0.00 0.06
#> 57      3  0.5216     0.6160 0.26 0.00 0.74
#> 58      2  0.5948     0.4216 0.00 0.64 0.36
#> 59      3  0.5835     0.3802 0.00 0.34 0.66
#> 60      1  0.3340     0.8287 0.88 0.00 0.12
#> 61      1  0.0000     0.9409 1.00 0.00 0.00
#> 62      1  0.0000     0.9409 1.00 0.00 0.00
#> 63      1  0.0000     0.9409 1.00 0.00 0.00
#> 64      2  0.0000     0.8959 0.00 1.00 0.00
#> 65      1  0.5706     0.5188 0.68 0.00 0.32
#> 66      1  0.0000     0.9409 1.00 0.00 0.00
#> 67      1  0.0892     0.9261 0.98 0.00 0.02
#> 68      1  0.0000     0.9409 1.00 0.00 0.00
#> 69      1  0.3340     0.8275 0.88 0.00 0.12
#> 70      1  0.0000     0.9409 1.00 0.00 0.00
#> 71      3  0.6245     0.5998 0.06 0.18 0.76
#> 72      3  0.9020     0.5117 0.22 0.22 0.56
#> 73      2  0.6302     0.0241 0.00 0.52 0.48
#> 74      1  0.6192     0.2870 0.58 0.00 0.42
#> 75      1  0.5948     0.4342 0.64 0.00 0.36
#> 76      1  0.0000     0.9409 1.00 0.00 0.00
#> 77      2  0.5016     0.6025 0.00 0.76 0.24
#> 78      1  0.4555     0.7210 0.80 0.00 0.20
#> 79      2  0.2959     0.8115 0.00 0.90 0.10
#> 80      2  0.0000     0.8959 0.00 1.00 0.00
#> 81      2  0.0000     0.8959 0.00 1.00 0.00
#> 82      2  0.0000     0.8959 0.00 1.00 0.00
#> 83      2  0.5397     0.5241 0.00 0.72 0.28
#> 84      2  0.2066     0.8420 0.00 0.94 0.06
#> 85      1  0.6984     0.2275 0.56 0.02 0.42
#> 86      1  0.5835     0.4770 0.66 0.00 0.34
#> 87      2  0.0000     0.8959 0.00 1.00 0.00
#> 88      2  0.6126     0.3013 0.00 0.60 0.40
#> 89      3  0.4796     0.5408 0.00 0.22 0.78
#> 90      3  0.4796     0.5432 0.00 0.22 0.78
#> 91      2  0.2959     0.8128 0.00 0.90 0.10
#> 92      3  0.6677     0.5905 0.08 0.18 0.74
#> 93      2  0.6126     0.3179 0.00 0.60 0.40
#> 94      2  0.0000     0.8959 0.00 1.00 0.00
#> 95      2  0.0000     0.8959 0.00 1.00 0.00
#> 96      2  0.0000     0.8959 0.00 1.00 0.00
#> 97      2  0.0000     0.8959 0.00 1.00 0.00
#> 98      1  0.5560     0.5581 0.70 0.00 0.30
#> 99      3  0.5397     0.4665 0.00 0.28 0.72
#> 100     1  0.5706     0.5254 0.68 0.00 0.32
#> 101     2  0.0000     0.8959 0.00 1.00 0.00
#> 102     1  0.2066     0.8906 0.94 0.00 0.06
#> 103     1  0.5397     0.5946 0.72 0.00 0.28
#> 104     3  0.5835     0.5355 0.34 0.00 0.66
#> 105     1  0.6045     0.2380 0.62 0.00 0.38
#> 106     3  0.6280     0.0975 0.00 0.46 0.54
#> 107     1  0.0000     0.9409 1.00 0.00 0.00
#> 108     3  0.6045     0.4751 0.38 0.00 0.62
#> 109     1  0.0000     0.9409 1.00 0.00 0.00
#> 110     1  0.0000     0.9409 1.00 0.00 0.00
#> 111     1  0.0000     0.9409 1.00 0.00 0.00
#> 112     1  0.0000     0.9409 1.00 0.00 0.00
#> 113     1  0.0000     0.9409 1.00 0.00 0.00
#> 114     1  0.0000     0.9409 1.00 0.00 0.00
#> 115     1  0.0000     0.9409 1.00 0.00 0.00
#> 116     1  0.0000     0.9409 1.00 0.00 0.00
#> 117     1  0.0000     0.9409 1.00 0.00 0.00
#> 118     1  0.0000     0.9409 1.00 0.00 0.00
#> 119     1  0.0000     0.9409 1.00 0.00 0.00
#> 120     1  0.0000     0.9409 1.00 0.00 0.00
#> 121     1  0.0000     0.9409 1.00 0.00 0.00
#> 122     1  0.0000     0.9409 1.00 0.00 0.00
#> 123     1  0.0000     0.9409 1.00 0.00 0.00
#> 124     1  0.0000     0.9409 1.00 0.00 0.00
#> 125     1  0.0000     0.9409 1.00 0.00 0.00
#> 126     1  0.0000     0.9409 1.00 0.00 0.00
#> 127     1  0.0000     0.9409 1.00 0.00 0.00
#> 128     1  0.0000     0.9409 1.00 0.00 0.00
#> 129     1  0.0000     0.9409 1.00 0.00 0.00
#> 130     1  0.0892     0.9247 0.98 0.00 0.02
#> 131     1  0.0000     0.9409 1.00 0.00 0.00
#> 132     1  0.0000     0.9409 1.00 0.00 0.00
#> 133     1  0.0000     0.9409 1.00 0.00 0.00
#> 134     1  0.0000     0.9409 1.00 0.00 0.00
#> 135     1  0.0000     0.9409 1.00 0.00 0.00
#> 136     1  0.0000     0.9409 1.00 0.00 0.00
#> 137     1  0.0000     0.9409 1.00 0.00 0.00
#> 138     1  0.0000     0.9409 1.00 0.00 0.00
#> 139     1  0.1529     0.9060 0.96 0.00 0.04
#> 140     1  0.0000     0.9409 1.00 0.00 0.00
#> 141     1  0.0892     0.9247 0.98 0.00 0.02
#> 142     1  0.0000     0.9409 1.00 0.00 0.00
#> 143     1  0.0000     0.9409 1.00 0.00 0.00
#> 144     1  0.0000     0.9409 1.00 0.00 0.00
#> 145     1  0.0000     0.9409 1.00 0.00 0.00
#> 146     1  0.0000     0.9409 1.00 0.00 0.00
#> 147     1  0.0000     0.9409 1.00 0.00 0.00
#> 148     1  0.0000     0.9409 1.00 0.00 0.00
#> 149     1  0.0000     0.9409 1.00 0.00 0.00
#> 150     1  0.0000     0.9409 1.00 0.00 0.00
#> 151     1  0.0000     0.9409 1.00 0.00 0.00
#> 152     1  0.0000     0.9409 1.00 0.00 0.00
#> 153     1  0.0000     0.9409 1.00 0.00 0.00
#> 154     1  0.0000     0.9409 1.00 0.00 0.00
#> 155     1  0.0000     0.9409 1.00 0.00 0.00
#> 156     1  0.0000     0.9409 1.00 0.00 0.00
#> 157     1  0.0000     0.9409 1.00 0.00 0.00
#> 158     1  0.0000     0.9409 1.00 0.00 0.00
#> 159     1  0.0000     0.9409 1.00 0.00 0.00
#> 160     1  0.0892     0.9257 0.98 0.00 0.02
#> 161     1  0.0000     0.9409 1.00 0.00 0.00
#> 162     1  0.0000     0.9409 1.00 0.00 0.00
#> 163     1  0.0000     0.9409 1.00 0.00 0.00
#> 164     1  0.0000     0.9409 1.00 0.00 0.00
#> 165     1  0.0000     0.9409 1.00 0.00 0.00
#> 166     1  0.0000     0.9409 1.00 0.00 0.00
#> 167     1  0.0000     0.9409 1.00 0.00 0.00
#> 168     1  0.0000     0.9409 1.00 0.00 0.00
#> 169     1  0.0000     0.9409 1.00 0.00 0.00
#> 170     3  0.7310     0.4170 0.04 0.36 0.60
#> 171     1  0.0000     0.9409 1.00 0.00 0.00
#> 172     2  0.0000     0.8959 0.00 1.00 0.00
#> 173     3  0.8631     0.5933 0.18 0.22 0.60
#> 174     2  0.5397     0.5781 0.00 0.72 0.28
#> 175     1  0.0000     0.9409 1.00 0.00 0.00
#> 176     1  0.0892     0.9253 0.98 0.00 0.02
#> 177     2  0.0000     0.8959 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       1  0.3610     0.7559 0.80 0.00 0.00 0.20
#> 2       2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 3       2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 4       2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 5       2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 6       2  0.6766     0.2470 0.00 0.52 0.38 0.10
#> 7       2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 8       2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 9       4  0.3821     0.4772 0.00 0.04 0.12 0.84
#> 10      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 11      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 12      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 13      2  0.1637     0.8457 0.00 0.94 0.06 0.00
#> 14      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 15      2  0.6074     0.4262 0.00 0.60 0.34 0.06
#> 16      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 17      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 18      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 19      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 20      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 21      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 22      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 23      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 24      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 25      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 26      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 27      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 28      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 29      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 30      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 31      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 32      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 33      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 34      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 35      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 36      3  0.7382     0.2676 0.26 0.00 0.52 0.22
#> 37      1  0.3400     0.7777 0.82 0.00 0.00 0.18
#> 38      2  0.5173     0.5371 0.00 0.66 0.32 0.02
#> 39      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 40      2  0.5271     0.4979 0.00 0.64 0.34 0.02
#> 41      1  0.2647     0.8515 0.88 0.00 0.00 0.12
#> 42      3  0.6976     0.2835 0.24 0.00 0.58 0.18
#> 43      1  0.2706     0.8721 0.90 0.00 0.02 0.08
#> 44      2  0.4948     0.3124 0.00 0.56 0.44 0.00
#> 45      3  0.4713     0.2929 0.00 0.36 0.64 0.00
#> 46      3  0.6574     0.1009 0.04 0.02 0.52 0.42
#> 47      3  0.3037     0.5013 0.10 0.00 0.88 0.02
#> 48      4  0.6366     0.3079 0.00 0.12 0.24 0.64
#> 49      2  0.4277     0.6262 0.00 0.72 0.28 0.00
#> 50      1  0.5594     0.6201 0.72 0.00 0.18 0.10
#> 51      1  0.5487     0.2112 0.58 0.00 0.40 0.02
#> 52      2  0.7310     0.1119 0.00 0.48 0.36 0.16
#> 53      2  0.2830     0.8216 0.00 0.90 0.06 0.04
#> 54      2  0.3525     0.7847 0.00 0.86 0.04 0.10
#> 55      3  0.5428     0.4090 0.00 0.14 0.74 0.12
#> 56      1  0.3853     0.7872 0.82 0.00 0.02 0.16
#> 57      3  0.5657     0.4303 0.16 0.00 0.72 0.12
#> 58      2  0.6805     0.1743 0.00 0.50 0.40 0.10
#> 59      4  0.7135     0.2244 0.00 0.20 0.24 0.56
#> 60      1  0.7121     0.1784 0.54 0.00 0.16 0.30
#> 61      1  0.2647     0.8481 0.88 0.00 0.00 0.12
#> 62      1  0.2921     0.8284 0.86 0.00 0.00 0.14
#> 63      1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 64      2  0.2011     0.8345 0.00 0.92 0.08 0.00
#> 65      4  0.5487     0.2343 0.40 0.00 0.02 0.58
#> 66      1  0.0707     0.9225 0.98 0.00 0.00 0.02
#> 67      1  0.2647     0.8488 0.88 0.00 0.00 0.12
#> 68      1  0.1211     0.9121 0.96 0.00 0.00 0.04
#> 69      1  0.4936     0.5832 0.70 0.00 0.02 0.28
#> 70      1  0.1211     0.9109 0.96 0.00 0.00 0.04
#> 71      4  0.7075     0.1351 0.02 0.08 0.36 0.54
#> 72      4  0.5255     0.5206 0.08 0.02 0.12 0.78
#> 73      4  0.4292     0.4900 0.00 0.10 0.08 0.82
#> 74      4  0.3611     0.5480 0.08 0.00 0.06 0.86
#> 75      4  0.3335     0.5167 0.12 0.00 0.02 0.86
#> 76      1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 77      2  0.6611    -0.0145 0.00 0.46 0.08 0.46
#> 78      1  0.4624     0.4719 0.66 0.00 0.00 0.34
#> 79      2  0.4277     0.6290 0.00 0.72 0.28 0.00
#> 80      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 81      2  0.1637     0.8452 0.00 0.94 0.00 0.06
#> 82      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 83      2  0.6011     0.0369 0.00 0.48 0.04 0.48
#> 84      2  0.4797     0.6270 0.00 0.72 0.02 0.26
#> 85      4  0.2335     0.5417 0.06 0.00 0.02 0.92
#> 86      4  0.4134     0.4200 0.26 0.00 0.00 0.74
#> 87      2  0.0707     0.8663 0.00 0.98 0.00 0.02
#> 88      2  0.6323     0.1758 0.00 0.50 0.44 0.06
#> 89      3  0.1637     0.4792 0.00 0.06 0.94 0.00
#> 90      3  0.2335     0.4472 0.00 0.02 0.92 0.06
#> 91      2  0.3606     0.7670 0.00 0.84 0.14 0.02
#> 92      4  0.6782     0.3203 0.04 0.04 0.34 0.58
#> 93      2  0.7653     0.1092 0.00 0.46 0.30 0.24
#> 94      2  0.0707     0.8679 0.00 0.98 0.02 0.00
#> 95      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 96      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 97      2  0.0000     0.8783 0.00 1.00 0.00 0.00
#> 98      4  0.5767     0.3546 0.28 0.00 0.06 0.66
#> 99      4  0.6104     0.3830 0.00 0.18 0.14 0.68
#> 100     4  0.6881     0.2543 0.34 0.00 0.12 0.54
#> 101     2  0.0707     0.8676 0.00 0.98 0.02 0.00
#> 102     1  0.4936     0.5885 0.70 0.00 0.02 0.28
#> 103     1  0.4907     0.2603 0.58 0.00 0.00 0.42
#> 104     3  0.5383     0.4191 0.10 0.00 0.74 0.16
#> 105     3  0.4977     0.1562 0.46 0.00 0.54 0.00
#> 106     3  0.3975     0.4111 0.00 0.24 0.76 0.00
#> 107     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 108     3  0.5820     0.3948 0.24 0.00 0.68 0.08
#> 109     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 110     1  0.0707     0.9221 0.98 0.00 0.02 0.00
#> 111     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 112     1  0.0707     0.9221 0.98 0.00 0.02 0.00
#> 113     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 114     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 115     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 116     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 117     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 118     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 119     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 120     1  0.2011     0.8817 0.92 0.00 0.00 0.08
#> 121     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 122     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 123     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 124     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 125     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 126     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 127     1  0.0707     0.9221 0.98 0.00 0.00 0.02
#> 128     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 129     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 130     1  0.2345     0.8518 0.90 0.00 0.10 0.00
#> 131     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 132     1  0.0707     0.9221 0.98 0.00 0.02 0.00
#> 133     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 134     1  0.1913     0.9015 0.94 0.00 0.02 0.04
#> 135     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 136     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 137     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 138     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 139     1  0.2706     0.8656 0.90 0.00 0.08 0.02
#> 140     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 141     1  0.0707     0.9217 0.98 0.00 0.02 0.00
#> 142     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 143     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 144     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 145     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 146     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 147     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 148     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 149     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 150     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 151     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 152     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 153     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 154     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 155     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 156     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 157     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 158     1  0.2011     0.8844 0.92 0.00 0.00 0.08
#> 159     1  0.0707     0.9225 0.98 0.00 0.00 0.02
#> 160     1  0.5291     0.6655 0.74 0.00 0.08 0.18
#> 161     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 162     1  0.1211     0.9108 0.96 0.00 0.00 0.04
#> 163     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 164     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 165     1  0.3247     0.8406 0.88 0.00 0.06 0.06
#> 166     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 167     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 168     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 169     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 170     3  0.6110     0.3661 0.00 0.24 0.66 0.10
#> 171     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 172     2  0.1211     0.8570 0.00 0.96 0.04 0.00
#> 173     3  0.7568     0.3929 0.14 0.06 0.62 0.18
#> 174     2  0.5256     0.5952 0.00 0.70 0.26 0.04
#> 175     1  0.0000     0.9334 1.00 0.00 0.00 0.00
#> 176     1  0.5661     0.5466 0.70 0.00 0.08 0.22
#> 177     2  0.0000     0.8783 0.00 1.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0121-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0121-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0121-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0121-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0121-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0121-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0121-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0121-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0121-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0121-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0121-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0121-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0121-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0121-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0121-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0121-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0121-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      174                 0.411 2
#> ATC:skmeans      152                 0.471 3
#> ATC:skmeans      138                 0.941 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node0122

Parent node: Node012. Child nodes: Node01131-leaf , Node01132-leaf , Node01133-leaf , Node01211-leaf , Node01212-leaf , Node01221-leaf , Node01222-leaf , Node01223-leaf , Node01231-leaf , Node01232-leaf , Node01233-leaf , Node01234-leaf , Node02111 , Node02112 , Node02113-leaf , Node02121-leaf , Node02122-leaf , Node02123-leaf , Node02221-leaf , Node02222-leaf , Node03111-leaf , Node03112-leaf , Node03121-leaf , Node03122 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0122"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 7335 rows and 131 columns.
#>   Top rows (734) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0122-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0122-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.995       0.998          0.489 0.512   0.512
#> 3 3 0.975           0.961       0.984          0.286 0.773   0.591
#> 4 4 0.856           0.858       0.940          0.152 0.860   0.645

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.996 0.00 1.00
#> 2       2   0.000      0.996 0.00 1.00
#> 3       2   0.000      0.996 0.00 1.00
#> 4       2   0.000      0.996 0.00 1.00
#> 5       2   0.000      0.996 0.00 1.00
#> 6       1   0.000      0.998 1.00 0.00
#> 7       1   0.000      0.998 1.00 0.00
#> 8       1   0.000      0.998 1.00 0.00
#> 9       1   0.000      0.998 1.00 0.00
#> 10      1   0.242      0.959 0.96 0.04
#> 11      2   0.000      0.996 0.00 1.00
#> 12      1   0.000      0.998 1.00 0.00
#> 13      1   0.000      0.998 1.00 0.00
#> 14      1   0.000      0.998 1.00 0.00
#> 15      1   0.000      0.998 1.00 0.00
#> 16      2   0.000      0.996 0.00 1.00
#> 17      2   0.000      0.996 0.00 1.00
#> 18      2   0.242      0.959 0.04 0.96
#> 19      2   0.000      0.996 0.00 1.00
#> 20      1   0.000      0.998 1.00 0.00
#> 21      1   0.000      0.998 1.00 0.00
#> 22      1   0.000      0.998 1.00 0.00
#> 23      1   0.000      0.998 1.00 0.00
#> 24      2   0.000      0.996 0.00 1.00
#> 25      1   0.000      0.998 1.00 0.00
#> 26      1   0.000      0.998 1.00 0.00
#> 27      1   0.000      0.998 1.00 0.00
#> 28      1   0.000      0.998 1.00 0.00
#> 29      1   0.000      0.998 1.00 0.00
#> 30      1   0.000      0.998 1.00 0.00
#> 31      1   0.000      0.998 1.00 0.00
#> 32      1   0.000      0.998 1.00 0.00
#> 33      1   0.000      0.998 1.00 0.00
#> 34      1   0.000      0.998 1.00 0.00
#> 35      1   0.000      0.998 1.00 0.00
#> 36      1   0.000      0.998 1.00 0.00
#> 37      1   0.000      0.998 1.00 0.00
#> 38      2   0.000      0.996 0.00 1.00
#> 39      1   0.000      0.998 1.00 0.00
#> 40      1   0.000      0.998 1.00 0.00
#> 41      1   0.000      0.998 1.00 0.00
#> 42      1   0.000      0.998 1.00 0.00
#> 43      1   0.000      0.998 1.00 0.00
#> 44      1   0.000      0.998 1.00 0.00
#> 45      1   0.000      0.998 1.00 0.00
#> 46      1   0.000      0.998 1.00 0.00
#> 47      1   0.000      0.998 1.00 0.00
#> 48      2   0.000      0.996 0.00 1.00
#> 49      1   0.000      0.998 1.00 0.00
#> 50      1   0.000      0.998 1.00 0.00
#> 51      1   0.000      0.998 1.00 0.00
#> 52      1   0.000      0.998 1.00 0.00
#> 53      1   0.000      0.998 1.00 0.00
#> 54      1   0.000      0.998 1.00 0.00
#> 55      1   0.000      0.998 1.00 0.00
#> 56      1   0.000      0.998 1.00 0.00
#> 57      1   0.000      0.998 1.00 0.00
#> 58      1   0.000      0.998 1.00 0.00
#> 59      1   0.000      0.998 1.00 0.00
#> 60      1   0.000      0.998 1.00 0.00
#> 61      1   0.000      0.998 1.00 0.00
#> 62      1   0.000      0.998 1.00 0.00
#> 63      1   0.000      0.998 1.00 0.00
#> 64      1   0.000      0.998 1.00 0.00
#> 65      2   0.000      0.996 0.00 1.00
#> 66      1   0.000      0.998 1.00 0.00
#> 67      1   0.000      0.998 1.00 0.00
#> 68      1   0.000      0.998 1.00 0.00
#> 69      1   0.141      0.979 0.98 0.02
#> 70      1   0.000      0.998 1.00 0.00
#> 71      1   0.000      0.998 1.00 0.00
#> 72      1   0.000      0.998 1.00 0.00
#> 73      1   0.000      0.998 1.00 0.00
#> 74      2   0.000      0.996 0.00 1.00
#> 75      1   0.000      0.998 1.00 0.00
#> 76      1   0.000      0.998 1.00 0.00
#> 77      2   0.000      0.996 0.00 1.00
#> 78      2   0.000      0.996 0.00 1.00
#> 79      1   0.000      0.998 1.00 0.00
#> 80      1   0.000      0.998 1.00 0.00
#> 81      1   0.000      0.998 1.00 0.00
#> 82      2   0.000      0.996 0.00 1.00
#> 83      2   0.000      0.996 0.00 1.00
#> 84      1   0.000      0.998 1.00 0.00
#> 85      2   0.000      0.996 0.00 1.00
#> 86      2   0.000      0.996 0.00 1.00
#> 87      1   0.000      0.998 1.00 0.00
#> 88      2   0.000      0.996 0.00 1.00
#> 89      2   0.000      0.996 0.00 1.00
#> 90      1   0.000      0.998 1.00 0.00
#> 91      2   0.000      0.996 0.00 1.00
#> 92      2   0.000      0.996 0.00 1.00
#> 93      1   0.000      0.998 1.00 0.00
#> 94      1   0.000      0.998 1.00 0.00
#> 95      1   0.000      0.998 1.00 0.00
#> 96      1   0.000      0.998 1.00 0.00
#> 97      2   0.000      0.996 0.00 1.00
#> 98      1   0.000      0.998 1.00 0.00
#> 99      2   0.000      0.996 0.00 1.00
#> 100     2   0.000      0.996 0.00 1.00
#> 101     2   0.242      0.959 0.04 0.96
#> 102     2   0.000      0.996 0.00 1.00
#> 103     2   0.000      0.996 0.00 1.00
#> 104     1   0.327      0.936 0.94 0.06
#> 105     2   0.000      0.996 0.00 1.00
#> 106     2   0.000      0.996 0.00 1.00
#> 107     2   0.000      0.996 0.00 1.00
#> 108     1   0.000      0.998 1.00 0.00
#> 109     2   0.000      0.996 0.00 1.00
#> 110     1   0.000      0.998 1.00 0.00
#> 111     1   0.000      0.998 1.00 0.00
#> 112     2   0.469      0.891 0.10 0.90
#> 113     2   0.000      0.996 0.00 1.00
#> 114     2   0.000      0.996 0.00 1.00
#> 115     2   0.000      0.996 0.00 1.00
#> 116     2   0.000      0.996 0.00 1.00
#> 117     2   0.000      0.996 0.00 1.00
#> 118     2   0.000      0.996 0.00 1.00
#> 119     2   0.000      0.996 0.00 1.00
#> 120     2   0.000      0.996 0.00 1.00
#> 121     2   0.000      0.996 0.00 1.00
#> 122     2   0.000      0.996 0.00 1.00
#> 123     2   0.000      0.996 0.00 1.00
#> 124     2   0.000      0.996 0.00 1.00
#> 125     2   0.141      0.978 0.02 0.98
#> 126     2   0.000      0.996 0.00 1.00
#> 127     2   0.000      0.996 0.00 1.00
#> 128     2   0.000      0.996 0.00 1.00
#> 129     2   0.000      0.996 0.00 1.00
#> 130     2   0.000      0.996 0.00 1.00
#> 131     1   0.000      0.998 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       3  0.0000      0.984 0.00 0.00 1.00
#> 2       3  0.0000      0.984 0.00 0.00 1.00
#> 3       3  0.0000      0.984 0.00 0.00 1.00
#> 4       3  0.0000      0.984 0.00 0.00 1.00
#> 5       3  0.0000      0.984 0.00 0.00 1.00
#> 6       1  0.0000      0.985 1.00 0.00 0.00
#> 7       3  0.0000      0.984 0.00 0.00 1.00
#> 8       1  0.5835      0.480 0.66 0.00 0.34
#> 9       3  0.5835      0.473 0.34 0.00 0.66
#> 10      3  0.0000      0.984 0.00 0.00 1.00
#> 11      3  0.0000      0.984 0.00 0.00 1.00
#> 12      1  0.0000      0.985 1.00 0.00 0.00
#> 13      3  0.0000      0.984 0.00 0.00 1.00
#> 14      1  0.0000      0.985 1.00 0.00 0.00
#> 15      1  0.0000      0.985 1.00 0.00 0.00
#> 16      2  0.0000      0.973 0.00 1.00 0.00
#> 17      3  0.0000      0.984 0.00 0.00 1.00
#> 18      2  0.0000      0.973 0.00 1.00 0.00
#> 19      3  0.0000      0.984 0.00 0.00 1.00
#> 20      1  0.0000      0.985 1.00 0.00 0.00
#> 21      1  0.0000      0.985 1.00 0.00 0.00
#> 22      1  0.0000      0.985 1.00 0.00 0.00
#> 23      1  0.0000      0.985 1.00 0.00 0.00
#> 24      3  0.0000      0.984 0.00 0.00 1.00
#> 25      1  0.0892      0.967 0.98 0.02 0.00
#> 26      1  0.0000      0.985 1.00 0.00 0.00
#> 27      1  0.0000      0.985 1.00 0.00 0.00
#> 28      1  0.0000      0.985 1.00 0.00 0.00
#> 29      1  0.0000      0.985 1.00 0.00 0.00
#> 30      1  0.0000      0.985 1.00 0.00 0.00
#> 31      1  0.0000      0.985 1.00 0.00 0.00
#> 32      1  0.0000      0.985 1.00 0.00 0.00
#> 33      1  0.0000      0.985 1.00 0.00 0.00
#> 34      1  0.0000      0.985 1.00 0.00 0.00
#> 35      1  0.0000      0.985 1.00 0.00 0.00
#> 36      1  0.1529      0.949 0.96 0.00 0.04
#> 37      1  0.0000      0.985 1.00 0.00 0.00
#> 38      2  0.0000      0.973 0.00 1.00 0.00
#> 39      1  0.0000      0.985 1.00 0.00 0.00
#> 40      1  0.0000      0.985 1.00 0.00 0.00
#> 41      1  0.0000      0.985 1.00 0.00 0.00
#> 42      1  0.0000      0.985 1.00 0.00 0.00
#> 43      2  0.5560      0.585 0.30 0.70 0.00
#> 44      1  0.2959      0.886 0.90 0.00 0.10
#> 45      1  0.0000      0.985 1.00 0.00 0.00
#> 46      1  0.0000      0.985 1.00 0.00 0.00
#> 47      1  0.0000      0.985 1.00 0.00 0.00
#> 48      3  0.0000      0.984 0.00 0.00 1.00
#> 49      1  0.0000      0.985 1.00 0.00 0.00
#> 50      1  0.0000      0.985 1.00 0.00 0.00
#> 51      1  0.0000      0.985 1.00 0.00 0.00
#> 52      1  0.0000      0.985 1.00 0.00 0.00
#> 53      1  0.0000      0.985 1.00 0.00 0.00
#> 54      1  0.4209      0.844 0.86 0.12 0.02
#> 55      1  0.0892      0.967 0.98 0.02 0.00
#> 56      1  0.0000      0.985 1.00 0.00 0.00
#> 57      1  0.0000      0.985 1.00 0.00 0.00
#> 58      1  0.0000      0.985 1.00 0.00 0.00
#> 59      1  0.0000      0.985 1.00 0.00 0.00
#> 60      1  0.0000      0.985 1.00 0.00 0.00
#> 61      2  0.2066      0.918 0.06 0.94 0.00
#> 62      1  0.0000      0.985 1.00 0.00 0.00
#> 63      1  0.0000      0.985 1.00 0.00 0.00
#> 64      1  0.2959      0.883 0.90 0.10 0.00
#> 65      2  0.0000      0.973 0.00 1.00 0.00
#> 66      1  0.0000      0.985 1.00 0.00 0.00
#> 67      1  0.0000      0.985 1.00 0.00 0.00
#> 68      2  0.4291      0.771 0.18 0.82 0.00
#> 69      2  0.1529      0.938 0.04 0.96 0.00
#> 70      1  0.0000      0.985 1.00 0.00 0.00
#> 71      1  0.0000      0.985 1.00 0.00 0.00
#> 72      1  0.0000      0.985 1.00 0.00 0.00
#> 73      1  0.0000      0.985 1.00 0.00 0.00
#> 74      2  0.0000      0.973 0.00 1.00 0.00
#> 75      1  0.0000      0.985 1.00 0.00 0.00
#> 76      2  0.2066      0.919 0.06 0.94 0.00
#> 77      3  0.0000      0.984 0.00 0.00 1.00
#> 78      3  0.0000      0.984 0.00 0.00 1.00
#> 79      1  0.0000      0.985 1.00 0.00 0.00
#> 80      1  0.0000      0.985 1.00 0.00 0.00
#> 81      1  0.0000      0.985 1.00 0.00 0.00
#> 82      2  0.0000      0.973 0.00 1.00 0.00
#> 83      3  0.0000      0.984 0.00 0.00 1.00
#> 84      1  0.0000      0.985 1.00 0.00 0.00
#> 85      3  0.0000      0.984 0.00 0.00 1.00
#> 86      3  0.0000      0.984 0.00 0.00 1.00
#> 87      3  0.0000      0.984 0.00 0.00 1.00
#> 88      3  0.0000      0.984 0.00 0.00 1.00
#> 89      3  0.0000      0.984 0.00 0.00 1.00
#> 90      2  0.3686      0.825 0.14 0.86 0.00
#> 91      2  0.0000      0.973 0.00 1.00 0.00
#> 92      2  0.0000      0.973 0.00 1.00 0.00
#> 93      1  0.0000      0.985 1.00 0.00 0.00
#> 94      1  0.0000      0.985 1.00 0.00 0.00
#> 95      2  0.2537      0.897 0.08 0.92 0.00
#> 96      1  0.0000      0.985 1.00 0.00 0.00
#> 97      2  0.0000      0.973 0.00 1.00 0.00
#> 98      1  0.0000      0.985 1.00 0.00 0.00
#> 99      3  0.0000      0.984 0.00 0.00 1.00
#> 100     3  0.0000      0.984 0.00 0.00 1.00
#> 101     3  0.0000      0.984 0.00 0.00 1.00
#> 102     3  0.0000      0.984 0.00 0.00 1.00
#> 103     2  0.0000      0.973 0.00 1.00 0.00
#> 104     2  0.0000      0.973 0.00 1.00 0.00
#> 105     2  0.0000      0.973 0.00 1.00 0.00
#> 106     2  0.0000      0.973 0.00 1.00 0.00
#> 107     2  0.0000      0.973 0.00 1.00 0.00
#> 108     1  0.0000      0.985 1.00 0.00 0.00
#> 109     2  0.0000      0.973 0.00 1.00 0.00
#> 110     1  0.0892      0.967 0.98 0.02 0.00
#> 111     1  0.3686      0.837 0.86 0.14 0.00
#> 112     2  0.0000      0.973 0.00 1.00 0.00
#> 113     2  0.0000      0.973 0.00 1.00 0.00
#> 114     2  0.0000      0.973 0.00 1.00 0.00
#> 115     2  0.0000      0.973 0.00 1.00 0.00
#> 116     2  0.0000      0.973 0.00 1.00 0.00
#> 117     2  0.0000      0.973 0.00 1.00 0.00
#> 118     2  0.0000      0.973 0.00 1.00 0.00
#> 119     2  0.0000      0.973 0.00 1.00 0.00
#> 120     2  0.0000      0.973 0.00 1.00 0.00
#> 121     2  0.0000      0.973 0.00 1.00 0.00
#> 122     2  0.0000      0.973 0.00 1.00 0.00
#> 123     2  0.0000      0.973 0.00 1.00 0.00
#> 124     2  0.0000      0.973 0.00 1.00 0.00
#> 125     2  0.0892      0.956 0.02 0.98 0.00
#> 126     2  0.0000      0.973 0.00 1.00 0.00
#> 127     2  0.0000      0.973 0.00 1.00 0.00
#> 128     2  0.0000      0.973 0.00 1.00 0.00
#> 129     2  0.0000      0.973 0.00 1.00 0.00
#> 130     2  0.0000      0.973 0.00 1.00 0.00
#> 131     1  0.0000      0.985 1.00 0.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 2       3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 3       3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 4       3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 5       3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 6       1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 7       3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 8       1  0.1211     0.9002 0.96 0.00 0.04 0.00
#> 9       1  0.4277     0.5905 0.72 0.00 0.28 0.00
#> 10      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 11      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 12      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 13      3  0.0707     0.9711 0.02 0.00 0.98 0.00
#> 14      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 15      1  0.1637     0.8936 0.94 0.00 0.00 0.06
#> 16      4  0.0707     0.8088 0.00 0.02 0.00 0.98
#> 17      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 18      4  0.1637     0.7842 0.00 0.06 0.00 0.94
#> 19      3  0.2830     0.8973 0.00 0.06 0.90 0.04
#> 20      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 21      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 22      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 23      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 24      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 25      4  0.1211     0.8030 0.04 0.00 0.00 0.96
#> 26      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 27      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 28      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 29      1  0.4948     0.1907 0.56 0.00 0.00 0.44
#> 30      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 31      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 32      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 33      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 34      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 35      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 36      1  0.2335     0.8783 0.92 0.02 0.00 0.06
#> 37      1  0.4134     0.6494 0.74 0.00 0.00 0.26
#> 38      2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 39      4  0.5000     0.0243 0.50 0.00 0.00 0.50
#> 40      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 41      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 42      1  0.4790     0.3450 0.62 0.00 0.00 0.38
#> 43      4  0.0000     0.8158 0.00 0.00 0.00 1.00
#> 44      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 45      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 46      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 47      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 48      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 49      4  0.0000     0.8158 0.00 0.00 0.00 1.00
#> 50      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 51      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 52      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 53      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 54      4  0.7378     0.3262 0.38 0.10 0.02 0.50
#> 55      4  0.0000     0.8158 0.00 0.00 0.00 1.00
#> 56      4  0.5000     0.0397 0.50 0.00 0.00 0.50
#> 57      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 58      1  0.1637     0.8901 0.94 0.00 0.00 0.06
#> 59      1  0.0707     0.9189 0.98 0.00 0.00 0.02
#> 60      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 61      4  0.5535     0.2226 0.02 0.42 0.00 0.56
#> 62      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 63      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 64      1  0.5902     0.5757 0.70 0.14 0.00 0.16
#> 65      2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 66      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 67      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 68      4  0.4284     0.6493 0.02 0.20 0.00 0.78
#> 69      4  0.0000     0.8158 0.00 0.00 0.00 1.00
#> 70      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 71      1  0.3610     0.7426 0.80 0.00 0.00 0.20
#> 72      1  0.2647     0.8374 0.88 0.00 0.00 0.12
#> 73      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 74      2  0.2011     0.9036 0.00 0.92 0.00 0.08
#> 75      4  0.0000     0.8158 0.00 0.00 0.00 1.00
#> 76      4  0.0000     0.8158 0.00 0.00 0.00 1.00
#> 77      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 78      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 79      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 80      1  0.1211     0.9045 0.96 0.00 0.00 0.04
#> 81      1  0.5173     0.4879 0.66 0.02 0.00 0.32
#> 82      2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 83      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 84      1  0.0000     0.9317 1.00 0.00 0.00 0.00
#> 85      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 86      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 87      3  0.1211     0.9470 0.04 0.00 0.96 0.00
#> 88      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 89      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 90      4  0.0000     0.8158 0.00 0.00 0.00 1.00
#> 91      2  0.3801     0.7352 0.00 0.78 0.00 0.22
#> 92      4  0.4855     0.2741 0.00 0.40 0.00 0.60
#> 93      1  0.2921     0.8155 0.86 0.00 0.00 0.14
#> 94      4  0.4994     0.0707 0.48 0.00 0.00 0.52
#> 95      4  0.1637     0.7864 0.00 0.06 0.00 0.94
#> 96      4  0.2345     0.7720 0.10 0.00 0.00 0.90
#> 97      2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 98      4  0.4277     0.5765 0.28 0.00 0.00 0.72
#> 99      3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 100     3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 101     3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 102     3  0.0000     0.9928 0.00 0.00 1.00 0.00
#> 103     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 104     4  0.1211     0.7998 0.00 0.04 0.00 0.96
#> 105     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 106     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 107     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 108     1  0.3172     0.7930 0.84 0.00 0.00 0.16
#> 109     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 110     4  0.0000     0.8158 0.00 0.00 0.00 1.00
#> 111     4  0.0000     0.8158 0.00 0.00 0.00 1.00
#> 112     4  0.0707     0.8088 0.00 0.02 0.00 0.98
#> 113     2  0.2345     0.8855 0.00 0.90 0.00 0.10
#> 114     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 115     2  0.2921     0.8396 0.00 0.86 0.00 0.14
#> 116     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 117     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 118     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 119     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 120     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 121     2  0.3172     0.8061 0.00 0.84 0.00 0.16
#> 122     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 123     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 124     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 125     2  0.0707     0.9468 0.00 0.98 0.00 0.02
#> 126     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 127     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 128     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 129     2  0.0000     0.9633 0.00 1.00 0.00 0.00
#> 130     2  0.3975     0.7001 0.00 0.76 0.00 0.24
#> 131     1  0.3801     0.7123 0.78 0.00 0.00 0.22

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0122-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0122-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0122-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0122-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0122-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0122-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0122-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0122-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0122-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0122-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0122-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0122-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0122-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0122-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0122-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0122-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0122-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      131              3.20e-02 2
#> ATC:skmeans      129              5.06e-05 3
#> ATC:skmeans      122              2.90e-03 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node0123

Parent node: Node012. Child nodes: Node01131-leaf , Node01132-leaf , Node01133-leaf , Node01211-leaf , Node01212-leaf , Node01221-leaf , Node01222-leaf , Node01223-leaf , Node01231-leaf , Node01232-leaf , Node01233-leaf , Node01234-leaf , Node02111 , Node02112 , Node02113-leaf , Node02121-leaf , Node02122-leaf , Node02123-leaf , Node02221-leaf , Node02222-leaf , Node03111-leaf , Node03112-leaf , Node03121-leaf , Node03122 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0123"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 7111 rows and 140 columns.
#>   Top rows (711) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0123-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0123-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2  1.00           0.973       0.989          0.400 0.602   0.602
#> 3 3  0.77           0.957       0.966          0.582 0.741   0.579
#> 4 4  0.99           0.966       0.984          0.193 0.860   0.629

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.981 0.00 1.00
#> 2       2   0.000      0.981 0.00 1.00
#> 3       2   0.000      0.981 0.00 1.00
#> 4       2   0.000      0.981 0.00 1.00
#> 5       2   0.000      0.981 0.00 1.00
#> 6       2   0.000      0.981 0.00 1.00
#> 7       2   0.000      0.981 0.00 1.00
#> 8       2   0.000      0.981 0.00 1.00
#> 9       2   0.000      0.981 0.00 1.00
#> 10      2   0.000      0.981 0.00 1.00
#> 11      2   0.000      0.981 0.00 1.00
#> 12      2   0.000      0.981 0.00 1.00
#> 13      2   0.000      0.981 0.00 1.00
#> 14      2   0.000      0.981 0.00 1.00
#> 15      2   0.000      0.981 0.00 1.00
#> 16      2   0.000      0.981 0.00 1.00
#> 17      2   0.000      0.981 0.00 1.00
#> 18      2   0.000      0.981 0.00 1.00
#> 19      2   0.000      0.981 0.00 1.00
#> 20      2   0.000      0.981 0.00 1.00
#> 21      2   0.000      0.981 0.00 1.00
#> 22      2   0.000      0.981 0.00 1.00
#> 23      2   0.000      0.981 0.00 1.00
#> 24      2   0.000      0.981 0.00 1.00
#> 25      2   0.000      0.981 0.00 1.00
#> 26      2   0.000      0.981 0.00 1.00
#> 27      1   0.469      0.889 0.90 0.10
#> 28      1   0.000      0.991 1.00 0.00
#> 29      2   0.971      0.330 0.40 0.60
#> 30      2   0.000      0.981 0.00 1.00
#> 31      1   0.971      0.328 0.60 0.40
#> 32      2   0.000      0.981 0.00 1.00
#> 33      1   0.000      0.991 1.00 0.00
#> 34      1   0.327      0.935 0.94 0.06
#> 35      1   0.000      0.991 1.00 0.00
#> 36      1   0.242      0.955 0.96 0.04
#> 37      1   0.402      0.913 0.92 0.08
#> 38      2   0.000      0.981 0.00 1.00
#> 39      1   0.000      0.991 1.00 0.00
#> 40      2   0.000      0.981 0.00 1.00
#> 41      2   0.000      0.981 0.00 1.00
#> 42      1   0.000      0.991 1.00 0.00
#> 43      1   0.000      0.991 1.00 0.00
#> 44      2   0.000      0.981 0.00 1.00
#> 45      2   0.000      0.981 0.00 1.00
#> 46      1   0.000      0.991 1.00 0.00
#> 47      1   0.000      0.991 1.00 0.00
#> 48      1   0.000      0.991 1.00 0.00
#> 49      1   0.242      0.955 0.96 0.04
#> 50      1   0.000      0.991 1.00 0.00
#> 51      1   0.000      0.991 1.00 0.00
#> 52      2   0.855      0.610 0.28 0.72
#> 53      1   0.000      0.991 1.00 0.00
#> 54      1   0.327      0.936 0.94 0.06
#> 55      1   0.000      0.991 1.00 0.00
#> 56      2   0.000      0.981 0.00 1.00
#> 57      1   0.000      0.991 1.00 0.00
#> 58      1   0.000      0.991 1.00 0.00
#> 59      1   0.000      0.991 1.00 0.00
#> 60      1   0.000      0.991 1.00 0.00
#> 61      1   0.000      0.991 1.00 0.00
#> 62      2   0.000      0.981 0.00 1.00
#> 63      1   0.000      0.991 1.00 0.00
#> 64      1   0.000      0.991 1.00 0.00
#> 65      1   0.000      0.991 1.00 0.00
#> 66      1   0.000      0.991 1.00 0.00
#> 67      1   0.000      0.991 1.00 0.00
#> 68      1   0.000      0.991 1.00 0.00
#> 69      1   0.000      0.991 1.00 0.00
#> 70      1   0.000      0.991 1.00 0.00
#> 71      1   0.000      0.991 1.00 0.00
#> 72      1   0.000      0.991 1.00 0.00
#> 73      1   0.000      0.991 1.00 0.00
#> 74      1   0.000      0.991 1.00 0.00
#> 75      1   0.000      0.991 1.00 0.00
#> 76      1   0.000      0.991 1.00 0.00
#> 77      1   0.000      0.991 1.00 0.00
#> 78      1   0.000      0.991 1.00 0.00
#> 79      1   0.000      0.991 1.00 0.00
#> 80      1   0.000      0.991 1.00 0.00
#> 81      1   0.327      0.934 0.94 0.06
#> 82      1   0.000      0.991 1.00 0.00
#> 83      1   0.141      0.974 0.98 0.02
#> 84      1   0.000      0.991 1.00 0.00
#> 85      1   0.000      0.991 1.00 0.00
#> 86      1   0.000      0.991 1.00 0.00
#> 87      1   0.000      0.991 1.00 0.00
#> 88      1   0.000      0.991 1.00 0.00
#> 89      1   0.000      0.991 1.00 0.00
#> 90      1   0.000      0.991 1.00 0.00
#> 91      1   0.000      0.991 1.00 0.00
#> 92      1   0.000      0.991 1.00 0.00
#> 93      1   0.000      0.991 1.00 0.00
#> 94      1   0.000      0.991 1.00 0.00
#> 95      1   0.000      0.991 1.00 0.00
#> 96      1   0.000      0.991 1.00 0.00
#> 97      1   0.000      0.991 1.00 0.00
#> 98      1   0.000      0.991 1.00 0.00
#> 99      1   0.000      0.991 1.00 0.00
#> 100     1   0.000      0.991 1.00 0.00
#> 101     1   0.000      0.991 1.00 0.00
#> 102     1   0.000      0.991 1.00 0.00
#> 103     1   0.000      0.991 1.00 0.00
#> 104     2   0.000      0.981 0.00 1.00
#> 105     1   0.000      0.991 1.00 0.00
#> 106     1   0.000      0.991 1.00 0.00
#> 107     1   0.000      0.991 1.00 0.00
#> 108     1   0.000      0.991 1.00 0.00
#> 109     1   0.000      0.991 1.00 0.00
#> 110     1   0.000      0.991 1.00 0.00
#> 111     1   0.000      0.991 1.00 0.00
#> 112     1   0.000      0.991 1.00 0.00
#> 113     1   0.000      0.991 1.00 0.00
#> 114     1   0.000      0.991 1.00 0.00
#> 115     1   0.000      0.991 1.00 0.00
#> 116     1   0.000      0.991 1.00 0.00
#> 117     1   0.000      0.991 1.00 0.00
#> 118     1   0.000      0.991 1.00 0.00
#> 119     1   0.000      0.991 1.00 0.00
#> 120     1   0.000      0.991 1.00 0.00
#> 121     1   0.000      0.991 1.00 0.00
#> 122     1   0.000      0.991 1.00 0.00
#> 123     1   0.000      0.991 1.00 0.00
#> 124     1   0.000      0.991 1.00 0.00
#> 125     1   0.000      0.991 1.00 0.00
#> 126     1   0.000      0.991 1.00 0.00
#> 127     1   0.000      0.991 1.00 0.00
#> 128     1   0.141      0.974 0.98 0.02
#> 129     1   0.000      0.991 1.00 0.00
#> 130     1   0.000      0.991 1.00 0.00
#> 131     1   0.000      0.991 1.00 0.00
#> 132     1   0.000      0.991 1.00 0.00
#> 133     1   0.000      0.991 1.00 0.00
#> 134     1   0.000      0.991 1.00 0.00
#> 135     1   0.000      0.991 1.00 0.00
#> 136     1   0.000      0.991 1.00 0.00
#> 137     1   0.000      0.991 1.00 0.00
#> 138     1   0.000      0.991 1.00 0.00
#> 139     1   0.000      0.991 1.00 0.00
#> 140     1   0.000      0.991 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       2  0.0000      0.999 0.00 1.00 0.00
#> 2       2  0.0000      0.999 0.00 1.00 0.00
#> 3       2  0.0000      0.999 0.00 1.00 0.00
#> 4       2  0.0000      0.999 0.00 1.00 0.00
#> 5       2  0.0000      0.999 0.00 1.00 0.00
#> 6       2  0.0000      0.999 0.00 1.00 0.00
#> 7       2  0.0000      0.999 0.00 1.00 0.00
#> 8       2  0.0000      0.999 0.00 1.00 0.00
#> 9       2  0.0000      0.999 0.00 1.00 0.00
#> 10      2  0.0000      0.999 0.00 1.00 0.00
#> 11      2  0.0000      0.999 0.00 1.00 0.00
#> 12      2  0.0000      0.999 0.00 1.00 0.00
#> 13      2  0.0000      0.999 0.00 1.00 0.00
#> 14      2  0.0000      0.999 0.00 1.00 0.00
#> 15      2  0.0000      0.999 0.00 1.00 0.00
#> 16      2  0.0000      0.999 0.00 1.00 0.00
#> 17      2  0.0000      0.999 0.00 1.00 0.00
#> 18      2  0.0000      0.999 0.00 1.00 0.00
#> 19      2  0.0000      0.999 0.00 1.00 0.00
#> 20      2  0.0000      0.999 0.00 1.00 0.00
#> 21      2  0.0000      0.999 0.00 1.00 0.00
#> 22      2  0.0000      0.999 0.00 1.00 0.00
#> 23      2  0.0000      0.999 0.00 1.00 0.00
#> 24      2  0.0000      0.999 0.00 1.00 0.00
#> 25      2  0.0000      0.999 0.00 1.00 0.00
#> 26      2  0.0000      0.999 0.00 1.00 0.00
#> 27      1  0.3686      0.912 0.86 0.00 0.14
#> 28      1  0.3686      0.912 0.86 0.00 0.14
#> 29      1  0.5159      0.885 0.82 0.04 0.14
#> 30      2  0.0000      0.999 0.00 1.00 0.00
#> 31      1  0.4209      0.912 0.86 0.02 0.12
#> 32      2  0.0892      0.975 0.02 0.98 0.00
#> 33      1  0.3686      0.912 0.86 0.00 0.14
#> 34      1  0.3686      0.912 0.86 0.00 0.14
#> 35      1  0.3686      0.912 0.86 0.00 0.14
#> 36      1  0.3686      0.912 0.86 0.00 0.14
#> 37      1  0.3686      0.912 0.86 0.00 0.14
#> 38      2  0.0000      0.999 0.00 1.00 0.00
#> 39      1  0.3686      0.912 0.86 0.00 0.14
#> 40      2  0.0000      0.999 0.00 1.00 0.00
#> 41      2  0.0000      0.999 0.00 1.00 0.00
#> 42      1  0.3686      0.912 0.86 0.00 0.14
#> 43      1  0.3340      0.918 0.88 0.00 0.12
#> 44      2  0.0000      0.999 0.00 1.00 0.00
#> 45      2  0.0000      0.999 0.00 1.00 0.00
#> 46      1  0.0000      0.930 1.00 0.00 0.00
#> 47      1  0.0892      0.922 0.98 0.00 0.02
#> 48      1  0.0000      0.930 1.00 0.00 0.00
#> 49      1  0.3340      0.918 0.88 0.00 0.12
#> 50      1  0.0000      0.930 1.00 0.00 0.00
#> 51      1  0.3686      0.912 0.86 0.00 0.14
#> 52      1  0.2066      0.908 0.94 0.06 0.00
#> 53      1  0.3686      0.912 0.86 0.00 0.14
#> 54      1  0.3686      0.912 0.86 0.00 0.14
#> 55      1  0.3686      0.912 0.86 0.00 0.14
#> 56      2  0.0000      0.999 0.00 1.00 0.00
#> 57      1  0.3686      0.912 0.86 0.00 0.14
#> 58      1  0.3686      0.912 0.86 0.00 0.14
#> 59      1  0.3686      0.912 0.86 0.00 0.14
#> 60      1  0.3686      0.912 0.86 0.00 0.14
#> 61      1  0.3686      0.912 0.86 0.00 0.14
#> 62      2  0.0000      0.999 0.00 1.00 0.00
#> 63      1  0.2537      0.925 0.92 0.00 0.08
#> 64      1  0.2959      0.922 0.90 0.00 0.10
#> 65      1  0.3686      0.912 0.86 0.00 0.14
#> 66      1  0.0000      0.930 1.00 0.00 0.00
#> 67      1  0.0000      0.930 1.00 0.00 0.00
#> 68      1  0.0000      0.930 1.00 0.00 0.00
#> 69      1  0.0000      0.930 1.00 0.00 0.00
#> 70      1  0.0000      0.930 1.00 0.00 0.00
#> 71      1  0.0000      0.930 1.00 0.00 0.00
#> 72      1  0.0000      0.930 1.00 0.00 0.00
#> 73      1  0.0000      0.930 1.00 0.00 0.00
#> 74      1  0.0000      0.930 1.00 0.00 0.00
#> 75      1  0.0000      0.930 1.00 0.00 0.00
#> 76      1  0.0000      0.930 1.00 0.00 0.00
#> 77      1  0.0000      0.930 1.00 0.00 0.00
#> 78      1  0.0000      0.930 1.00 0.00 0.00
#> 79      1  0.0000      0.930 1.00 0.00 0.00
#> 80      1  0.0000      0.930 1.00 0.00 0.00
#> 81      1  0.0000      0.930 1.00 0.00 0.00
#> 82      1  0.0000      0.930 1.00 0.00 0.00
#> 83      1  0.2959      0.922 0.90 0.00 0.10
#> 84      1  0.0000      0.930 1.00 0.00 0.00
#> 85      1  0.0000      0.930 1.00 0.00 0.00
#> 86      1  0.0000      0.930 1.00 0.00 0.00
#> 87      1  0.0000      0.930 1.00 0.00 0.00
#> 88      1  0.0000      0.930 1.00 0.00 0.00
#> 89      1  0.0000      0.930 1.00 0.00 0.00
#> 90      1  0.0000      0.930 1.00 0.00 0.00
#> 91      1  0.0000      0.930 1.00 0.00 0.00
#> 92      1  0.0000      0.930 1.00 0.00 0.00
#> 93      1  0.0000      0.930 1.00 0.00 0.00
#> 94      1  0.0000      0.930 1.00 0.00 0.00
#> 95      1  0.0000      0.930 1.00 0.00 0.00
#> 96      1  0.3686      0.912 0.86 0.00 0.14
#> 97      3  0.0000      0.995 0.00 0.00 1.00
#> 98      3  0.0000      0.995 0.00 0.00 1.00
#> 99      3  0.0000      0.995 0.00 0.00 1.00
#> 100     3  0.0000      0.995 0.00 0.00 1.00
#> 101     3  0.0000      0.995 0.00 0.00 1.00
#> 102     3  0.0000      0.995 0.00 0.00 1.00
#> 103     3  0.0000      0.995 0.00 0.00 1.00
#> 104     2  0.0000      0.999 0.00 1.00 0.00
#> 105     3  0.0000      0.995 0.00 0.00 1.00
#> 106     3  0.0000      0.995 0.00 0.00 1.00
#> 107     3  0.0000      0.995 0.00 0.00 1.00
#> 108     3  0.0000      0.995 0.00 0.00 1.00
#> 109     3  0.0000      0.995 0.00 0.00 1.00
#> 110     3  0.0000      0.995 0.00 0.00 1.00
#> 111     3  0.0000      0.995 0.00 0.00 1.00
#> 112     3  0.0000      0.995 0.00 0.00 1.00
#> 113     3  0.0000      0.995 0.00 0.00 1.00
#> 114     3  0.0000      0.995 0.00 0.00 1.00
#> 115     3  0.0000      0.995 0.00 0.00 1.00
#> 116     3  0.0000      0.995 0.00 0.00 1.00
#> 117     3  0.0000      0.995 0.00 0.00 1.00
#> 118     3  0.0000      0.995 0.00 0.00 1.00
#> 119     3  0.0000      0.995 0.00 0.00 1.00
#> 120     3  0.0000      0.995 0.00 0.00 1.00
#> 121     3  0.0000      0.995 0.00 0.00 1.00
#> 122     3  0.0000      0.995 0.00 0.00 1.00
#> 123     3  0.0000      0.995 0.00 0.00 1.00
#> 124     3  0.0000      0.995 0.00 0.00 1.00
#> 125     3  0.0000      0.995 0.00 0.00 1.00
#> 126     3  0.0000      0.995 0.00 0.00 1.00
#> 127     3  0.0000      0.995 0.00 0.00 1.00
#> 128     1  0.2959      0.910 0.90 0.00 0.10
#> 129     3  0.4002      0.812 0.16 0.00 0.84
#> 130     1  0.1529      0.911 0.96 0.00 0.04
#> 131     3  0.0000      0.995 0.00 0.00 1.00
#> 132     3  0.0000      0.995 0.00 0.00 1.00
#> 133     3  0.0000      0.995 0.00 0.00 1.00
#> 134     1  0.3686      0.912 0.86 0.00 0.14
#> 135     1  0.3686      0.912 0.86 0.00 0.14
#> 136     1  0.0000      0.930 1.00 0.00 0.00
#> 137     1  0.3340      0.918 0.88 0.00 0.12
#> 138     1  0.3340      0.918 0.88 0.00 0.12
#> 139     1  0.3340      0.918 0.88 0.00 0.12
#> 140     1  0.3686      0.912 0.86 0.00 0.14

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 2       2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 3       2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 4       2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 5       2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 6       2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 7       2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 8       2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 9       2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 10      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 11      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 12      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 13      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 14      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 15      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 16      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 17      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 18      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 19      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 20      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 21      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 22      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 23      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 24      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 25      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 26      2  0.0707      0.973 0.02 0.98 0.00 0.00
#> 27      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 28      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 29      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 30      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 31      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 32      1  0.4907      0.261 0.58 0.42 0.00 0.00
#> 33      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 34      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 35      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 36      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 37      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 38      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 39      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 40      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 41      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 42      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 43      1  0.1211      0.947 0.96 0.00 0.00 0.04
#> 44      2  0.2647      0.860 0.12 0.88 0.00 0.00
#> 45      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 46      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 47      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 48      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 49      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 50      4  0.2011      0.904 0.08 0.00 0.00 0.92
#> 51      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 52      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 53      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 54      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 55      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 56      2  0.3975      0.683 0.24 0.76 0.00 0.00
#> 57      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 58      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 59      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 60      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 61      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 62      2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 63      1  0.4790      0.412 0.62 0.00 0.00 0.38
#> 64      1  0.2647      0.868 0.88 0.00 0.00 0.12
#> 65      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 66      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 67      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 68      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 69      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 70      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 71      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 72      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 73      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 74      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 75      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 76      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 77      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 78      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 79      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 80      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 81      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 82      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 83      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 84      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 85      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 86      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 87      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 88      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 89      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 90      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 91      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 92      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 93      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 94      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 95      4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 96      1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 97      3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 98      3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 99      3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 100     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 101     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 102     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 103     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 104     2  0.0000      0.989 0.00 1.00 0.00 0.00
#> 105     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 106     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 107     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 108     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 109     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 110     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 111     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 112     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 113     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 114     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 115     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 116     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 117     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 118     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 119     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 120     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 121     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 122     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 123     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 124     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 125     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 126     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 127     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 128     1  0.3335      0.838 0.86 0.00 0.02 0.12
#> 129     4  0.2345      0.884 0.00 0.00 0.10 0.90
#> 130     4  0.0000      0.987 0.00 0.00 0.00 1.00
#> 131     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 132     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 133     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 134     1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 135     1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 136     4  0.4134      0.635 0.26 0.00 0.00 0.74
#> 137     1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 138     1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 139     1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 140     1  0.0707      0.962 0.98 0.00 0.00 0.02

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0123-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0123-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0123-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0123-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0123-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0123-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0123-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0123-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0123-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0123-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0123-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0123-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0123-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0123-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0123-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0123-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0123-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      138              5.63e-15 2
#> ATC:skmeans      140              1.82e-35 3
#> ATC:skmeans      138              2.22e-45 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node013

Parent node: Node01. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["013"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 8520 rows and 201 columns.
#>   Top rows (852) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-013-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-013-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.946           0.951       0.979          0.495 0.507   0.507
#> 3 3 0.780           0.869       0.936          0.303 0.797   0.619
#> 4 4 0.742           0.763       0.894          0.105 0.889   0.706

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.980 0.00 1.00
#> 2       2   0.000      0.980 0.00 1.00
#> 3       2   0.000      0.980 0.00 1.00
#> 4       2   0.000      0.980 0.00 1.00
#> 5       2   0.000      0.980 0.00 1.00
#> 6       1   0.000      0.977 1.00 0.00
#> 7       1   0.141      0.961 0.98 0.02
#> 8       2   0.000      0.980 0.00 1.00
#> 9       2   0.000      0.980 0.00 1.00
#> 10      2   0.000      0.980 0.00 1.00
#> 11      1   0.000      0.977 1.00 0.00
#> 12      1   0.327      0.925 0.94 0.06
#> 13      1   0.402      0.904 0.92 0.08
#> 14      2   0.000      0.980 0.00 1.00
#> 15      2   0.000      0.980 0.00 1.00
#> 16      2   0.000      0.980 0.00 1.00
#> 17      2   0.000      0.980 0.00 1.00
#> 18      2   0.000      0.980 0.00 1.00
#> 19      2   0.000      0.980 0.00 1.00
#> 20      2   0.000      0.980 0.00 1.00
#> 21      2   0.000      0.980 0.00 1.00
#> 22      2   0.000      0.980 0.00 1.00
#> 23      2   0.000      0.980 0.00 1.00
#> 24      2   0.000      0.980 0.00 1.00
#> 25      2   0.000      0.980 0.00 1.00
#> 26      2   0.000      0.980 0.00 1.00
#> 27      1   0.925      0.491 0.66 0.34
#> 28      2   0.000      0.980 0.00 1.00
#> 29      1   0.000      0.977 1.00 0.00
#> 30      1   0.000      0.977 1.00 0.00
#> 31      2   0.000      0.980 0.00 1.00
#> 32      1   0.242      0.944 0.96 0.04
#> 33      1   0.971      0.342 0.60 0.40
#> 34      1   0.000      0.977 1.00 0.00
#> 35      2   0.000      0.980 0.00 1.00
#> 36      2   0.000      0.980 0.00 1.00
#> 37      2   0.000      0.980 0.00 1.00
#> 38      2   0.000      0.980 0.00 1.00
#> 39      2   0.000      0.980 0.00 1.00
#> 40      1   0.000      0.977 1.00 0.00
#> 41      2   0.000      0.980 0.00 1.00
#> 42      1   0.000      0.977 1.00 0.00
#> 43      1   0.000      0.977 1.00 0.00
#> 44      2   0.000      0.980 0.00 1.00
#> 45      2   0.141      0.963 0.02 0.98
#> 46      2   0.469      0.886 0.10 0.90
#> 47      1   0.722      0.752 0.80 0.20
#> 48      2   0.000      0.980 0.00 1.00
#> 49      1   0.000      0.977 1.00 0.00
#> 50      1   0.925      0.493 0.66 0.34
#> 51      2   0.000      0.980 0.00 1.00
#> 52      2   0.529      0.862 0.12 0.88
#> 53      2   0.000      0.980 0.00 1.00
#> 54      2   0.000      0.980 0.00 1.00
#> 55      2   0.000      0.980 0.00 1.00
#> 56      2   0.000      0.980 0.00 1.00
#> 57      1   0.634      0.809 0.84 0.16
#> 58      2   0.000      0.980 0.00 1.00
#> 59      2   0.000      0.980 0.00 1.00
#> 60      2   0.000      0.980 0.00 1.00
#> 61      1   0.000      0.977 1.00 0.00
#> 62      1   0.000      0.977 1.00 0.00
#> 63      2   0.000      0.980 0.00 1.00
#> 64      1   0.000      0.977 1.00 0.00
#> 65      1   0.000      0.977 1.00 0.00
#> 66      2   0.000      0.980 0.00 1.00
#> 67      1   0.000      0.977 1.00 0.00
#> 68      1   0.000      0.977 1.00 0.00
#> 69      2   0.000      0.980 0.00 1.00
#> 70      1   0.469      0.882 0.90 0.10
#> 71      1   0.634      0.809 0.84 0.16
#> 72      1   0.000      0.977 1.00 0.00
#> 73      2   0.680      0.783 0.18 0.82
#> 74      1   0.000      0.977 1.00 0.00
#> 75      2   0.000      0.980 0.00 1.00
#> 76      2   0.000      0.980 0.00 1.00
#> 77      2   0.000      0.980 0.00 1.00
#> 78      2   0.000      0.980 0.00 1.00
#> 79      1   0.141      0.961 0.98 0.02
#> 80      1   0.000      0.977 1.00 0.00
#> 81      2   0.000      0.980 0.00 1.00
#> 82      1   0.000      0.977 1.00 0.00
#> 83      2   0.000      0.980 0.00 1.00
#> 84      2   0.000      0.980 0.00 1.00
#> 85      2   0.141      0.963 0.02 0.98
#> 86      2   0.000      0.980 0.00 1.00
#> 87      2   0.000      0.980 0.00 1.00
#> 88      2   0.141      0.963 0.02 0.98
#> 89      1   0.000      0.977 1.00 0.00
#> 90      1   0.000      0.977 1.00 0.00
#> 91      2   0.795      0.688 0.24 0.76
#> 92      2   0.000      0.980 0.00 1.00
#> 93      1   0.000      0.977 1.00 0.00
#> 94      1   0.000      0.977 1.00 0.00
#> 95      1   0.000      0.977 1.00 0.00
#> 96      1   0.000      0.977 1.00 0.00
#> 97      1   0.000      0.977 1.00 0.00
#> 98      1   0.000      0.977 1.00 0.00
#> 99      1   0.000      0.977 1.00 0.00
#> 100     1   0.000      0.977 1.00 0.00
#> 101     1   0.000      0.977 1.00 0.00
#> 102     1   0.000      0.977 1.00 0.00
#> 103     1   0.000      0.977 1.00 0.00
#> 104     1   0.000      0.977 1.00 0.00
#> 105     1   0.000      0.977 1.00 0.00
#> 106     1   0.000      0.977 1.00 0.00
#> 107     1   0.000      0.977 1.00 0.00
#> 108     1   0.000      0.977 1.00 0.00
#> 109     1   0.000      0.977 1.00 0.00
#> 110     2   0.000      0.980 0.00 1.00
#> 111     1   0.000      0.977 1.00 0.00
#> 112     1   0.000      0.977 1.00 0.00
#> 113     1   0.000      0.977 1.00 0.00
#> 114     1   0.000      0.977 1.00 0.00
#> 115     1   0.000      0.977 1.00 0.00
#> 116     1   0.000      0.977 1.00 0.00
#> 117     1   0.000      0.977 1.00 0.00
#> 118     1   0.000      0.977 1.00 0.00
#> 119     1   0.000      0.977 1.00 0.00
#> 120     1   0.000      0.977 1.00 0.00
#> 121     1   0.000      0.977 1.00 0.00
#> 122     1   0.000      0.977 1.00 0.00
#> 123     1   0.000      0.977 1.00 0.00
#> 124     1   0.000      0.977 1.00 0.00
#> 125     1   0.000      0.977 1.00 0.00
#> 126     1   0.000      0.977 1.00 0.00
#> 127     1   0.242      0.944 0.96 0.04
#> 128     2   0.722      0.754 0.20 0.80
#> 129     1   0.141      0.961 0.98 0.02
#> 130     1   0.000      0.977 1.00 0.00
#> 131     1   0.000      0.977 1.00 0.00
#> 132     1   0.000      0.977 1.00 0.00
#> 133     1   0.000      0.977 1.00 0.00
#> 134     1   0.000      0.977 1.00 0.00
#> 135     1   0.000      0.977 1.00 0.00
#> 136     2   0.680      0.786 0.18 0.82
#> 137     2   0.000      0.980 0.00 1.00
#> 138     1   0.000      0.977 1.00 0.00
#> 139     2   0.000      0.980 0.00 1.00
#> 140     1   0.000      0.977 1.00 0.00
#> 141     1   0.000      0.977 1.00 0.00
#> 142     1   0.000      0.977 1.00 0.00
#> 143     2   0.995      0.139 0.46 0.54
#> 144     1   0.000      0.977 1.00 0.00
#> 145     1   0.000      0.977 1.00 0.00
#> 146     1   0.000      0.977 1.00 0.00
#> 147     1   0.000      0.977 1.00 0.00
#> 148     1   0.000      0.977 1.00 0.00
#> 149     1   0.000      0.977 1.00 0.00
#> 150     1   0.000      0.977 1.00 0.00
#> 151     1   0.000      0.977 1.00 0.00
#> 152     1   0.000      0.977 1.00 0.00
#> 153     2   0.000      0.980 0.00 1.00
#> 154     1   0.000      0.977 1.00 0.00
#> 155     1   0.000      0.977 1.00 0.00
#> 156     2   0.402      0.907 0.08 0.92
#> 157     1   0.000      0.977 1.00 0.00
#> 158     1   0.000      0.977 1.00 0.00
#> 159     2   0.000      0.980 0.00 1.00
#> 160     2   0.000      0.980 0.00 1.00
#> 161     2   0.000      0.980 0.00 1.00
#> 162     1   0.000      0.977 1.00 0.00
#> 163     1   0.000      0.977 1.00 0.00
#> 164     2   0.000      0.980 0.00 1.00
#> 165     2   0.402      0.907 0.08 0.92
#> 166     1   0.000      0.977 1.00 0.00
#> 167     1   0.000      0.977 1.00 0.00
#> 168     1   0.000      0.977 1.00 0.00
#> 169     1   0.995      0.158 0.54 0.46
#> 170     1   0.000      0.977 1.00 0.00
#> 171     1   0.000      0.977 1.00 0.00
#> 172     1   0.141      0.961 0.98 0.02
#> 173     1   0.000      0.977 1.00 0.00
#> 174     1   0.000      0.977 1.00 0.00
#> 175     1   0.000      0.977 1.00 0.00
#> 176     1   0.000      0.977 1.00 0.00
#> 177     1   0.000      0.977 1.00 0.00
#> 178     1   0.000      0.977 1.00 0.00
#> 179     1   0.000      0.977 1.00 0.00
#> 180     1   0.000      0.977 1.00 0.00
#> 181     2   0.000      0.980 0.00 1.00
#> 182     1   0.000      0.977 1.00 0.00
#> 183     1   0.000      0.977 1.00 0.00
#> 184     2   0.000      0.980 0.00 1.00
#> 185     2   0.000      0.980 0.00 1.00
#> 186     2   0.000      0.980 0.00 1.00
#> 187     2   0.000      0.980 0.00 1.00
#> 188     2   0.000      0.980 0.00 1.00
#> 189     2   0.000      0.980 0.00 1.00
#> 190     2   0.000      0.980 0.00 1.00
#> 191     2   0.000      0.980 0.00 1.00
#> 192     2   0.000      0.980 0.00 1.00
#> 193     2   0.000      0.980 0.00 1.00
#> 194     2   0.000      0.980 0.00 1.00
#> 195     1   0.000      0.977 1.00 0.00
#> 196     2   0.000      0.980 0.00 1.00
#> 197     1   0.000      0.977 1.00 0.00
#> 198     2   0.000      0.980 0.00 1.00
#> 199     1   0.242      0.944 0.96 0.04
#> 200     1   0.000      0.977 1.00 0.00
#> 201     2   0.000      0.980 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       2  0.0892     0.9255 0.00 0.98 0.02
#> 2       2  0.0000     0.9299 0.00 1.00 0.00
#> 3       2  0.0000     0.9299 0.00 1.00 0.00
#> 4       2  0.0000     0.9299 0.00 1.00 0.00
#> 5       2  0.0000     0.9299 0.00 1.00 0.00
#> 6       1  0.3686     0.8321 0.86 0.00 0.14
#> 7       1  0.1781     0.9311 0.96 0.02 0.02
#> 8       2  0.0000     0.9299 0.00 1.00 0.00
#> 9       2  0.0000     0.9299 0.00 1.00 0.00
#> 10      2  0.2959     0.8670 0.00 0.90 0.10
#> 11      3  0.2537     0.8500 0.08 0.00 0.92
#> 12      3  0.1529     0.8637 0.04 0.00 0.96
#> 13      3  0.1529     0.8657 0.04 0.00 0.96
#> 14      2  0.0892     0.9255 0.00 0.98 0.02
#> 15      2  0.0000     0.9299 0.00 1.00 0.00
#> 16      2  0.0000     0.9299 0.00 1.00 0.00
#> 17      2  0.2066     0.8994 0.00 0.94 0.06
#> 18      3  0.2959     0.8293 0.00 0.10 0.90
#> 19      2  0.0000     0.9299 0.00 1.00 0.00
#> 20      2  0.0000     0.9299 0.00 1.00 0.00
#> 21      2  0.1529     0.9111 0.00 0.96 0.04
#> 22      2  0.0000     0.9299 0.00 1.00 0.00
#> 23      2  0.2537     0.8839 0.00 0.92 0.08
#> 24      2  0.2959     0.8673 0.00 0.90 0.10
#> 25      2  0.0892     0.9255 0.00 0.98 0.02
#> 26      2  0.0892     0.9255 0.00 0.98 0.02
#> 27      2  0.9930    -0.0765 0.34 0.38 0.28
#> 28      2  0.1529     0.9111 0.00 0.96 0.04
#> 29      1  0.3686     0.8288 0.86 0.00 0.14
#> 30      3  0.0892     0.8645 0.00 0.02 0.98
#> 31      3  0.6126     0.3822 0.00 0.40 0.60
#> 32      3  0.0892     0.8645 0.00 0.02 0.98
#> 33      3  0.6176     0.7822 0.12 0.10 0.78
#> 34      3  0.3340     0.8252 0.12 0.00 0.88
#> 35      2  0.0000     0.9299 0.00 1.00 0.00
#> 36      2  0.0000     0.9299 0.00 1.00 0.00
#> 37      2  0.1529     0.9222 0.00 0.96 0.04
#> 38      2  0.0892     0.9255 0.00 0.98 0.02
#> 39      3  0.5216     0.6600 0.00 0.26 0.74
#> 40      3  0.3340     0.8252 0.12 0.00 0.88
#> 41      2  0.0892     0.9219 0.00 0.98 0.02
#> 42      3  0.2537     0.8497 0.08 0.00 0.92
#> 43      3  0.0892     0.8670 0.02 0.00 0.98
#> 44      2  0.0000     0.9299 0.00 1.00 0.00
#> 45      3  0.1529     0.8609 0.00 0.04 0.96
#> 46      3  0.0892     0.8645 0.00 0.02 0.98
#> 47      1  0.7424     0.4775 0.64 0.30 0.06
#> 48      3  0.6244     0.2605 0.00 0.44 0.56
#> 49      1  0.0000     0.9628 1.00 0.00 0.00
#> 50      3  0.6793     0.7514 0.16 0.10 0.74
#> 51      2  0.6126     0.3047 0.00 0.60 0.40
#> 52      3  0.0892     0.8645 0.00 0.02 0.98
#> 53      3  0.5560     0.6021 0.00 0.30 0.70
#> 54      2  0.0892     0.9255 0.00 0.98 0.02
#> 55      2  0.0892     0.9255 0.00 0.98 0.02
#> 56      2  0.2537     0.8727 0.00 0.92 0.08
#> 57      3  0.0892     0.8645 0.00 0.02 0.98
#> 58      2  0.0000     0.9299 0.00 1.00 0.00
#> 59      2  0.2959     0.8665 0.00 0.90 0.10
#> 60      2  0.2066     0.8983 0.00 0.94 0.06
#> 61      1  0.0892     0.9479 0.98 0.00 0.02
#> 62      1  0.4002     0.8063 0.84 0.00 0.16
#> 63      2  0.0000     0.9299 0.00 1.00 0.00
#> 64      3  0.0892     0.8670 0.02 0.00 0.98
#> 65      3  0.0892     0.8670 0.02 0.00 0.98
#> 66      2  0.3340     0.8458 0.00 0.88 0.12
#> 67      3  0.3686     0.8077 0.14 0.00 0.86
#> 68      3  0.0892     0.8670 0.02 0.00 0.98
#> 69      2  0.4796     0.7113 0.00 0.78 0.22
#> 70      3  0.0892     0.8645 0.00 0.02 0.98
#> 71      3  0.0892     0.8645 0.00 0.02 0.98
#> 72      1  0.2066     0.9159 0.94 0.00 0.06
#> 73      3  0.3686     0.7992 0.00 0.14 0.86
#> 74      3  0.3340     0.8284 0.12 0.00 0.88
#> 75      2  0.2537     0.8839 0.00 0.92 0.08
#> 76      2  0.0000     0.9299 0.00 1.00 0.00
#> 77      3  0.5835     0.5222 0.00 0.34 0.66
#> 78      2  0.0892     0.9255 0.00 0.98 0.02
#> 79      3  0.4002     0.7961 0.16 0.00 0.84
#> 80      3  0.0892     0.8670 0.02 0.00 0.98
#> 81      2  0.2537     0.8846 0.00 0.92 0.08
#> 82      1  0.5016     0.6818 0.76 0.00 0.24
#> 83      2  0.5835     0.4678 0.00 0.66 0.34
#> 84      2  0.5016     0.6787 0.00 0.76 0.24
#> 85      3  0.2959     0.8295 0.00 0.10 0.90
#> 86      2  0.0000     0.9299 0.00 1.00 0.00
#> 87      3  0.2066     0.8521 0.00 0.06 0.94
#> 88      3  0.2959     0.8294 0.00 0.10 0.90
#> 89      1  0.0000     0.9628 1.00 0.00 0.00
#> 90      1  0.0000     0.9628 1.00 0.00 0.00
#> 91      2  0.7074     0.0527 0.48 0.50 0.02
#> 92      2  0.0892     0.9255 0.00 0.98 0.02
#> 93      1  0.0000     0.9628 1.00 0.00 0.00
#> 94      1  0.0000     0.9628 1.00 0.00 0.00
#> 95      3  0.1529     0.8656 0.04 0.00 0.96
#> 96      1  0.5948     0.4337 0.64 0.00 0.36
#> 97      1  0.0000     0.9628 1.00 0.00 0.00
#> 98      1  0.0000     0.9628 1.00 0.00 0.00
#> 99      1  0.0000     0.9628 1.00 0.00 0.00
#> 100     1  0.0000     0.9628 1.00 0.00 0.00
#> 101     1  0.0000     0.9628 1.00 0.00 0.00
#> 102     1  0.0000     0.9628 1.00 0.00 0.00
#> 103     1  0.0000     0.9628 1.00 0.00 0.00
#> 104     1  0.0000     0.9628 1.00 0.00 0.00
#> 105     1  0.0000     0.9628 1.00 0.00 0.00
#> 106     1  0.0000     0.9628 1.00 0.00 0.00
#> 107     1  0.0000     0.9628 1.00 0.00 0.00
#> 108     1  0.0000     0.9628 1.00 0.00 0.00
#> 109     1  0.0000     0.9628 1.00 0.00 0.00
#> 110     2  0.0892     0.9255 0.00 0.98 0.02
#> 111     1  0.0000     0.9628 1.00 0.00 0.00
#> 112     1  0.0000     0.9628 1.00 0.00 0.00
#> 113     1  0.0000     0.9628 1.00 0.00 0.00
#> 114     1  0.0000     0.9628 1.00 0.00 0.00
#> 115     1  0.0000     0.9628 1.00 0.00 0.00
#> 116     3  0.5016     0.6816 0.24 0.00 0.76
#> 117     1  0.0000     0.9628 1.00 0.00 0.00
#> 118     1  0.0000     0.9628 1.00 0.00 0.00
#> 119     1  0.0000     0.9628 1.00 0.00 0.00
#> 120     1  0.0000     0.9628 1.00 0.00 0.00
#> 121     1  0.0000     0.9628 1.00 0.00 0.00
#> 122     3  0.2959     0.8393 0.10 0.00 0.90
#> 123     1  0.1529     0.9331 0.96 0.00 0.04
#> 124     1  0.0892     0.9484 0.98 0.00 0.02
#> 125     1  0.0000     0.9628 1.00 0.00 0.00
#> 126     1  0.0000     0.9628 1.00 0.00 0.00
#> 127     1  0.3415     0.8661 0.90 0.08 0.02
#> 128     3  0.7208     0.5136 0.04 0.34 0.62
#> 129     3  0.0892     0.8670 0.02 0.00 0.98
#> 130     1  0.0000     0.9628 1.00 0.00 0.00
#> 131     1  0.0000     0.9628 1.00 0.00 0.00
#> 132     1  0.0892     0.9485 0.98 0.00 0.02
#> 133     1  0.0000     0.9628 1.00 0.00 0.00
#> 134     1  0.0000     0.9628 1.00 0.00 0.00
#> 135     1  0.0000     0.9628 1.00 0.00 0.00
#> 136     2  0.5147     0.7128 0.18 0.80 0.02
#> 137     2  0.4035     0.8392 0.08 0.88 0.04
#> 138     1  0.0000     0.9628 1.00 0.00 0.00
#> 139     2  0.0000     0.9299 0.00 1.00 0.00
#> 140     1  0.5835     0.4817 0.66 0.00 0.34
#> 141     1  0.0000     0.9628 1.00 0.00 0.00
#> 142     1  0.0000     0.9628 1.00 0.00 0.00
#> 143     3  0.0892     0.8645 0.00 0.02 0.98
#> 144     1  0.0000     0.9628 1.00 0.00 0.00
#> 145     1  0.0000     0.9628 1.00 0.00 0.00
#> 146     1  0.0000     0.9628 1.00 0.00 0.00
#> 147     1  0.0000     0.9628 1.00 0.00 0.00
#> 148     1  0.0000     0.9628 1.00 0.00 0.00
#> 149     1  0.0000     0.9628 1.00 0.00 0.00
#> 150     1  0.4862     0.7820 0.82 0.02 0.16
#> 151     1  0.0000     0.9628 1.00 0.00 0.00
#> 152     1  0.0000     0.9628 1.00 0.00 0.00
#> 153     2  0.0892     0.9255 0.00 0.98 0.02
#> 154     1  0.2066     0.9155 0.94 0.00 0.06
#> 155     1  0.0000     0.9628 1.00 0.00 0.00
#> 156     2  0.4035     0.8397 0.08 0.88 0.04
#> 157     1  0.0892     0.9467 0.98 0.00 0.02
#> 158     1  0.0000     0.9628 1.00 0.00 0.00
#> 159     2  0.0892     0.9255 0.00 0.98 0.02
#> 160     2  0.0892     0.9255 0.00 0.98 0.02
#> 161     2  0.0892     0.9255 0.00 0.98 0.02
#> 162     1  0.3340     0.8518 0.88 0.00 0.12
#> 163     1  0.0000     0.9628 1.00 0.00 0.00
#> 164     2  0.0000     0.9299 0.00 1.00 0.00
#> 165     2  0.3832     0.8283 0.10 0.88 0.02
#> 166     1  0.0000     0.9628 1.00 0.00 0.00
#> 167     1  0.0000     0.9628 1.00 0.00 0.00
#> 168     1  0.0000     0.9628 1.00 0.00 0.00
#> 169     3  0.1781     0.8674 0.02 0.02 0.96
#> 170     1  0.0000     0.9628 1.00 0.00 0.00
#> 171     1  0.0000     0.9628 1.00 0.00 0.00
#> 172     1  0.5948     0.4301 0.64 0.00 0.36
#> 173     1  0.0000     0.9628 1.00 0.00 0.00
#> 174     1  0.0000     0.9628 1.00 0.00 0.00
#> 175     1  0.0000     0.9628 1.00 0.00 0.00
#> 176     1  0.0000     0.9628 1.00 0.00 0.00
#> 177     1  0.0892     0.9467 0.98 0.00 0.02
#> 178     3  0.6045     0.4066 0.38 0.00 0.62
#> 179     1  0.0000     0.9628 1.00 0.00 0.00
#> 180     1  0.0000     0.9628 1.00 0.00 0.00
#> 181     2  0.0892     0.9255 0.00 0.98 0.02
#> 182     1  0.0000     0.9628 1.00 0.00 0.00
#> 183     1  0.0000     0.9628 1.00 0.00 0.00
#> 184     2  0.0000     0.9299 0.00 1.00 0.00
#> 185     2  0.0000     0.9299 0.00 1.00 0.00
#> 186     2  0.0000     0.9299 0.00 1.00 0.00
#> 187     2  0.0000     0.9299 0.00 1.00 0.00
#> 188     2  0.2066     0.8989 0.00 0.94 0.06
#> 189     2  0.2537     0.8839 0.00 0.92 0.08
#> 190     2  0.0000     0.9299 0.00 1.00 0.00
#> 191     2  0.0892     0.9255 0.00 0.98 0.02
#> 192     2  0.0892     0.9221 0.00 0.98 0.02
#> 193     2  0.0000     0.9299 0.00 1.00 0.00
#> 194     3  0.6280     0.2171 0.00 0.46 0.54
#> 195     1  0.0000     0.9628 1.00 0.00 0.00
#> 196     2  0.0892     0.9255 0.00 0.98 0.02
#> 197     1  0.0000     0.9628 1.00 0.00 0.00
#> 198     2  0.0892     0.9255 0.00 0.98 0.02
#> 199     1  0.3832     0.8428 0.88 0.10 0.02
#> 200     1  0.0000     0.9628 1.00 0.00 0.00
#> 201     2  0.0000     0.9299 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       4  0.4277     0.6649 0.00 0.28 0.00 0.72
#> 2       2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 3       2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 4       2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 5       2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 6       1  0.3400     0.7793 0.82 0.00 0.18 0.00
#> 7       1  0.4994     0.2100 0.52 0.00 0.00 0.48
#> 8       2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 9       2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 10      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 11      3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 12      3  0.1637     0.8088 0.00 0.00 0.94 0.06
#> 13      3  0.4522     0.5157 0.00 0.00 0.68 0.32
#> 14      2  0.4977    -0.1199 0.00 0.54 0.00 0.46
#> 15      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 16      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 17      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 18      2  0.4907     0.2530 0.00 0.58 0.42 0.00
#> 19      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 20      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 21      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 22      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 23      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 24      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 25      4  0.4277     0.6793 0.00 0.28 0.00 0.72
#> 26      4  0.4977     0.3484 0.00 0.46 0.00 0.54
#> 27      4  0.1211     0.7349 0.00 0.00 0.04 0.96
#> 28      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 29      1  0.3172     0.8047 0.84 0.00 0.16 0.00
#> 30      3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 31      2  0.3975     0.6507 0.00 0.76 0.24 0.00
#> 32      3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 33      3  0.6731     0.5575 0.02 0.28 0.62 0.08
#> 34      3  0.3172     0.7326 0.16 0.00 0.84 0.00
#> 35      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 36      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 37      2  0.5173     0.3918 0.00 0.66 0.02 0.32
#> 38      4  0.4994     0.2940 0.00 0.48 0.00 0.52
#> 39      2  0.4948     0.2071 0.00 0.56 0.44 0.00
#> 40      3  0.0707     0.8301 0.02 0.00 0.98 0.00
#> 41      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 42      3  0.0707     0.8298 0.02 0.00 0.98 0.00
#> 43      3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 44      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 45      3  0.4406     0.5616 0.00 0.30 0.70 0.00
#> 46      3  0.0707     0.8279 0.00 0.02 0.98 0.00
#> 47      4  0.0000     0.7488 0.00 0.00 0.00 1.00
#> 48      2  0.7206     0.0338 0.00 0.46 0.40 0.14
#> 49      1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 50      3  0.8406     0.4939 0.18 0.20 0.54 0.08
#> 51      2  0.2647     0.7734 0.00 0.88 0.12 0.00
#> 52      3  0.0707     0.8274 0.00 0.02 0.98 0.00
#> 53      2  0.4977     0.1311 0.00 0.54 0.46 0.00
#> 54      2  0.4855     0.1293 0.00 0.60 0.00 0.40
#> 55      2  0.4522     0.3972 0.00 0.68 0.00 0.32
#> 56      2  0.7581    -0.0665 0.00 0.44 0.20 0.36
#> 57      3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 58      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 59      2  0.2335     0.8109 0.00 0.92 0.06 0.02
#> 60      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 61      1  0.1211     0.9109 0.96 0.00 0.00 0.04
#> 62      1  0.4522     0.5567 0.68 0.00 0.32 0.00
#> 63      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 64      3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 65      3  0.0707     0.8301 0.02 0.00 0.98 0.00
#> 66      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 67      3  0.3610     0.6881 0.20 0.00 0.80 0.00
#> 68      3  0.0707     0.8299 0.02 0.00 0.98 0.00
#> 69      2  0.1211     0.8362 0.00 0.96 0.04 0.00
#> 70      3  0.0707     0.8262 0.00 0.02 0.98 0.00
#> 71      3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 72      1  0.2647     0.8465 0.88 0.00 0.12 0.00
#> 73      3  0.3975     0.6558 0.00 0.24 0.76 0.00
#> 74      3  0.4227     0.7366 0.12 0.00 0.82 0.06
#> 75      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 76      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 77      2  0.4855     0.3218 0.00 0.60 0.40 0.00
#> 78      4  0.4713     0.5757 0.00 0.36 0.00 0.64
#> 79      3  0.4939     0.6487 0.22 0.04 0.74 0.00
#> 80      3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 81      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 82      1  0.4624     0.5153 0.66 0.00 0.34 0.00
#> 83      2  0.3821     0.7440 0.00 0.84 0.12 0.04
#> 84      2  0.2011     0.8076 0.00 0.92 0.08 0.00
#> 85      3  0.4855     0.3433 0.00 0.40 0.60 0.00
#> 86      2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 87      3  0.4277     0.5888 0.00 0.28 0.72 0.00
#> 88      2  0.5606    -0.0165 0.00 0.50 0.48 0.02
#> 89      1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 90      1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 91      4  0.0000     0.7488 0.00 0.00 0.00 1.00
#> 92      4  0.3400     0.7510 0.00 0.18 0.00 0.82
#> 93      1  0.0707     0.9218 0.98 0.00 0.00 0.02
#> 94      1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 95      3  0.1637     0.8104 0.06 0.00 0.94 0.00
#> 96      1  0.4977     0.1685 0.54 0.00 0.46 0.00
#> 97      1  0.0707     0.9205 0.98 0.00 0.02 0.00
#> 98      1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 99      1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 100     1  0.0707     0.9210 0.98 0.00 0.00 0.02
#> 101     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 102     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 103     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 104     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 105     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 106     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 107     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 108     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 109     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 110     2  0.4134     0.5585 0.00 0.74 0.00 0.26
#> 111     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 112     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 113     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 114     1  0.3400     0.7882 0.82 0.00 0.00 0.18
#> 115     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 116     3  0.2011     0.7989 0.08 0.00 0.92 0.00
#> 117     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 118     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 119     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 120     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 121     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 122     3  0.0707     0.8299 0.02 0.00 0.98 0.00
#> 123     1  0.2011     0.8803 0.92 0.00 0.08 0.00
#> 124     1  0.2011     0.8811 0.92 0.00 0.08 0.00
#> 125     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 126     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 127     4  0.3610     0.5782 0.20 0.00 0.00 0.80
#> 128     3  0.8581     0.2648 0.10 0.36 0.44 0.10
#> 129     3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 130     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 131     1  0.1211     0.9095 0.96 0.00 0.00 0.04
#> 132     1  0.2345     0.8669 0.90 0.00 0.10 0.00
#> 133     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 134     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 135     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 136     4  0.0000     0.7488 0.00 0.00 0.00 1.00
#> 137     4  0.2011     0.7677 0.00 0.08 0.00 0.92
#> 138     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 139     2  0.1211     0.8357 0.00 0.96 0.00 0.04
#> 140     1  0.6005     0.0949 0.50 0.00 0.46 0.04
#> 141     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 142     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 143     3  0.0000     0.8321 0.00 0.00 1.00 0.00
#> 144     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 145     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 146     1  0.4277     0.6601 0.72 0.00 0.00 0.28
#> 147     1  0.1637     0.8976 0.94 0.00 0.00 0.06
#> 148     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 149     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 150     1  0.5422     0.6750 0.74 0.04 0.20 0.02
#> 151     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 152     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 153     4  0.1637     0.7652 0.00 0.06 0.00 0.94
#> 154     1  0.2647     0.8456 0.88 0.00 0.12 0.00
#> 155     1  0.2011     0.8801 0.92 0.00 0.08 0.00
#> 156     4  0.0000     0.7488 0.00 0.00 0.00 1.00
#> 157     4  0.2921     0.6352 0.14 0.00 0.00 0.86
#> 158     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 159     4  0.0707     0.7552 0.00 0.02 0.00 0.98
#> 160     4  0.4522     0.6347 0.00 0.32 0.00 0.68
#> 161     4  0.2921     0.7647 0.00 0.14 0.00 0.86
#> 162     1  0.5291     0.6986 0.74 0.00 0.18 0.08
#> 163     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 164     2  0.4134     0.5327 0.00 0.74 0.00 0.26
#> 165     4  0.0000     0.7488 0.00 0.00 0.00 1.00
#> 166     1  0.3335     0.8406 0.86 0.00 0.02 0.12
#> 167     1  0.3610     0.7659 0.80 0.00 0.00 0.20
#> 168     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 169     3  0.6831     0.2084 0.10 0.42 0.48 0.00
#> 170     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 171     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 172     1  0.5883     0.5137 0.64 0.00 0.30 0.06
#> 173     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 174     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 175     1  0.2335     0.8884 0.92 0.00 0.06 0.02
#> 176     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 177     4  0.4624     0.3388 0.34 0.00 0.00 0.66
#> 178     3  0.3610     0.6753 0.20 0.00 0.80 0.00
#> 179     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 180     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 181     4  0.4522     0.6346 0.00 0.32 0.00 0.68
#> 182     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 183     1  0.0000     0.9315 1.00 0.00 0.00 0.00
#> 184     2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 185     2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 186     2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 187     2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 188     2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 189     2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 190     2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 191     4  0.4713     0.5757 0.00 0.36 0.00 0.64
#> 192     2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 193     2  0.0000     0.8629 0.00 1.00 0.00 0.00
#> 194     2  0.3172     0.7420 0.00 0.84 0.16 0.00
#> 195     1  0.0707     0.9215 0.98 0.00 0.00 0.02
#> 196     4  0.3975     0.7148 0.00 0.24 0.00 0.76
#> 197     1  0.4624     0.5518 0.66 0.00 0.00 0.34
#> 198     4  0.3975     0.7132 0.00 0.24 0.00 0.76
#> 199     4  0.0000     0.7488 0.00 0.00 0.00 1.00
#> 200     1  0.0707     0.9205 0.98 0.00 0.02 0.00
#> 201     2  0.3975     0.5772 0.00 0.76 0.00 0.24

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-013-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-013-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-013-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-013-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-013-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-013-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-013-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-013-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-013-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-013-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-013-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-013-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-013-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-013-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-013-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-013-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-013-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      196                0.1663 2
#> ATC:skmeans      189                0.2321 3
#> ATC:skmeans      180                0.0307 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node014

Parent node: Node01. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["014"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 7603 rows and 139 columns.
#>   Top rows (760) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-014-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-014-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.988          0.504 0.496   0.496
#> 3 3 1.000           0.963       0.986          0.246 0.814   0.648
#> 4 4 0.841           0.888       0.946          0.178 0.827   0.569

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.982 0.00 1.00
#> 2       1   0.000      0.994 1.00 0.00
#> 3       2   0.000      0.982 0.00 1.00
#> 4       2   0.000      0.982 0.00 1.00
#> 5       2   0.000      0.982 0.00 1.00
#> 6       1   0.000      0.994 1.00 0.00
#> 7       2   0.000      0.982 0.00 1.00
#> 8       2   0.000      0.982 0.00 1.00
#> 9       2   0.000      0.982 0.00 1.00
#> 10      2   0.000      0.982 0.00 1.00
#> 11      2   0.000      0.982 0.00 1.00
#> 12      2   0.000      0.982 0.00 1.00
#> 13      2   0.000      0.982 0.00 1.00
#> 14      2   0.000      0.982 0.00 1.00
#> 15      2   0.000      0.982 0.00 1.00
#> 16      2   0.000      0.982 0.00 1.00
#> 17      2   0.000      0.982 0.00 1.00
#> 18      2   0.141      0.967 0.02 0.98
#> 19      2   0.141      0.967 0.02 0.98
#> 20      2   0.000      0.982 0.00 1.00
#> 21      2   0.000      0.982 0.00 1.00
#> 22      2   0.000      0.982 0.00 1.00
#> 23      2   0.000      0.982 0.00 1.00
#> 24      1   0.000      0.994 1.00 0.00
#> 25      1   0.141      0.975 0.98 0.02
#> 26      1   0.000      0.994 1.00 0.00
#> 27      1   0.000      0.994 1.00 0.00
#> 28      1   0.000      0.994 1.00 0.00
#> 29      1   0.000      0.994 1.00 0.00
#> 30      1   0.000      0.994 1.00 0.00
#> 31      1   0.000      0.994 1.00 0.00
#> 32      1   0.000      0.994 1.00 0.00
#> 33      1   0.000      0.994 1.00 0.00
#> 34      1   0.000      0.994 1.00 0.00
#> 35      1   0.000      0.994 1.00 0.00
#> 36      1   0.000      0.994 1.00 0.00
#> 37      1   0.000      0.994 1.00 0.00
#> 38      2   0.141      0.967 0.02 0.98
#> 39      2   0.000      0.982 0.00 1.00
#> 40      2   0.000      0.982 0.00 1.00
#> 41      2   0.971      0.342 0.40 0.60
#> 42      2   0.000      0.982 0.00 1.00
#> 43      2   0.141      0.967 0.02 0.98
#> 44      1   0.000      0.994 1.00 0.00
#> 45      1   0.141      0.975 0.98 0.02
#> 46      1   0.000      0.994 1.00 0.00
#> 47      2   0.000      0.982 0.00 1.00
#> 48      1   0.000      0.994 1.00 0.00
#> 49      1   0.000      0.994 1.00 0.00
#> 50      2   0.000      0.982 0.00 1.00
#> 51      2   0.000      0.982 0.00 1.00
#> 52      2   0.000      0.982 0.00 1.00
#> 53      1   0.000      0.994 1.00 0.00
#> 54      2   0.000      0.982 0.00 1.00
#> 55      2   0.000      0.982 0.00 1.00
#> 56      2   0.881      0.582 0.30 0.70
#> 57      2   0.000      0.982 0.00 1.00
#> 58      1   0.000      0.994 1.00 0.00
#> 59      1   0.000      0.994 1.00 0.00
#> 60      2   0.000      0.982 0.00 1.00
#> 61      1   0.000      0.994 1.00 0.00
#> 62      2   0.000      0.982 0.00 1.00
#> 63      2   0.000      0.982 0.00 1.00
#> 64      1   0.000      0.994 1.00 0.00
#> 65      2   0.827      0.655 0.26 0.74
#> 66      2   0.000      0.982 0.00 1.00
#> 67      1   0.000      0.994 1.00 0.00
#> 68      1   0.529      0.862 0.88 0.12
#> 69      2   0.242      0.949 0.04 0.96
#> 70      2   0.000      0.982 0.00 1.00
#> 71      2   0.242      0.949 0.04 0.96
#> 72      1   0.000      0.994 1.00 0.00
#> 73      2   0.000      0.982 0.00 1.00
#> 74      1   0.000      0.994 1.00 0.00
#> 75      1   0.000      0.994 1.00 0.00
#> 76      2   0.000      0.982 0.00 1.00
#> 77      2   0.000      0.982 0.00 1.00
#> 78      1   0.000      0.994 1.00 0.00
#> 79      1   0.000      0.994 1.00 0.00
#> 80      1   0.000      0.994 1.00 0.00
#> 81      1   0.000      0.994 1.00 0.00
#> 82      1   0.000      0.994 1.00 0.00
#> 83      2   0.000      0.982 0.00 1.00
#> 84      1   0.000      0.994 1.00 0.00
#> 85      1   0.000      0.994 1.00 0.00
#> 86      1   0.000      0.994 1.00 0.00
#> 87      1   0.000      0.994 1.00 0.00
#> 88      1   0.000      0.994 1.00 0.00
#> 89      2   0.000      0.982 0.00 1.00
#> 90      2   0.327      0.929 0.06 0.94
#> 91      1   0.000      0.994 1.00 0.00
#> 92      1   0.000      0.994 1.00 0.00
#> 93      2   0.000      0.982 0.00 1.00
#> 94      1   0.000      0.994 1.00 0.00
#> 95      1   0.000      0.994 1.00 0.00
#> 96      2   0.000      0.982 0.00 1.00
#> 97      2   0.000      0.982 0.00 1.00
#> 98      2   0.000      0.982 0.00 1.00
#> 99      2   0.000      0.982 0.00 1.00
#> 100     2   0.242      0.949 0.04 0.96
#> 101     1   0.000      0.994 1.00 0.00
#> 102     1   0.000      0.994 1.00 0.00
#> 103     1   0.000      0.994 1.00 0.00
#> 104     1   0.000      0.994 1.00 0.00
#> 105     2   0.000      0.982 0.00 1.00
#> 106     1   0.000      0.994 1.00 0.00
#> 107     2   0.000      0.982 0.00 1.00
#> 108     1   0.000      0.994 1.00 0.00
#> 109     2   0.000      0.982 0.00 1.00
#> 110     1   0.000      0.994 1.00 0.00
#> 111     1   0.000      0.994 1.00 0.00
#> 112     1   0.000      0.994 1.00 0.00
#> 113     2   0.141      0.967 0.02 0.98
#> 114     1   0.000      0.994 1.00 0.00
#> 115     1   0.000      0.994 1.00 0.00
#> 116     1   0.000      0.994 1.00 0.00
#> 117     1   0.000      0.994 1.00 0.00
#> 118     1   0.000      0.994 1.00 0.00
#> 119     1   0.000      0.994 1.00 0.00
#> 120     1   0.000      0.994 1.00 0.00
#> 121     1   0.000      0.994 1.00 0.00
#> 122     1   0.000      0.994 1.00 0.00
#> 123     1   0.000      0.994 1.00 0.00
#> 124     1   0.000      0.994 1.00 0.00
#> 125     1   0.000      0.994 1.00 0.00
#> 126     2   0.000      0.982 0.00 1.00
#> 127     1   0.000      0.994 1.00 0.00
#> 128     1   0.000      0.994 1.00 0.00
#> 129     2   0.000      0.982 0.00 1.00
#> 130     2   0.000      0.982 0.00 1.00
#> 131     2   0.000      0.982 0.00 1.00
#> 132     2   0.000      0.982 0.00 1.00
#> 133     2   0.000      0.982 0.00 1.00
#> 134     2   0.000      0.982 0.00 1.00
#> 135     2   0.000      0.982 0.00 1.00
#> 136     2   0.000      0.982 0.00 1.00
#> 137     2   0.000      0.982 0.00 1.00
#> 138     1   0.000      0.994 1.00 0.00
#> 139     1   0.760      0.713 0.78 0.22

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       3  0.0000     0.9954 0.00 0.00 1.00
#> 2       3  0.0000     0.9954 0.00 0.00 1.00
#> 3       3  0.0000     0.9954 0.00 0.00 1.00
#> 4       3  0.0000     0.9954 0.00 0.00 1.00
#> 5       3  0.0000     0.9954 0.00 0.00 1.00
#> 6       1  0.0000     0.9844 1.00 0.00 0.00
#> 7       2  0.0000     0.9786 0.00 1.00 0.00
#> 8       3  0.0000     0.9954 0.00 0.00 1.00
#> 9       3  0.0000     0.9954 0.00 0.00 1.00
#> 10      3  0.0000     0.9954 0.00 0.00 1.00
#> 11      3  0.0000     0.9954 0.00 0.00 1.00
#> 12      3  0.0000     0.9954 0.00 0.00 1.00
#> 13      3  0.0000     0.9954 0.00 0.00 1.00
#> 14      3  0.0000     0.9954 0.00 0.00 1.00
#> 15      3  0.0000     0.9954 0.00 0.00 1.00
#> 16      3  0.0000     0.9954 0.00 0.00 1.00
#> 17      3  0.0000     0.9954 0.00 0.00 1.00
#> 18      3  0.0000     0.9954 0.00 0.00 1.00
#> 19      3  0.0000     0.9954 0.00 0.00 1.00
#> 20      3  0.0000     0.9954 0.00 0.00 1.00
#> 21      3  0.0000     0.9954 0.00 0.00 1.00
#> 22      2  0.0000     0.9786 0.00 1.00 0.00
#> 23      2  0.0000     0.9786 0.00 1.00 0.00
#> 24      1  0.0892     0.9658 0.98 0.00 0.02
#> 25      2  0.2066     0.9117 0.06 0.94 0.00
#> 26      1  0.0000     0.9844 1.00 0.00 0.00
#> 27      1  0.0000     0.9844 1.00 0.00 0.00
#> 28      1  0.0000     0.9844 1.00 0.00 0.00
#> 29      1  0.0000     0.9844 1.00 0.00 0.00
#> 30      1  0.0000     0.9844 1.00 0.00 0.00
#> 31      1  0.0000     0.9844 1.00 0.00 0.00
#> 32      1  0.0000     0.9844 1.00 0.00 0.00
#> 33      1  0.0000     0.9844 1.00 0.00 0.00
#> 34      1  0.0892     0.9634 0.98 0.02 0.00
#> 35      1  0.0000     0.9844 1.00 0.00 0.00
#> 36      1  0.0000     0.9844 1.00 0.00 0.00
#> 37      1  0.0000     0.9844 1.00 0.00 0.00
#> 38      2  0.0000     0.9786 0.00 1.00 0.00
#> 39      2  0.0000     0.9786 0.00 1.00 0.00
#> 40      2  0.0000     0.9786 0.00 1.00 0.00
#> 41      2  0.0892     0.9577 0.02 0.98 0.00
#> 42      3  0.0000     0.9954 0.00 0.00 1.00
#> 43      2  0.0000     0.9786 0.00 1.00 0.00
#> 44      1  0.0000     0.9844 1.00 0.00 0.00
#> 45      1  0.2537     0.8948 0.92 0.08 0.00
#> 46      1  0.0000     0.9844 1.00 0.00 0.00
#> 47      2  0.0000     0.9786 0.00 1.00 0.00
#> 48      1  0.0000     0.9844 1.00 0.00 0.00
#> 49      1  0.0000     0.9844 1.00 0.00 0.00
#> 50      2  0.0000     0.9786 0.00 1.00 0.00
#> 51      3  0.2959     0.8865 0.00 0.10 0.90
#> 52      2  0.0000     0.9786 0.00 1.00 0.00
#> 53      2  0.1529     0.9352 0.04 0.96 0.00
#> 54      2  0.0000     0.9786 0.00 1.00 0.00
#> 55      2  0.0000     0.9786 0.00 1.00 0.00
#> 56      3  0.0000     0.9954 0.00 0.00 1.00
#> 57      2  0.5835     0.4778 0.00 0.66 0.34
#> 58      1  0.0000     0.9844 1.00 0.00 0.00
#> 59      2  0.6126     0.3243 0.40 0.60 0.00
#> 60      2  0.0000     0.9786 0.00 1.00 0.00
#> 61      1  0.0000     0.9844 1.00 0.00 0.00
#> 62      2  0.0000     0.9786 0.00 1.00 0.00
#> 63      2  0.0000     0.9786 0.00 1.00 0.00
#> 64      1  0.0000     0.9844 1.00 0.00 0.00
#> 65      2  0.0000     0.9786 0.00 1.00 0.00
#> 66      2  0.0000     0.9786 0.00 1.00 0.00
#> 67      1  0.0000     0.9844 1.00 0.00 0.00
#> 68      2  0.0000     0.9786 0.00 1.00 0.00
#> 69      2  0.3832     0.8608 0.02 0.88 0.10
#> 70      2  0.0000     0.9786 0.00 1.00 0.00
#> 71      2  0.0000     0.9786 0.00 1.00 0.00
#> 72      2  0.0000     0.9786 0.00 1.00 0.00
#> 73      2  0.0000     0.9786 0.00 1.00 0.00
#> 74      1  0.5016     0.6789 0.76 0.24 0.00
#> 75      1  0.0000     0.9844 1.00 0.00 0.00
#> 76      2  0.0000     0.9786 0.00 1.00 0.00
#> 77      2  0.0000     0.9786 0.00 1.00 0.00
#> 78      1  0.0000     0.9844 1.00 0.00 0.00
#> 79      1  0.0000     0.9844 1.00 0.00 0.00
#> 80      1  0.0000     0.9844 1.00 0.00 0.00
#> 81      1  0.0000     0.9844 1.00 0.00 0.00
#> 82      1  0.0000     0.9844 1.00 0.00 0.00
#> 83      2  0.0000     0.9786 0.00 1.00 0.00
#> 84      1  0.0000     0.9844 1.00 0.00 0.00
#> 85      1  0.0000     0.9844 1.00 0.00 0.00
#> 86      1  0.0000     0.9844 1.00 0.00 0.00
#> 87      1  0.0000     0.9844 1.00 0.00 0.00
#> 88      1  0.0000     0.9844 1.00 0.00 0.00
#> 89      2  0.0000     0.9786 0.00 1.00 0.00
#> 90      2  0.0000     0.9786 0.00 1.00 0.00
#> 91      1  0.0000     0.9844 1.00 0.00 0.00
#> 92      1  0.0000     0.9844 1.00 0.00 0.00
#> 93      2  0.0000     0.9786 0.00 1.00 0.00
#> 94      1  0.0000     0.9844 1.00 0.00 0.00
#> 95      1  0.0000     0.9844 1.00 0.00 0.00
#> 96      2  0.0000     0.9786 0.00 1.00 0.00
#> 97      2  0.0000     0.9786 0.00 1.00 0.00
#> 98      2  0.0000     0.9786 0.00 1.00 0.00
#> 99      2  0.0000     0.9786 0.00 1.00 0.00
#> 100     2  0.0000     0.9786 0.00 1.00 0.00
#> 101     1  0.0000     0.9844 1.00 0.00 0.00
#> 102     1  0.0000     0.9844 1.00 0.00 0.00
#> 103     1  0.0000     0.9844 1.00 0.00 0.00
#> 104     1  0.0000     0.9844 1.00 0.00 0.00
#> 105     3  0.0000     0.9954 0.00 0.00 1.00
#> 106     1  0.0000     0.9844 1.00 0.00 0.00
#> 107     2  0.0000     0.9786 0.00 1.00 0.00
#> 108     1  0.0000     0.9844 1.00 0.00 0.00
#> 109     2  0.0000     0.9786 0.00 1.00 0.00
#> 110     1  0.0000     0.9844 1.00 0.00 0.00
#> 111     1  0.0000     0.9844 1.00 0.00 0.00
#> 112     1  0.0000     0.9844 1.00 0.00 0.00
#> 113     2  0.0000     0.9786 0.00 1.00 0.00
#> 114     1  0.0000     0.9844 1.00 0.00 0.00
#> 115     1  0.0000     0.9844 1.00 0.00 0.00
#> 116     1  0.0000     0.9844 1.00 0.00 0.00
#> 117     1  0.0000     0.9844 1.00 0.00 0.00
#> 118     1  0.0000     0.9844 1.00 0.00 0.00
#> 119     1  0.0000     0.9844 1.00 0.00 0.00
#> 120     1  0.0000     0.9844 1.00 0.00 0.00
#> 121     1  0.0000     0.9844 1.00 0.00 0.00
#> 122     1  0.0000     0.9844 1.00 0.00 0.00
#> 123     1  0.0000     0.9844 1.00 0.00 0.00
#> 124     1  0.0000     0.9844 1.00 0.00 0.00
#> 125     1  0.0000     0.9844 1.00 0.00 0.00
#> 126     2  0.0000     0.9786 0.00 1.00 0.00
#> 127     1  0.0000     0.9844 1.00 0.00 0.00
#> 128     1  0.0000     0.9844 1.00 0.00 0.00
#> 129     2  0.0000     0.9786 0.00 1.00 0.00
#> 130     2  0.0000     0.9786 0.00 1.00 0.00
#> 131     2  0.0000     0.9786 0.00 1.00 0.00
#> 132     2  0.0000     0.9786 0.00 1.00 0.00
#> 133     2  0.0000     0.9786 0.00 1.00 0.00
#> 134     2  0.0000     0.9786 0.00 1.00 0.00
#> 135     2  0.0000     0.9786 0.00 1.00 0.00
#> 136     2  0.0000     0.9786 0.00 1.00 0.00
#> 137     2  0.0000     0.9786 0.00 1.00 0.00
#> 138     1  0.6302     0.0692 0.52 0.48 0.00
#> 139     2  0.0000     0.9786 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 2       3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 3       3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 4       3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 5       3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 6       4  0.0707      0.845 0.02 0.00 0.00 0.98
#> 7       2  0.2345      0.878 0.00 0.90 0.00 0.10
#> 8       3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 9       3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 10      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 11      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 12      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 13      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 14      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 15      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 16      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 17      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 18      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 19      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 20      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 21      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 22      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 23      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 24      1  0.3037      0.859 0.88 0.00 0.02 0.10
#> 25      4  0.0000      0.841 0.00 0.00 0.00 1.00
#> 26      1  0.3975      0.660 0.76 0.00 0.00 0.24
#> 27      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 28      4  0.2345      0.839 0.10 0.00 0.00 0.90
#> 29      4  0.0000      0.841 0.00 0.00 0.00 1.00
#> 30      4  0.2011      0.844 0.08 0.00 0.00 0.92
#> 31      4  0.3975      0.721 0.24 0.00 0.00 0.76
#> 32      1  0.4134      0.622 0.74 0.00 0.00 0.26
#> 33      4  0.2345      0.839 0.10 0.00 0.00 0.90
#> 34      1  0.0707      0.953 0.98 0.02 0.00 0.00
#> 35      4  0.3400      0.790 0.18 0.00 0.00 0.82
#> 36      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 37      4  0.3400      0.768 0.18 0.00 0.00 0.82
#> 38      2  0.3610      0.761 0.00 0.80 0.00 0.20
#> 39      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 40      2  0.0707      0.943 0.00 0.98 0.00 0.02
#> 41      4  0.4855      0.356 0.00 0.40 0.00 0.60
#> 42      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 43      2  0.4713      0.426 0.00 0.64 0.00 0.36
#> 44      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 45      1  0.3821      0.810 0.84 0.04 0.00 0.12
#> 46      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 47      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 48      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 49      1  0.2647      0.848 0.88 0.00 0.00 0.12
#> 50      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 51      3  0.4907      0.259 0.00 0.42 0.58 0.00
#> 52      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 53      4  0.0000      0.841 0.00 0.00 0.00 1.00
#> 54      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 55      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 56      3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 57      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 58      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 59      4  0.4949      0.700 0.06 0.18 0.00 0.76
#> 60      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 61      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 62      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 63      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 64      4  0.2011      0.844 0.08 0.00 0.00 0.92
#> 65      4  0.2011      0.808 0.00 0.08 0.00 0.92
#> 66      2  0.1637      0.914 0.00 0.94 0.00 0.06
#> 67      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 68      4  0.0000      0.841 0.00 0.00 0.00 1.00
#> 69      2  0.5911      0.573 0.26 0.68 0.04 0.02
#> 70      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 71      4  0.4855      0.320 0.00 0.40 0.00 0.60
#> 72      4  0.0000      0.841 0.00 0.00 0.00 1.00
#> 73      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 74      4  0.0000      0.841 0.00 0.00 0.00 1.00
#> 75      4  0.2011      0.844 0.08 0.00 0.00 0.92
#> 76      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 77      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 78      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 79      4  0.2647      0.831 0.12 0.00 0.00 0.88
#> 80      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 81      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 82      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 83      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 84      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 85      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 86      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 87      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 88      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 89      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 90      4  0.4948      0.205 0.00 0.44 0.00 0.56
#> 91      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 92      1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 93      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 94      4  0.3801      0.750 0.22 0.00 0.00 0.78
#> 95      4  0.3400      0.790 0.18 0.00 0.00 0.82
#> 96      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 97      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 98      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 99      2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 100     4  0.4624      0.468 0.00 0.34 0.00 0.66
#> 101     4  0.0000      0.841 0.00 0.00 0.00 1.00
#> 102     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 103     4  0.2647      0.831 0.12 0.00 0.00 0.88
#> 104     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 105     3  0.0000      0.978 0.00 0.00 1.00 0.00
#> 106     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 107     2  0.4134      0.655 0.00 0.74 0.00 0.26
#> 108     4  0.0000      0.841 0.00 0.00 0.00 1.00
#> 109     2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 110     4  0.2345      0.839 0.10 0.00 0.00 0.90
#> 111     4  0.3400      0.788 0.18 0.00 0.00 0.82
#> 112     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 113     4  0.4406      0.557 0.00 0.30 0.00 0.70
#> 114     4  0.4406      0.622 0.30 0.00 0.00 0.70
#> 115     4  0.0707      0.845 0.02 0.00 0.00 0.98
#> 116     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 117     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 118     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 119     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 120     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 121     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 122     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 123     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 124     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 125     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 126     2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 127     1  0.0707      0.956 0.98 0.00 0.00 0.02
#> 128     1  0.0000      0.974 1.00 0.00 0.00 0.00
#> 129     2  0.1637      0.914 0.00 0.94 0.00 0.06
#> 130     2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 131     2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 132     2  0.3801      0.735 0.00 0.78 0.00 0.22
#> 133     2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 134     2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 135     2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 136     2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 137     2  0.0000      0.958 0.00 1.00 0.00 0.00
#> 138     4  0.0000      0.841 0.00 0.00 0.00 1.00
#> 139     4  0.1211      0.830 0.00 0.04 0.00 0.96

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-014-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-014-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-014-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-014-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-014-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-014-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-014-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-014-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-014-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-014-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-014-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-014-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-014-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-014-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-014-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-014-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-014-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      138              4.54e-04 2
#> ATC:skmeans      136              6.14e-17 3
#> ATC:skmeans      133              9.45e-16 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node02

Parent node: Node0. Child nodes: Node011 , Node012 , Node013 , Node014 , Node021 , Node022 , Node023 , Node031 , Node032 , Node033 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["02"]

A summary of res and all the functions that can be applied to it:

res
#> A 'DownSamplingConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 10389 rows and 500 columns, randomly sampled from 960 columns.
#>   Top rows (975) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'DownSamplingConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-02-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-02-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.978       0.991          0.499 0.502   0.502
#> 3 3 0.999           0.956       0.976          0.221 0.870   0.745
#> 4 4 0.970           0.938       0.975          0.145 0.880   0.705

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

get_classes(res, k = 2)
#>     class     p
#> 1       2 0.502
#> 2       2 0.747
#> 3       2 0.502
#> 4       1 0.502
#> 5       2 0.000
#> 6       2 0.000
#> 7       2 0.000
#> 8       1 0.000
#> 9       2 0.000
#> 10      2 0.000
#> 11      2 0.000
#> 12      2 0.000
#> 13      2 0.000
#> 14      2 0.000
#> 15      2 1.000
#> 16      2 0.000
#> 17      2 0.000
#> 18      1 0.249
#> 19      2 0.000
#> 20      2 0.000
#> 21      2 0.498
#> 22      2 0.502
#> 23      2 0.000
#> 24      2 0.000
#> 25      2 0.249
#> 26      2 0.000
#> 27      1 0.000
#> 28      1 0.249
#> 29      2 0.000
#> 30      1 0.249
#> 31      2 0.498
#> 32      1 0.000
#> 33      1 0.000
#> 34      1 1.000
#> 35      1 0.000
#> 36      2 0.249
#> 37      2 0.000
#> 38      2 0.498
#> 39      2 0.000
#> 40      2 0.000
#> 41      2 0.249
#> 42      2 0.000
#> 43      2 0.000
#> 44      2 0.000
#> 45      2 0.000
#> 46      2 1.000
#> 47      2 0.249
#> 48      1 0.253
#> 49      2 0.498
#> 50      1 0.502
#> 51      2 0.000
#> 52      2 0.498
#> 53      2 0.498
#> 54      2 0.747
#> 55      1 0.502
#> 56      2 0.000
#> 57      2 0.000
#> 58      1 0.253
#> 59      2 0.498
#> 60      1 1.000
#> 61      1 0.000
#> 62      1 0.502
#> 63      1 0.253
#> 64      1 0.751
#> 65      2 0.498
#> 66      2 0.498
#> 67      2 0.253
#> 68      1 0.253
#> 69      2 0.000
#> 70      1 0.751
#> 71      2 0.747
#> 72      2 0.000
#> 73      2 0.000
#> 74      2 0.249
#> 75      2 0.000
#> 76      2 0.000
#> 77      2 0.249
#> 78      1 0.000
#> 79      2 0.751
#> 80      1 0.249
#> 81      2 0.000
#> 82      2 1.000
#> 83      2 0.249
#> 84      2 1.000
#> 85      2 1.000
#> 86      2 0.249
#> 87      2 0.751
#> 88      1 0.000
#> 89      2 0.000
#> 90      2 0.000
#> 91      2 0.000
#> 92      2 0.000
#> 93      1 0.751
#> 94      2 0.000
#> 95      2 0.000
#> 96      1 0.000
#> 97      2 0.751
#> 98      1 0.000
#> 99      1 0.502
#> 100     1 0.000
#> 101     1 0.502
#> 102     1 0.000
#> 103     2 0.000
#> 104     2 0.751
#> 105     2 0.000
#> 106     2 0.000
#> 107     2 0.000
#> 108     2 0.000
#> 109     2 0.000
#> 110     1 0.502
#> 111     1 0.000
#> 112     2 0.502
#> 113     2 0.000
#> 114     2 0.000
#> 115     2 0.000
#> 116     2 0.000
#> 117     2 0.000
#> 118     2 0.000
#> 119     2 0.000
#> 120     1 0.000
#> 121     2 0.000
#> 122     2 0.000
#> 123     2 0.000
#> 124     2 0.000
#> 125     2 0.000
#> 126     2 0.498
#> 127     2 0.000
#> 128     2 0.000
#> 129     2 0.000
#> 130     1 0.751
#> 131     1 0.249
#> 132     1 0.000
#> 133     2 0.751
#> 134     2 0.000
#> 135     1 0.000
#> 136     1 0.000
#> 137     2 0.747
#> 138     2 0.000
#> 139     1 0.000
#> 140     1 0.000
#> 141     1 0.000
#> 142     2 0.249
#> 143     1 0.000
#> 144     2 0.751
#> 145     2 0.498
#> 146     1 0.000
#> 147     1 0.249
#> 148     1 0.000
#> 149     2 0.498
#> 150     1 0.000
#> 151     1 0.000
#> 152     2 0.249
#> 153     2 0.000
#> 154     2 0.000
#> 155     1 0.249
#> 156     2 0.000
#> 157     2 0.000
#> 158     2 1.000
#> 159     2 0.000
#> 160     2 0.249
#> 161     2 0.253
#> 162     2 0.502
#> 163     1 0.000
#> 164     2 0.000
#> 165     2 0.000
#> 166     1 0.000
#> 167     2 0.249
#> 168     1 0.000
#> 169     1 0.000
#> 170     2 1.000
#> 171     2 0.253
#> 172     1 0.751
#> 173     1 0.253
#> 174     1 0.000
#> 175     1 1.000
#> 176     1 0.253
#> 177     1 0.000
#> 178     1 0.253
#> 179     2 0.000
#> 180     1 0.000
#> 181     1 0.249
#> 182     1 0.000
#> 183     1 0.747
#> 184     1 0.249
#> 185     1 0.000
#> 186     2 0.000
#> 187     1 1.000
#> 188     1 0.751
#> 189     1 0.000
#> 190     2 0.000
#> 191     1 0.000
#> 192     1 0.249
#> 193     2 0.751
#> 194     2 0.249
#> 195     2 0.000
#> 196     2 0.000
#> 197     2 0.000
#> 198     2 0.000
#> 199     1 0.000
#> 200     2 0.249
#> 201     2 0.249
#> 202     2 1.000
#> 203     2 1.000
#> 204     2 0.000
#> 205     2 0.000
#> 206     2 0.000
#> 207     1 1.000
#> 208     1 0.249
#> 209     2 0.000
#> 210     2 0.000
#> 211     2 0.751
#> 212     1 0.000
#> 213     2 0.253
#> 214     1 0.000
#> 215     2 0.249
#> 216     1 0.253
#> 217     2 0.747
#> 218     1 0.502
#> 219     2 0.249
#> 220     2 0.000
#> 221     1 0.751
#> 222     1 0.000
#> 223     1 0.000
#> 224     2 0.000
#> 225     1 1.000
#> 226     1 0.249
#> 227     1 0.000
#> 228     2 0.000
#> 229     2 0.751
#> 230     1 0.000
#> 231     1 0.249
#> 232     1 0.000
#> 233     2 1.000
#> 234     1 0.253
#> 235     1 0.000
#> 236     1 0.000
#> 237     1 0.000
#> 238     1 0.249
#> 239     1 0.000
#> 240     1 0.000
#> 241     1 0.000
#> 242     2 0.249
#> 243     1 0.000
#> 244     2 0.249
#> 245     1 0.000
#> 246     2 0.751
#> 247     1 0.000
#> 248     2 0.751
#> 249     2 1.000
#> 250     1 0.000
#> 251     2 1.000
#> 252     1 0.249
#> 253     1 0.000
#> 254     1 0.000
#> 255     1 0.000
#> 256     1 0.000
#> 257     2 0.249
#> 258     2 0.751
#> 259     1 0.249
#> 260     1 0.000
#> 261     1 0.000
#> 262     2 1.000
#> 263     2 0.253
#> 264     2 0.502
#> 265     2 1.000
#> 266     2 0.000
#> 267     2 1.000
#> 268     2 0.253
#> 269     1 0.000
#> 270     1 0.000
#> 271     2 0.502
#> 272     2 0.000
#> 273     2 0.000
#> 274     2 0.000
#> 275     2 0.000
#> 276     1 0.249
#> 277     1 0.000
#> 278     2 0.751
#> 279     2 0.502
#> 280     1 0.000
#> 281     2 0.249
#> 282     2 0.502
#> 283     2 0.000
#> 284     1 0.000
#> 285     2 0.000
#> 286     1 0.000
#> 287     2 0.000
#> 288     2 0.000
#> 289     2 0.000
#> 290     1 0.000
#> 291     1 0.000
#> 292     1 0.249
#> 293     1 0.000
#> 294     1 0.249
#> 295     2 1.000
#> 296     2 0.498
#> 297     2 0.000
#> 298     1 0.502
#> 299     2 0.751
#> 300     1 0.000
#> 301     1 0.000
#> 302     2 1.000
#> 303     2 0.000
#> 304     2 1.000
#> 305     2 0.000
#> 306     1 0.000
#> 307     2 0.000
#> 308     2 1.000
#> 309     1 0.000
#> 310     2 0.249
#> 311     2 1.000
#> 312     1 0.000
#> 313     1 0.249
#> 314     1 0.000
#> 315     1 0.000
#> 316     1 0.000
#> 317     2 1.000
#> 318     1 0.000
#> 319     2 0.498
#> 320     1 0.249
#> 321     2 1.000
#> 322     1 0.000
#> 323     2 0.498
#> 324     1 0.000
#> 325     1 0.000
#> 326     1 0.000
#> 327     1 0.000
#> 328     1 1.000
#> 329     2 0.253
#> 330     1 0.000
#> 331     1 0.498
#> 332     1 0.249
#> 333     1 0.000
#> 334     1 1.000
#> 335     2 0.253
#> 336     1 0.000
#> 337     2 0.498
#> 338     2 0.000
#> 339     1 0.249
#> 340     2 0.249
#> 341     2 1.000
#> 342     2 0.751
#> 343     1 0.000
#> 344     2 0.000
#> 345     2 0.000
#> 346     1 0.000
#> 347     1 0.249
#> 348     1 0.000
#> 349     1 0.000
#> 350     1 0.000
#> 351     1 0.000
#> 352     1 0.000
#> 353     1 0.000
#> 354     2 1.000
#> 355     1 0.000
#> 356     2 1.000
#> 357     2 0.253
#> 358     1 0.000
#> 359     1 0.000
#> 360     1 0.000
#> 361     1 0.000
#> 362     2 1.000
#> 363     1 0.751
#> 364     2 1.000
#> 365     1 0.000
#> 366     1 0.498
#> 367     2 0.751
#> 368     1 0.000
#> 369     1 0.747
#> 370     2 1.000
#> 371     1 0.000
#> 372     1 0.000
#> 373     1 0.000
#> 374     1 0.000
#> 375     2 0.502
#> 376     1 0.000
#> 377     1 0.000
#> 378     1 0.000
#> 379     1 0.000
#> 380     1 0.498
#> 381     1 1.000
#> 382     2 0.502
#> 383     1 0.000
#> 384     2 0.000
#> 385     2 0.249
#> 386     2 0.502
#> 387     2 0.000
#> 388     2 0.000
#> 389     2 0.253
#> 390     2 0.000
#> 391     2 0.747
#> 392     2 0.249
#> 393     1 0.000
#> 394     1 0.000
#> 395     1 0.751
#> 396     2 0.000
#> 397     2 0.502
#> 398     1 0.000
#> 399     1 0.000
#> 400     2 0.502
#> 401     2 0.249
#> 402     2 0.000
#> 403     1 0.000
#> 404     2 0.000
#> 405     2 0.249
#> 406     2 0.000
#> 407     1 0.000
#> 408     1 0.000
#> 409     2 0.000
#> 410     2 0.000
#> 411     2 0.502
#> 412     2 0.249
#> 413     2 0.249
#> 414     2 0.502
#> 415     2 0.000
#> 416     2 0.000
#> 417     2 0.000
#> 418     2 0.000
#> 419     2 0.000
#> 420     1 0.000
#> 421     1 0.000
#> 422     1 0.253
#> 423     1 0.249
#> 424     2 0.000
#> 425     1 0.249
#> 426     2 0.000
#> 427     2 0.000
#> 428     2 0.000
#> 429     2 0.249
#> 430     2 0.000
#> 431     2 0.000
#> 432     2 1.000
#> 433     2 0.000
#> 434     2 0.000
#> 435     2 0.000
#> 436     1 0.000
#> 437     1 0.000
#> 438     2 0.000
#> 439     1 0.249
#> 440     2 0.000
#> 441     2 0.751
#> 442     1 0.249
#> 443     1 0.000
#> 444     2 0.000
#> 445     1 0.000
#> 446     1 0.751
#> 447     1 0.000
#> 448     2 0.751
#> 449     1 0.000
#> 450     2 0.000
#> 451     1 0.000
#> 452     2 0.253
#> 453     1 0.498
#> 454     1 0.000
#> 455     1 0.000
#> 456     1 0.000
#> 457     1 0.000
#> 458     1 0.747
#> 459     2 0.249
#> 460     1 0.502
#> 461     1 0.000
#> 462     1 0.000
#> 463     2 0.000
#> 464     1 0.000
#> 465     1 0.000
#> 466     1 0.000
#> 467     2 0.253
#> 468     1 0.502
#> 469     2 0.498
#> 470     2 0.249
#> 471     2 0.000
#> 472     2 0.000
#> 473     1 1.000
#> 474     2 0.000
#> 475     2 0.000
#> 476     2 0.000
#> 477     2 0.000
#> 478     2 0.249
#> 479     2 0.000
#> 480     2 0.253
#> 481     2 1.000
#> 482     2 0.000
#> 483     2 0.000
#> 484     2 0.000
#> 485     2 0.249
#> 486     2 0.502
#> 487     2 0.253
#> 488     2 0.502
#> 489     2 0.000
#> 490     2 0.498
#> 491     2 0.000
#> 492     2 0.000
#> 493     1 0.000
#> 494     2 0.000
#> 495     2 0.000
#> 496     2 0.249
#> 497     2 0.502
#> 498     2 1.000
#> 499     2 0.000
#> 500     2 0.751
#> 501     2 0.249
#> 502     2 0.502
#> 503     2 0.000
#> 504     2 0.498
#> 505     2 0.751
#> 506     2 0.000
#> 507     2 0.751
#> 508     2 0.253
#> 509     2 0.000
#> 510     2 0.249
#> 511     2 0.000
#> 512     2 0.000
#> 513     2 0.000
#> 514     2 0.000
#> 515     2 0.000
#> 516     2 0.751
#> 517     2 0.000
#> 518     2 0.000
#> 519     2 0.000
#> 520     2 0.000
#> 521     2 0.253
#> 522     2 0.249
#> 523     2 0.000
#> 524     1 0.000
#> 525     2 0.751
#> 526     2 0.000
#> 527     2 0.000
#> 528     2 0.502
#> 529     2 0.000
#> 530     2 0.000
#> 531     2 0.249
#> 532     2 0.000
#> 533     2 0.253
#> 534     2 0.000
#> 535     2 0.000
#> 536     2 0.000
#> 537     2 0.000
#> 538     2 0.000
#> 539     2 0.000
#> 540     2 0.000
#> 541     1 0.000
#> 542     1 0.000
#> 543     2 0.751
#> 544     2 0.000
#> 545     2 0.000
#> 546     2 0.000
#> 547     2 0.249
#> 548     2 0.498
#> 549     2 0.249
#> 550     2 0.751
#> 551     2 0.000
#> 552     2 0.249
#> 553     1 1.000
#> 554     1 0.000
#> 555     2 0.502
#> 556     1 0.000
#> 557     2 1.000
#> 558     2 1.000
#> 559     1 0.000
#> 560     1 0.000
#> 561     1 0.000
#> 562     2 0.751
#> 563     1 0.000
#> 564     1 0.000
#> 565     2 0.502
#> 566     2 0.000
#> 567     2 1.000
#> 568     2 0.000
#> 569     2 0.249
#> 570     1 0.000
#> 571     2 0.751
#> 572     2 0.498
#> 573     2 0.502
#> 574     2 0.751
#> 575     1 0.747
#> 576     1 0.000
#> 577     2 0.249
#> 578     1 0.000
#> 579     1 0.000
#> 580     1 0.000
#> 581     2 0.747
#> 582     2 0.502
#> 583     2 0.000
#> 584     2 0.249
#> 585     2 0.000
#> 586     1 0.000
#> 587     2 0.751
#> 588     2 0.000
#> 589     2 0.000
#> 590     1 0.000
#> 591     1 0.249
#> 592     1 0.498
#> 593     2 0.000
#> 594     2 0.000
#> 595     1 0.249
#> 596     2 0.000
#> 597     2 1.000
#> 598     1 0.000
#> 599     1 0.249
#> 600     2 0.751
#> 601     2 0.502
#> 602     1 0.000
#> 603     2 0.000
#> 604     1 0.000
#> 605     2 0.000
#> 606     2 0.751
#> 607     2 0.000
#> 608     2 0.498
#> 609     2 0.000
#> 610     2 0.249
#> 611     2 0.000
#> 612     2 0.747
#> 613     1 0.000
#> 614     2 0.502
#> 615     2 0.751
#> 616     2 0.000
#> 617     2 0.000
#> 618     2 0.502
#> 619     2 0.000
#> 620     2 0.000
#> 621     2 0.000
#> 622     2 0.249
#> 623     2 0.249
#> 624     2 0.000
#> 625     1 0.000
#> 626     2 0.000
#> 627     1 1.000
#> 628     1 0.249
#> 629     1 0.751
#> 630     1 0.000
#> 631     1 0.000
#> 632     1 0.751
#> 633     1 0.000
#> 634     2 0.000
#> 635     1 0.498
#> 636     2 0.502
#> 637     1 0.249
#> 638     2 0.249
#> 639     1 0.498
#> 640     1 0.249
#> 641     2 0.498
#> 642     1 0.000
#> 643     1 1.000
#> 644     1 0.249
#> 645     2 0.000
#> 646     2 0.253
#> 647     2 0.000
#> 648     2 0.000
#> 649     2 0.000
#> 650     1 0.000
#> 651     1 0.000
#> 652     2 0.498
#> 653     1 0.249
#> 654     2 0.498
#> 655     2 0.249
#> 656     2 0.498
#> 657     1 0.000
#> 658     2 0.000
#> 659     2 0.000
#> 660     1 0.000
#> 661     2 0.000
#> 662     2 0.249
#> 663     1 0.502
#> 664     1 0.000
#> 665     1 0.000
#> 666     1 0.253
#> 667     1 0.000
#> 668     1 0.000
#> 669     1 0.249
#> 670     2 0.502
#> 671     1 0.000
#> 672     2 0.000
#> 673     1 0.000
#> 674     1 0.000
#> 675     2 0.253
#> 676     1 0.000
#> 677     2 0.751
#> 678     1 0.249
#> 679     2 0.000
#> 680     2 0.502
#> 681     2 0.000
#> 682     2 0.747
#> 683     2 0.000
#> 684     1 0.000
#> 685     2 0.000
#> 686     1 0.000
#> 687     1 0.502
#> 688     1 0.000
#> 689     1 0.000
#> 690     2 0.498
#> 691     2 0.000
#> 692     1 0.000
#> 693     1 0.249
#> 694     1 0.249
#> 695     2 0.000
#> 696     2 0.000
#> 697     2 0.000
#> 698     1 0.000
#> 699     1 0.253
#> 700     2 0.000
#> 701     2 0.253
#> 702     1 0.000
#> 703     2 1.000
#> 704     1 0.000
#> 705     1 0.000
#> 706     1 0.000
#> 707     2 0.249
#> 708     2 0.000
#> 709     2 0.000
#> 710     2 0.751
#> 711     2 0.000
#> 712     2 0.249
#> 713     2 0.000
#> 714     2 0.000
#> 715     1 0.000
#> 716     2 0.000
#> 717     2 0.000
#> 718     2 0.498
#> 719     2 0.000
#> 720     2 0.000
#> 721     2 0.000
#> 722     1 0.000
#> 723     1 0.000
#> 724     1 0.000
#> 725     2 0.249
#> 726     2 0.000
#> 727     2 0.000
#> 728     2 0.000
#> 729     2 0.000
#> 730     2 0.502
#> 731     2 0.498
#> 732     2 0.000
#> 733     2 0.000
#> 734     1 0.000
#> 735     1 0.249
#> 736     1 0.249
#> 737     2 0.000
#> 738     2 0.249
#> 739     2 0.000
#> 740     2 0.000
#> 741     2 0.000
#> 742     2 0.000
#> 743     1 0.000
#> 744     1 0.249
#> 745     2 0.000
#> 746     1 0.000
#> 747     1 0.000
#> 748     1 0.000
#> 749     1 0.000
#> 750     1 0.000
#> 751     1 0.000
#> 752     1 0.000
#> 753     1 0.000
#> 754     1 0.000
#> 755     1 0.000
#> 756     1 0.000
#> 757     1 0.000
#> 758     1 0.000
#> 759     1 0.000
#> 760     2 1.000
#> 761     1 0.000
#> 762     1 0.000
#> 763     1 0.249
#> 764     1 0.000
#> 765     2 0.249
#> 766     2 0.253
#> 767     2 0.000
#> 768     2 0.000
#> 769     2 1.000
#> 770     2 0.000
#> 771     2 1.000
#> 772     2 0.000
#> 773     1 0.000
#> 774     1 0.747
#> 775     1 0.000
#> 776     2 1.000
#> 777     2 0.000
#> 778     1 0.000
#> 779     1 0.000
#> 780     1 0.000
#> 781     1 0.000
#> 782     1 0.000
#> 783     2 0.249
#> 784     1 0.249
#> 785     2 1.000
#> 786     2 0.000
#> 787     2 0.000
#> 788     2 0.000
#> 789     2 0.000
#> 790     2 0.000
#> 791     1 0.000
#> 792     2 0.751
#> 793     2 0.000
#> 794     2 0.498
#> 795     2 0.000
#> 796     2 0.000
#> 797     2 0.000
#> 798     2 0.000
#> 799     2 0.000
#> 800     2 0.249
#> 801     2 0.751
#> 802     2 0.498
#> 803     2 0.249
#> 804     2 0.000
#> 805     2 0.000
#> 806     2 0.000
#> 807     2 0.000
#> 808     2 0.000
#> 809     2 0.000
#> 810     2 0.000
#> 811     2 0.000
#> 812     2 0.000
#> 813     2 0.000
#> 814     2 0.000
#> 815     2 0.000
#> 816     1 0.000
#> 817     1 0.000
#> 818     1 0.000
#> 819     1 0.000
#> 820     1 0.000
#> 821     1 0.000
#> 822     2 1.000
#> 823     1 0.498
#> 824     2 0.000
#> 825     2 0.502
#> 826     2 0.751
#> 827     2 0.249
#> 828     1 0.249
#> 829     2 0.000
#> 830     2 0.498
#> 831     2 0.249
#> 832     2 0.253
#> 833     2 0.498
#> 834     2 0.000
#> 835     2 1.000
#> 836     2 0.000
#> 837     2 0.000
#> 838     2 0.747
#> 839     1 0.000
#> 840     2 0.751
#> 841     2 0.000
#> 842     2 0.498
#> 843     1 0.000
#> 844     2 0.000
#> 845     2 0.000
#> 846     2 0.000
#> 847     2 0.000
#> 848     1 0.000
#> 849     1 0.000
#> 850     1 0.000
#> 851     1 0.000
#> 852     1 0.000
#> 853     1 0.000
#> 854     1 0.000
#> 855     1 0.000
#> 856     2 0.000
#> 857     1 0.000
#> 858     1 0.000
#> 859     1 0.000
#> 860     1 0.000
#> 861     1 0.000
#> 862     1 0.000
#> 863     1 0.000
#> 864     1 0.000
#> 865     1 0.000
#> 866     1 0.000
#> 867     1 0.000
#> 868     1 0.000
#> 869     1 0.000
#> 870     1 0.000
#> 871     1 0.000
#> 872     1 0.000
#> 873     1 0.000
#> 874     1 0.000
#> 875     1 0.000
#> 876     1 0.000
#> 877     1 0.000
#> 878     1 0.249
#> 879     2 1.000
#> 880     2 0.253
#> 881     1 0.000
#> 882     1 0.000
#> 883     1 0.000
#> 884     1 0.000
#> 885     1 0.000
#> 886     1 0.000
#> 887     1 0.000
#> 888     1 0.000
#> 889     1 0.000
#> 890     1 0.000
#> 891     1 0.000
#> 892     1 0.000
#> 893     1 0.000
#> 894     1 0.000
#> 895     1 0.000
#> 896     1 0.000
#> 897     1 0.000
#> 898     1 0.000
#> 899     1 0.000
#> 900     1 0.000
#> 901     1 0.000
#> 902     1 0.000
#> 903     2 0.000
#> 904     2 0.000
#> 905     1 1.000
#> 906     2 0.253
#> 907     1 0.000
#> 908     1 0.000
#> 909     1 0.000
#> 910     1 0.000
#> 911     1 0.000
#> 912     1 0.000
#> 913     2 1.000
#> 914     1 0.000
#> 915     1 0.000
#> 916     1 0.000
#> 917     1 0.000
#> 918     1 0.249
#> 919     2 1.000
#> 920     1 0.000
#> 921     1 0.000
#> 922     1 0.000
#> 923     2 1.000
#> 924     1 0.000
#> 925     1 0.000
#> 926     1 0.000
#> 927     1 0.000
#> 928     1 0.000
#> 929     1 0.000
#> 930     1 0.502
#> 931     1 0.000
#> 932     1 0.249
#> 933     1 0.000
#> 934     1 0.000
#> 935     1 0.000
#> 936     2 0.751
#> 937     2 0.000
#> 938     1 0.253
#> 939     2 0.498
#> 940     1 0.000
#> 941     1 0.000
#> 942     1 0.000
#> 943     2 0.747
#> 944     2 0.249
#> 945     1 0.000
#> 946     1 0.249
#> 947     1 0.000
#> 948     2 0.751
#> 949     1 0.000
#> 950     2 0.000
#> 951     1 0.000
#> 952     1 0.000
#> 953     1 0.253
#> 954     1 0.249
#> 955     1 0.000
#> 956     1 0.000
#> 957     1 0.000
#> 958     1 0.000
#> 959     1 0.000
#> 960     1 0.000

show/hide code output

get_classes(res, k = 3)
#>     class     p
#> 1       3 1.000
#> 2       2 1.000
#> 3       1 1.000
#> 4       1 1.000
#> 5       2 0.000
#> 6       2 0.000
#> 7       2 0.000
#> 8       1 1.000
#> 9       2 0.000
#> 10      2 0.000
#> 11      2 0.000
#> 12      2 0.000
#> 13      2 0.000
#> 14      2 0.000
#> 15      3 0.000
#> 16      2 0.000
#> 17      2 1.000
#> 18      1 1.000
#> 19      3 1.000
#> 20      2 0.502
#> 21      2 0.000
#> 22      2 1.000
#> 23      2 0.000
#> 24      2 0.000
#> 25      3 1.000
#> 26      2 0.000
#> 27      1 0.000
#> 28      1 1.000
#> 29      2 0.000
#> 30      1 0.498
#> 31      2 0.249
#> 32      1 0.000
#> 33      1 0.000
#> 34      3 1.000
#> 35      1 0.000
#> 36      2 0.000
#> 37      2 0.000
#> 38      2 0.000
#> 39      2 0.502
#> 40      2 0.000
#> 41      2 0.000
#> 42      2 0.249
#> 43      2 0.000
#> 44      2 0.000
#> 45      2 0.000
#> 46      2 0.000
#> 47      1 1.000
#> 48      3 1.000
#> 49      3 0.000
#> 50      3 1.000
#> 51      2 0.000
#> 52      1 1.000
#> 53      3 1.000
#> 54      3 0.502
#> 55      1 1.000
#> 56      2 0.000
#> 57      2 0.000
#> 58      1 1.000
#> 59      2 0.249
#> 60      1 1.000
#> 61      1 0.000
#> 62      1 1.000
#> 63      1 0.498
#> 64      2 1.000
#> 65      2 0.000
#> 66      2 1.000
#> 67      1 1.000
#> 68      1 1.000
#> 69      2 0.000
#> 70      1 1.000
#> 71      2 0.000
#> 72      2 1.000
#> 73      2 0.000
#> 74      2 0.000
#> 75      2 0.000
#> 76      2 1.000
#> 77      3 0.000
#> 78      1 0.498
#> 79      2 0.249
#> 80      3 0.000
#> 81      2 0.000
#> 82      2 0.000
#> 83      3 0.253
#> 84      2 1.000
#> 85      2 0.249
#> 86      2 0.000
#> 87      2 0.000
#> 88      1 0.249
#> 89      2 0.000
#> 90      2 0.000
#> 91      3 0.751
#> 92      2 0.000
#> 93      1 1.000
#> 94      2 1.000
#> 95      2 0.000
#> 96      1 0.000
#> 97      2 0.249
#> 98      3 0.000
#> 99      2 0.498
#> 100     3 0.000
#> 101     1 0.751
#> 102     3 0.249
#> 103     2 0.751
#> 104     1 1.000
#> 105     2 0.000
#> 106     2 0.000
#> 107     2 0.000
#> 108     2 0.000
#> 109     2 0.000
#> 110     1 1.000
#> 111     1 1.000
#> 112     2 0.751
#> 113     1 1.000
#> 114     2 0.000
#> 115     2 0.000
#> 116     2 0.000
#> 117     2 0.498
#> 118     2 0.000
#> 119     2 0.000
#> 120     1 0.498
#> 121     2 0.000
#> 122     2 0.000
#> 123     2 0.000
#> 124     2 0.000
#> 125     2 0.000
#> 126     2 0.000
#> 127     2 0.000
#> 128     2 0.000
#> 129     2 0.498
#> 130     2 0.751
#> 131     1 1.000
#> 132     3 0.000
#> 133     2 0.000
#> 134     2 1.000
#> 135     1 1.000
#> 136     1 1.000
#> 137     2 1.000
#> 138     2 0.000
#> 139     3 0.000
#> 140     1 0.249
#> 141     1 0.000
#> 142     2 0.000
#> 143     1 0.747
#> 144     1 1.000
#> 145     3 1.000
#> 146     1 1.000
#> 147     3 0.000
#> 148     3 0.000
#> 149     3 0.000
#> 150     3 0.000
#> 151     3 0.000
#> 152     2 0.000
#> 153     2 0.000
#> 154     2 0.000
#> 155     1 0.000
#> 156     2 0.000
#> 157     3 1.000
#> 158     3 1.000
#> 159     2 0.000
#> 160     2 0.000
#> 161     2 1.000
#> 162     2 1.000
#> 163     3 0.000
#> 164     3 0.000
#> 165     2 1.000
#> 166     1 0.000
#> 167     2 0.000
#> 168     1 0.000
#> 169     3 0.000
#> 170     2 1.000
#> 171     2 0.253
#> 172     1 1.000
#> 173     1 0.502
#> 174     1 1.000
#> 175     3 1.000
#> 176     3 1.000
#> 177     1 1.000
#> 178     3 0.000
#> 179     2 0.000
#> 180     1 0.000
#> 181     1 0.502
#> 182     3 0.000
#> 183     1 1.000
#> 184     1 1.000
#> 185     1 0.000
#> 186     3 0.498
#> 187     1 1.000
#> 188     1 0.751
#> 189     1 0.000
#> 190     2 0.000
#> 191     1 1.000
#> 192     3 0.000
#> 193     1 1.000
#> 194     1 1.000
#> 195     2 0.000
#> 196     3 0.000
#> 197     3 1.000
#> 198     3 1.000
#> 199     1 0.000
#> 200     2 1.000
#> 201     2 0.502
#> 202     2 0.498
#> 203     2 0.000
#> 204     2 0.000
#> 205     2 0.000
#> 206     2 0.000
#> 207     3 0.000
#> 208     1 0.000
#> 209     2 0.000
#> 210     2 0.000
#> 211     2 1.000
#> 212     1 0.000
#> 213     2 1.000
#> 214     1 0.249
#> 215     2 0.000
#> 216     1 1.000
#> 217     3 0.000
#> 218     1 1.000
#> 219     2 1.000
#> 220     2 0.000
#> 221     3 0.000
#> 222     1 0.249
#> 223     3 0.000
#> 224     2 0.253
#> 225     1 1.000
#> 226     3 0.000
#> 227     1 0.000
#> 228     2 0.000
#> 229     2 1.000
#> 230     1 1.000
#> 231     3 0.000
#> 232     1 1.000
#> 233     1 1.000
#> 234     1 0.000
#> 235     3 0.000
#> 236     1 0.000
#> 237     3 0.000
#> 238     1 0.249
#> 239     1 0.000
#> 240     1 1.000
#> 241     1 1.000
#> 242     2 0.000
#> 243     1 1.000
#> 244     3 0.000
#> 245     3 0.000
#> 246     2 0.000
#> 247     1 0.498
#> 248     3 0.249
#> 249     3 0.000
#> 250     1 0.000
#> 251     3 1.000
#> 252     2 1.000
#> 253     1 0.000
#> 254     1 1.000
#> 255     3 0.000
#> 256     1 1.000
#> 257     2 0.000
#> 258     2 1.000
#> 259     1 1.000
#> 260     3 0.000
#> 261     3 0.000
#> 262     1 1.000
#> 263     3 1.000
#> 264     1 1.000
#> 265     3 0.000
#> 266     2 0.000
#> 267     3 1.000
#> 268     2 0.000
#> 269     1 1.000
#> 270     1 1.000
#> 271     2 1.000
#> 272     2 0.000
#> 273     2 0.000
#> 274     2 0.000
#> 275     2 0.000
#> 276     1 1.000
#> 277     1 1.000
#> 278     2 0.000
#> 279     2 0.000
#> 280     1 1.000
#> 281     2 0.000
#> 282     3 0.000
#> 283     2 0.000
#> 284     1 0.000
#> 285     2 0.498
#> 286     1 0.502
#> 287     2 0.000
#> 288     2 0.000
#> 289     2 0.000
#> 290     1 0.751
#> 291     3 0.000
#> 292     3 0.000
#> 293     1 1.000
#> 294     1 1.000
#> 295     1 1.000
#> 296     1 1.000
#> 297     2 0.000
#> 298     1 1.000
#> 299     3 1.000
#> 300     1 1.000
#> 301     1 1.000
#> 302     1 1.000
#> 303     2 0.000
#> 304     1 1.000
#> 305     2 0.000
#> 306     1 0.000
#> 307     2 0.000
#> 308     2 1.000
#> 309     1 1.000
#> 310     2 0.000
#> 311     2 0.502
#> 312     1 0.747
#> 313     1 1.000
#> 314     1 1.000
#> 315     1 0.000
#> 316     1 0.000
#> 317     2 0.498
#> 318     3 0.000
#> 319     2 0.000
#> 320     1 1.000
#> 321     3 0.000
#> 322     1 0.000
#> 323     2 0.000
#> 324     1 0.249
#> 325     1 0.000
#> 326     1 0.000
#> 327     1 1.000
#> 328     1 1.000
#> 329     3 1.000
#> 330     1 0.249
#> 331     1 1.000
#> 332     1 0.000
#> 333     3 0.000
#> 334     1 1.000
#> 335     2 1.000
#> 336     1 0.000
#> 337     2 0.000
#> 338     2 0.000
#> 339     1 1.000
#> 340     2 0.249
#> 341     2 0.249
#> 342     2 0.000
#> 343     1 1.000
#> 344     2 0.000
#> 345     3 0.000
#> 346     1 0.000
#> 347     1 0.249
#> 348     1 0.249
#> 349     1 1.000
#> 350     1 0.249
#> 351     1 0.000
#> 352     1 0.000
#> 353     1 0.000
#> 354     3 0.751
#> 355     1 1.000
#> 356     3 0.000
#> 357     2 0.751
#> 358     1 0.000
#> 359     1 0.000
#> 360     1 1.000
#> 361     1 0.000
#> 362     2 1.000
#> 363     1 1.000
#> 364     3 0.000
#> 365     3 0.000
#> 366     1 0.751
#> 367     1 1.000
#> 368     3 0.000
#> 369     3 0.000
#> 370     2 0.000
#> 371     1 1.000
#> 372     1 0.249
#> 373     1 1.000
#> 374     1 1.000
#> 375     1 1.000
#> 376     1 0.249
#> 377     1 1.000
#> 378     1 0.000
#> 379     1 0.000
#> 380     1 0.502
#> 381     1 1.000
#> 382     2 0.000
#> 383     1 0.751
#> 384     2 0.000
#> 385     2 0.000
#> 386     1 1.000
#> 387     2 0.000
#> 388     2 0.000
#> 389     2 0.000
#> 390     2 0.000
#> 391     1 1.000
#> 392     2 0.000
#> 393     1 1.000
#> 394     1 0.000
#> 395     1 1.000
#> 396     2 0.000
#> 397     2 1.000
#> 398     1 1.000
#> 399     1 0.249
#> 400     1 1.000
#> 401     2 0.000
#> 402     2 0.000
#> 403     1 0.000
#> 404     2 0.249
#> 405     2 0.000
#> 406     2 0.498
#> 407     1 1.000
#> 408     2 0.502
#> 409     2 0.000
#> 410     2 0.000
#> 411     1 1.000
#> 412     2 0.000
#> 413     2 0.000
#> 414     2 0.000
#> 415     2 0.000
#> 416     1 1.000
#> 417     2 0.000
#> 418     2 0.498
#> 419     2 0.000
#> 420     1 0.000
#> 421     1 1.000
#> 422     1 0.000
#> 423     1 1.000
#> 424     2 0.000
#> 425     3 0.751
#> 426     2 0.000
#> 427     2 0.000
#> 428     2 0.000
#> 429     2 0.000
#> 430     2 0.000
#> 431     2 0.000
#> 432     2 0.000
#> 433     2 1.000
#> 434     2 0.249
#> 435     2 0.000
#> 436     1 1.000
#> 437     1 0.000
#> 438     2 1.000
#> 439     3 0.000
#> 440     3 1.000
#> 441     2 0.249
#> 442     3 0.000
#> 443     3 0.000
#> 444     2 0.000
#> 445     1 1.000
#> 446     1 0.751
#> 447     1 1.000
#> 448     3 0.000
#> 449     3 0.000
#> 450     2 0.000
#> 451     3 0.000
#> 452     2 0.498
#> 453     1 1.000
#> 454     1 1.000
#> 455     1 1.000
#> 456     1 0.000
#> 457     1 1.000
#> 458     1 0.000
#> 459     2 0.249
#> 460     1 0.498
#> 461     1 0.000
#> 462     1 0.000
#> 463     2 0.000
#> 464     1 1.000
#> 465     1 0.000
#> 466     1 1.000
#> 467     2 1.000
#> 468     1 1.000
#> 469     2 0.000
#> 470     2 0.000
#> 471     2 0.000
#> 472     2 0.000
#> 473     1 1.000
#> 474     2 0.000
#> 475     2 0.000
#> 476     2 0.000
#> 477     2 0.000
#> 478     2 0.000
#> 479     2 0.000
#> 480     2 0.000
#> 481     2 0.249
#> 482     2 0.000
#> 483     3 1.000
#> 484     3 0.000
#> 485     2 0.000
#> 486     2 0.000
#> 487     2 1.000
#> 488     2 0.249
#> 489     3 1.000
#> 490     3 0.502
#> 491     2 0.000
#> 492     2 0.000
#> 493     1 1.000
#> 494     2 0.000
#> 495     2 0.000
#> 496     2 0.249
#> 497     2 0.000
#> 498     3 1.000
#> 499     2 0.000
#> 500     2 0.000
#> 501     2 0.000
#> 502     2 0.751
#> 503     2 0.000
#> 504     2 0.000
#> 505     2 0.000
#> 506     2 0.000
#> 507     3 0.000
#> 508     2 0.000
#> 509     2 0.000
#> 510     2 0.000
#> 511     2 0.000
#> 512     2 0.498
#> 513     2 0.000
#> 514     2 0.000
#> 515     2 1.000
#> 516     2 0.502
#> 517     2 0.000
#> 518     2 0.000
#> 519     2 0.000
#> 520     2 0.000
#> 521     2 0.000
#> 522     2 0.000
#> 523     2 0.000
#> 524     1 0.253
#> 525     3 0.000
#> 526     2 0.000
#> 527     2 0.000
#> 528     2 0.000
#> 529     2 0.000
#> 530     2 0.000
#> 531     2 1.000
#> 532     2 0.000
#> 533     2 1.000
#> 534     2 0.000
#> 535     2 0.000
#> 536     2 0.000
#> 537     2 0.000
#> 538     2 0.000
#> 539     2 0.000
#> 540     2 0.000
#> 541     1 1.000
#> 542     3 0.000
#> 543     2 0.000
#> 544     2 0.751
#> 545     2 0.000
#> 546     2 0.000
#> 547     2 0.000
#> 548     2 0.000
#> 549     2 0.000
#> 550     2 0.000
#> 551     2 0.000
#> 552     2 1.000
#> 553     1 1.000
#> 554     1 0.249
#> 555     2 1.000
#> 556     1 1.000
#> 557     2 0.000
#> 558     1 1.000
#> 559     3 0.000
#> 560     1 0.498
#> 561     1 0.000
#> 562     2 0.000
#> 563     1 1.000
#> 564     1 1.000
#> 565     2 1.000
#> 566     2 0.000
#> 567     2 0.000
#> 568     1 1.000
#> 569     2 1.000
#> 570     1 0.751
#> 571     2 0.000
#> 572     2 0.000
#> 573     2 0.000
#> 574     1 1.000
#> 575     1 1.000
#> 576     3 0.000
#> 577     2 0.000
#> 578     1 0.000
#> 579     1 1.000
#> 580     3 0.502
#> 581     2 1.000
#> 582     2 0.751
#> 583     2 0.751
#> 584     2 0.000
#> 585     3 0.000
#> 586     1 0.000
#> 587     2 0.000
#> 588     2 0.000
#> 589     2 1.000
#> 590     1 0.751
#> 591     1 0.751
#> 592     1 0.498
#> 593     2 0.000
#> 594     2 0.000
#> 595     1 1.000
#> 596     2 0.000
#> 597     3 0.000
#> 598     1 1.000
#> 599     2 0.253
#> 600     1 1.000
#> 601     2 0.000
#> 602     1 1.000
#> 603     2 0.000
#> 604     1 0.747
#> 605     2 0.000
#> 606     2 0.000
#> 607     2 0.000
#> 608     2 0.000
#> 609     3 1.000
#> 610     2 0.000
#> 611     2 1.000
#> 612     1 1.000
#> 613     1 0.498
#> 614     3 1.000
#> 615     2 0.000
#> 616     2 0.000
#> 617     2 0.000
#> 618     2 0.000
#> 619     2 0.000
#> 620     2 0.000
#> 621     2 0.000
#> 622     2 0.000
#> 623     2 0.000
#> 624     2 0.000
#> 625     1 0.747
#> 626     2 0.000
#> 627     1 1.000
#> 628     1 1.000
#> 629     1 1.000
#> 630     1 0.000
#> 631     1 1.000
#> 632     1 1.000
#> 633     1 0.751
#> 634     1 1.000
#> 635     1 1.000
#> 636     3 1.000
#> 637     1 0.747
#> 638     1 1.000
#> 639     1 1.000
#> 640     1 1.000
#> 641     1 1.000
#> 642     1 0.000
#> 643     1 1.000
#> 644     1 1.000
#> 645     2 0.000
#> 646     2 1.000
#> 647     2 0.000
#> 648     2 0.000
#> 649     2 0.249
#> 650     1 1.000
#> 651     1 1.000
#> 652     2 1.000
#> 653     1 1.000
#> 654     2 0.000
#> 655     2 0.000
#> 656     2 0.000
#> 657     1 1.000
#> 658     2 0.000
#> 659     2 0.000
#> 660     1 0.502
#> 661     2 0.000
#> 662     1 1.000
#> 663     1 1.000
#> 664     1 0.747
#> 665     1 1.000
#> 666     1 1.000
#> 667     1 1.000
#> 668     1 0.000
#> 669     1 0.249
#> 670     2 0.000
#> 671     1 1.000
#> 672     2 0.249
#> 673     1 1.000
#> 674     1 1.000
#> 675     2 0.000
#> 676     1 1.000
#> 677     2 0.000
#> 678     1 1.000
#> 679     2 0.000
#> 680     2 0.747
#> 681     2 0.000
#> 682     2 0.000
#> 683     2 0.000
#> 684     1 0.751
#> 685     1 1.000
#> 686     1 0.000
#> 687     1 1.000
#> 688     1 1.000
#> 689     1 1.000
#> 690     1 1.000
#> 691     2 0.000
#> 692     1 1.000
#> 693     1 1.000
#> 694     1 0.502
#> 695     2 0.000
#> 696     2 0.000
#> 697     2 0.000
#> 698     1 1.000
#> 699     1 0.000
#> 700     2 0.000
#> 701     1 1.000
#> 702     1 0.751
#> 703     2 0.747
#> 704     1 0.253
#> 705     1 0.000
#> 706     1 0.000
#> 707     2 0.000
#> 708     2 1.000
#> 709     2 0.253
#> 710     3 0.000
#> 711     2 0.000
#> 712     2 0.000
#> 713     2 0.000
#> 714     2 0.000
#> 715     3 0.000
#> 716     2 0.000
#> 717     2 0.000
#> 718     2 0.000
#> 719     2 0.751
#> 720     1 1.000
#> 721     2 0.000
#> 722     1 1.000
#> 723     1 0.502
#> 724     1 1.000
#> 725     2 0.000
#> 726     2 0.000
#> 727     2 0.000
#> 728     2 0.000
#> 729     2 0.000
#> 730     2 0.000
#> 731     2 0.000
#> 732     2 0.000
#> 733     2 0.000
#> 734     1 0.249
#> 735     1 1.000
#> 736     1 1.000
#> 737     2 0.000
#> 738     2 0.000
#> 739     2 0.000
#> 740     2 0.000
#> 741     2 0.000
#> 742     2 0.000
#> 743     1 1.000
#> 744     3 0.000
#> 745     3 0.249
#> 746     3 0.000
#> 747     1 1.000
#> 748     1 1.000
#> 749     1 1.000
#> 750     1 1.000
#> 751     1 1.000
#> 752     1 1.000
#> 753     3 0.000
#> 754     1 1.000
#> 755     1 1.000
#> 756     1 1.000
#> 757     3 0.000
#> 758     1 1.000
#> 759     3 0.000
#> 760     3 0.000
#> 761     3 0.000
#> 762     3 0.000
#> 763     3 0.000
#> 764     1 0.253
#> 765     3 1.000
#> 766     2 0.000
#> 767     2 1.000
#> 768     2 1.000
#> 769     3 1.000
#> 770     3 0.000
#> 771     3 0.000
#> 772     3 0.000
#> 773     3 0.000
#> 774     1 0.000
#> 775     2 1.000
#> 776     3 0.000
#> 777     3 0.000
#> 778     1 0.249
#> 779     1 0.000
#> 780     1 1.000
#> 781     1 1.000
#> 782     1 0.000
#> 783     2 0.000
#> 784     1 1.000
#> 785     2 0.000
#> 786     2 0.000
#> 787     2 0.000
#> 788     2 1.000
#> 789     2 0.000
#> 790     2 0.000
#> 791     1 0.498
#> 792     2 0.498
#> 793     2 0.000
#> 794     2 0.000
#> 795     2 0.000
#> 796     2 0.000
#> 797     2 0.253
#> 798     2 0.000
#> 799     2 0.000
#> 800     2 0.000
#> 801     3 0.000
#> 802     2 0.000
#> 803     2 0.000
#> 804     2 0.000
#> 805     2 0.000
#> 806     2 0.498
#> 807     2 0.253
#> 808     2 0.000
#> 809     2 1.000
#> 810     2 0.502
#> 811     2 0.000
#> 812     2 0.000
#> 813     2 0.000
#> 814     2 0.000
#> 815     2 0.000
#> 816     3 0.000
#> 817     3 0.000
#> 818     1 0.000
#> 819     1 0.000
#> 820     1 0.249
#> 821     1 1.000
#> 822     3 0.000
#> 823     3 1.000
#> 824     2 0.000
#> 825     1 1.000
#> 826     2 1.000
#> 827     2 0.000
#> 828     1 1.000
#> 829     2 0.498
#> 830     2 0.249
#> 831     2 0.000
#> 832     2 0.000
#> 833     3 1.000
#> 834     2 0.000
#> 835     3 0.747
#> 836     3 0.000
#> 837     2 0.000
#> 838     2 0.000
#> 839     1 0.000
#> 840     1 1.000
#> 841     2 0.000
#> 842     2 0.000
#> 843     1 0.502
#> 844     2 0.000
#> 845     2 0.000
#> 846     2 0.000
#> 847     2 0.000
#> 848     1 1.000
#> 849     1 0.000
#> 850     1 1.000
#> 851     1 1.000
#> 852     1 1.000
#> 853     1 1.000
#> 854     1 0.000
#> 855     3 0.000
#> 856     2 1.000
#> 857     1 1.000
#> 858     1 1.000
#> 859     1 0.000
#> 860     1 1.000
#> 861     1 0.000
#> 862     1 1.000
#> 863     1 0.000
#> 864     1 0.000
#> 865     1 0.000
#> 866     1 0.249
#> 867     1 1.000
#> 868     1 0.000
#> 869     1 0.502
#> 870     3 0.000
#> 871     1 1.000
#> 872     1 0.000
#> 873     1 1.000
#> 874     3 0.000
#> 875     1 1.000
#> 876     3 0.000
#> 877     1 1.000
#> 878     2 1.000
#> 879     3 0.000
#> 880     3 0.000
#> 881     1 0.000
#> 882     1 0.000
#> 883     1 0.000
#> 884     1 0.000
#> 885     1 0.000
#> 886     1 0.000
#> 887     1 1.000
#> 888     1 0.000
#> 889     3 0.000
#> 890     1 0.000
#> 891     1 1.000
#> 892     1 1.000
#> 893     1 1.000
#> 894     3 0.000
#> 895     1 0.502
#> 896     1 0.000
#> 897     1 0.000
#> 898     1 0.000
#> 899     1 0.000
#> 900     1 0.000
#> 901     1 0.000
#> 902     1 0.000
#> 903     2 1.000
#> 904     2 1.000
#> 905     1 0.498
#> 906     3 0.000
#> 907     1 0.000
#> 908     1 0.000
#> 909     1 0.000
#> 910     1 0.249
#> 911     1 0.253
#> 912     1 0.000
#> 913     2 1.000
#> 914     1 0.000
#> 915     1 0.000
#> 916     1 0.000
#> 917     1 0.000
#> 918     3 0.249
#> 919     2 1.000
#> 920     1 1.000
#> 921     1 0.000
#> 922     3 0.000
#> 923     3 1.000
#> 924     1 1.000
#> 925     1 1.000
#> 926     1 0.000
#> 927     1 0.000
#> 928     1 0.000
#> 929     1 0.000
#> 930     1 0.747
#> 931     1 0.000
#> 932     1 0.253
#> 933     1 0.000
#> 934     1 0.249
#> 935     1 0.000
#> 936     3 0.000
#> 937     2 1.000
#> 938     1 1.000
#> 939     2 1.000
#> 940     1 1.000
#> 941     3 0.000
#> 942     3 0.000
#> 943     2 0.249
#> 944     2 0.000
#> 945     1 0.253
#> 946     1 1.000
#> 947     3 0.498
#> 948     2 0.000
#> 949     1 0.000
#> 950     2 1.000
#> 951     1 0.000
#> 952     1 0.000
#> 953     1 0.502
#> 954     1 1.000
#> 955     1 0.000
#> 956     1 1.000
#> 957     2 1.000
#> 958     1 0.000
#> 959     1 0.000
#> 960     1 0.000

show/hide code output

get_classes(res, k = 4)
#>     class     p
#> 1       3 1.000
#> 2       2 1.000
#> 3       4 0.000
#> 4       4 0.000
#> 5       2 0.000
#> 6       2 0.000
#> 7       2 0.000
#> 8       1 0.000
#> 9       2 1.000
#> 10      2 0.751
#> 11      2 0.000
#> 12      2 1.000
#> 13      2 0.000
#> 14      2 1.000
#> 15      3 0.000
#> 16      4 0.000
#> 17      2 1.000
#> 18      4 1.000
#> 19      3 1.000
#> 20      2 0.502
#> 21      4 0.000
#> 22      2 1.000
#> 23      2 0.249
#> 24      2 0.000
#> 25      2 1.000
#> 26      4 0.000
#> 27      1 0.000
#> 28      1 1.000
#> 29      2 1.000
#> 30      4 0.000
#> 31      4 0.000
#> 32      1 0.000
#> 33      1 1.000
#> 34      3 0.000
#> 35      1 1.000
#> 36      4 0.000
#> 37      2 1.000
#> 38      4 0.000
#> 39      2 0.751
#> 40      4 0.000
#> 41      2 1.000
#> 42      4 0.000
#> 43      4 0.000
#> 44      2 1.000
#> 45      2 0.000
#> 46      4 1.000
#> 47      4 0.000
#> 48      3 0.000
#> 49      3 0.000
#> 50      3 0.000
#> 51      2 1.000
#> 52      4 0.000
#> 53      3 1.000
#> 54      3 1.000
#> 55      4 0.000
#> 56      2 1.000
#> 57      4 0.000
#> 58      4 0.000
#> 59      4 0.000
#> 60      4 1.000
#> 61      1 1.000
#> 62      1 1.000
#> 63      1 1.000
#> 64      3 1.000
#> 65      2 1.000
#> 66      2 1.000
#> 67      4 0.000
#> 68      4 0.000
#> 69      4 0.000
#> 70      4 0.000
#> 71      4 0.000
#> 72      2 1.000
#> 73      2 1.000
#> 74      4 1.000
#> 75      2 0.000
#> 76      2 1.000
#> 77      3 0.000
#> 78      1 1.000
#> 79      2 0.249
#> 80      3 0.000
#> 81      2 0.502
#> 82      2 1.000
#> 83      3 0.751
#> 84      2 1.000
#> 85      4 0.000
#> 86      2 0.000
#> 87      2 0.751
#> 88      4 0.000
#> 89      2 1.000
#> 90      2 0.000
#> 91      3 1.000
#> 92      2 0.751
#> 93      4 0.000
#> 94      2 1.000
#> 95      4 0.000
#> 96      1 1.000
#> 97      2 0.751
#> 98      3 0.000
#> 99      4 0.747
#> 100     3 0.000
#> 101     4 0.000
#> 102     3 0.000
#> 103     2 1.000
#> 104     4 0.000
#> 105     2 0.000
#> 106     2 1.000
#> 107     2 0.751
#> 108     2 0.000
#> 109     2 0.747
#> 110     4 0.000
#> 111     1 1.000
#> 112     4 0.000
#> 113     4 0.000
#> 114     2 1.000
#> 115     4 0.000
#> 116     4 0.000
#> 117     2 0.498
#> 118     2 0.249
#> 119     2 1.000
#> 120     1 0.498
#> 121     2 0.000
#> 122     2 1.000
#> 123     2 0.000
#> 124     2 0.000
#> 125     2 0.000
#> 126     2 1.000
#> 127     2 0.000
#> 128     2 0.000
#> 129     2 0.000
#> 130     4 0.000
#> 131     4 0.000
#> 132     3 0.000
#> 133     2 1.000
#> 134     2 1.000
#> 135     1 1.000
#> 136     1 0.000
#> 137     3 1.000
#> 138     4 0.000
#> 139     3 0.000
#> 140     1 1.000
#> 141     1 1.000
#> 142     2 1.000
#> 143     1 1.000
#> 144     4 0.000
#> 145     3 1.000
#> 146     1 0.000
#> 147     3 0.000
#> 148     3 0.000
#> 149     3 0.000
#> 150     3 0.000
#> 151     3 0.000
#> 152     2 0.000
#> 153     2 0.000
#> 154     2 0.000
#> 155     4 0.000
#> 156     2 0.000
#> 157     2 1.000
#> 158     3 0.751
#> 159     2 0.000
#> 160     2 1.000
#> 161     2 1.000
#> 162     2 1.000
#> 163     3 0.000
#> 164     3 0.249
#> 165     2 1.000
#> 166     1 1.000
#> 167     2 1.000
#> 168     4 1.000
#> 169     3 0.000
#> 170     4 0.000
#> 171     4 0.000
#> 172     4 0.000
#> 173     4 0.000
#> 174     1 0.000
#> 175     3 0.000
#> 176     3 0.000
#> 177     1 0.000
#> 178     3 0.000
#> 179     2 0.000
#> 180     1 0.000
#> 181     4 0.000
#> 182     3 0.000
#> 183     1 0.000
#> 184     4 0.000
#> 185     1 0.000
#> 186     3 1.000
#> 187     4 1.000
#> 188     1 1.000
#> 189     1 0.751
#> 190     2 0.000
#> 191     1 0.000
#> 192     3 0.000
#> 193     4 0.000
#> 194     4 0.000
#> 195     2 0.000
#> 196     3 0.000
#> 197     3 1.000
#> 198     3 1.000
#> 199     1 0.253
#> 200     2 1.000
#> 201     2 0.249
#> 202     4 0.000
#> 203     2 0.502
#> 204     2 0.000
#> 205     2 0.747
#> 206     2 1.000
#> 207     3 0.000
#> 208     1 0.000
#> 209     2 0.249
#> 210     2 0.000
#> 211     3 1.000
#> 212     1 0.000
#> 213     2 1.000
#> 214     4 0.000
#> 215     4 0.249
#> 216     4 0.000
#> 217     3 0.000
#> 218     1 1.000
#> 219     2 1.000
#> 220     4 0.000
#> 221     3 0.000
#> 222     1 1.000
#> 223     3 0.000
#> 224     2 1.000
#> 225     4 0.000
#> 226     3 0.000
#> 227     1 1.000
#> 228     2 0.000
#> 229     2 0.249
#> 230     1 1.000
#> 231     3 0.000
#> 232     4 1.000
#> 233     4 0.000
#> 234     1 0.498
#> 235     3 0.253
#> 236     1 0.000
#> 237     3 0.000
#> 238     4 0.751
#> 239     1 0.249
#> 240     1 1.000
#> 241     1 0.000
#> 242     2 0.000
#> 243     1 1.000
#> 244     3 0.000
#> 245     3 0.000
#> 246     4 0.000
#> 247     4 0.000
#> 248     3 1.000
#> 249     3 0.000
#> 250     1 0.249
#> 251     3 0.249
#> 252     4 1.000
#> 253     1 0.000
#> 254     1 0.000
#> 255     3 0.000
#> 256     1 0.000
#> 257     4 0.000
#> 258     2 1.000
#> 259     4 0.000
#> 260     3 0.000
#> 261     3 0.000
#> 262     4 0.000
#> 263     3 1.000
#> 264     4 0.000
#> 265     3 1.000
#> 266     2 1.000
#> 267     3 1.000
#> 268     4 1.000
#> 269     1 0.000
#> 270     4 0.000
#> 271     2 1.000
#> 272     4 0.000
#> 273     2 0.000
#> 274     2 1.000
#> 275     2 0.498
#> 276     4 0.000
#> 277     4 0.000
#> 278     4 0.000
#> 279     2 0.747
#> 280     4 0.000
#> 281     2 1.000
#> 282     3 0.000
#> 283     2 0.249
#> 284     1 0.502
#> 285     2 0.249
#> 286     1 1.000
#> 287     2 0.249
#> 288     4 1.000
#> 289     2 0.000
#> 290     1 1.000
#> 291     3 0.000
#> 292     3 0.000
#> 293     1 0.000
#> 294     4 0.000
#> 295     4 0.000
#> 296     4 0.000
#> 297     2 0.249
#> 298     1 0.000
#> 299     3 1.000
#> 300     1 0.000
#> 301     1 0.000
#> 302     4 0.000
#> 303     2 1.000
#> 304     4 0.000
#> 305     2 1.000
#> 306     1 1.000
#> 307     2 1.000
#> 308     4 0.000
#> 309     4 0.000
#> 310     2 0.000
#> 311     4 1.000
#> 312     1 1.000
#> 313     4 0.000
#> 314     1 1.000
#> 315     1 1.000
#> 316     1 1.000
#> 317     4 0.000
#> 318     3 0.000
#> 319     2 1.000
#> 320     1 0.000
#> 321     3 0.000
#> 322     1 1.000
#> 323     4 0.000
#> 324     1 1.000
#> 325     1 0.751
#> 326     1 1.000
#> 327     4 0.000
#> 328     4 0.000
#> 329     2 1.000
#> 330     1 1.000
#> 331     4 1.000
#> 332     4 1.000
#> 333     3 0.000
#> 334     4 0.000
#> 335     2 1.000
#> 336     4 0.000
#> 337     2 0.249
#> 338     4 0.000
#> 339     1 1.000
#> 340     2 0.249
#> 341     2 1.000
#> 342     2 1.000
#> 343     4 0.000
#> 344     2 1.000
#> 345     3 1.000
#> 346     4 0.249
#> 347     4 0.502
#> 348     4 0.000
#> 349     4 1.000
#> 350     1 1.000
#> 351     1 1.000
#> 352     1 0.747
#> 353     1 0.000
#> 354     3 0.000
#> 355     1 0.000
#> 356     3 0.000
#> 357     4 0.000
#> 358     1 0.000
#> 359     1 0.000
#> 360     1 0.000
#> 361     1 0.000
#> 362     3 1.000
#> 363     4 0.000
#> 364     3 0.000
#> 365     3 0.000
#> 366     4 0.000
#> 367     4 0.000
#> 368     3 0.000
#> 369     3 0.000
#> 370     2 0.502
#> 371     1 0.000
#> 372     1 1.000
#> 373     1 0.000
#> 374     1 1.000
#> 375     4 0.000
#> 376     1 1.000
#> 377     1 0.000
#> 378     1 1.000
#> 379     1 0.498
#> 380     1 1.000
#> 381     4 0.000
#> 382     2 0.751
#> 383     1 1.000
#> 384     2 0.000
#> 385     4 0.000
#> 386     4 0.000
#> 387     2 0.000
#> 388     2 0.000
#> 389     2 0.000
#> 390     2 0.249
#> 391     4 0.000
#> 392     4 1.000
#> 393     4 0.000
#> 394     1 1.000
#> 395     1 1.000
#> 396     2 1.000
#> 397     3 0.000
#> 398     1 1.000
#> 399     1 1.000
#> 400     4 0.000
#> 401     4 0.000
#> 402     2 1.000
#> 403     1 1.000
#> 404     2 0.000
#> 405     4 0.000
#> 406     2 0.502
#> 407     4 1.000
#> 408     4 1.000
#> 409     4 0.000
#> 410     2 0.000
#> 411     4 0.000
#> 412     2 0.751
#> 413     2 1.000
#> 414     2 1.000
#> 415     2 0.000
#> 416     4 0.000
#> 417     2 0.000
#> 418     2 0.000
#> 419     2 0.000
#> 420     1 0.000
#> 421     1 1.000
#> 422     1 0.000
#> 423     4 0.000
#> 424     2 0.000
#> 425     3 0.000
#> 426     4 1.000
#> 427     2 1.000
#> 428     2 0.000
#> 429     2 0.000
#> 430     2 0.000
#> 431     2 0.000
#> 432     2 0.000
#> 433     2 1.000
#> 434     2 0.751
#> 435     2 0.000
#> 436     1 0.000
#> 437     1 1.000
#> 438     2 0.751
#> 439     3 0.000
#> 440     2 1.000
#> 441     4 0.000
#> 442     3 0.000
#> 443     3 0.000
#> 444     2 0.502
#> 445     1 0.000
#> 446     4 0.498
#> 447     1 0.000
#> 448     3 0.000
#> 449     3 0.502
#> 450     2 0.000
#> 451     3 0.000
#> 452     4 1.000
#> 453     4 0.000
#> 454     4 0.000
#> 455     1 0.000
#> 456     1 1.000
#> 457     1 0.000
#> 458     1 0.751
#> 459     2 0.000
#> 460     4 0.249
#> 461     1 0.000
#> 462     1 0.000
#> 463     2 1.000
#> 464     1 0.000
#> 465     1 0.000
#> 466     1 0.000
#> 467     2 1.000
#> 468     4 0.000
#> 469     4 0.000
#> 470     4 0.000
#> 471     4 1.000
#> 472     2 1.000
#> 473     4 0.000
#> 474     2 0.000
#> 475     2 0.000
#> 476     2 0.249
#> 477     2 0.000
#> 478     2 1.000
#> 479     2 0.000
#> 480     2 0.502
#> 481     2 1.000
#> 482     2 0.498
#> 483     2 1.000
#> 484     3 0.000
#> 485     2 0.000
#> 486     2 1.000
#> 487     2 1.000
#> 488     2 0.253
#> 489     2 1.000
#> 490     3 1.000
#> 491     2 0.000
#> 492     2 0.000
#> 493     1 0.000
#> 494     2 0.000
#> 495     2 0.000
#> 496     2 1.000
#> 497     4 0.000
#> 498     3 1.000
#> 499     2 0.000
#> 500     4 0.249
#> 501     2 0.751
#> 502     2 1.000
#> 503     2 0.747
#> 504     4 0.000
#> 505     2 0.249
#> 506     2 0.000
#> 507     3 0.000
#> 508     4 0.502
#> 509     2 0.000
#> 510     2 0.000
#> 511     2 0.000
#> 512     2 0.000
#> 513     2 0.000
#> 514     2 0.000
#> 515     2 1.000
#> 516     2 0.253
#> 517     2 0.000
#> 518     2 0.000
#> 519     2 0.000
#> 520     2 0.751
#> 521     4 0.000
#> 522     2 1.000
#> 523     2 0.000
#> 524     1 1.000
#> 525     3 1.000
#> 526     2 0.249
#> 527     2 0.000
#> 528     2 0.751
#> 529     2 0.249
#> 530     2 0.000
#> 531     2 1.000
#> 532     2 0.000
#> 533     2 1.000
#> 534     2 0.000
#> 535     2 0.000
#> 536     2 0.000
#> 537     2 0.000
#> 538     4 0.000
#> 539     2 0.249
#> 540     2 0.000
#> 541     4 1.000
#> 542     3 0.000
#> 543     2 0.000
#> 544     4 0.000
#> 545     2 1.000
#> 546     2 0.000
#> 547     2 0.502
#> 548     4 0.000
#> 549     4 0.000
#> 550     4 0.751
#> 551     2 0.000
#> 552     2 1.000
#> 553     4 0.000
#> 554     1 0.249
#> 555     2 1.000
#> 556     1 1.000
#> 557     2 0.747
#> 558     4 0.000
#> 559     3 0.000
#> 560     4 0.000
#> 561     1 0.249
#> 562     2 0.249
#> 563     1 0.000
#> 564     1 0.000
#> 565     2 1.000
#> 566     4 0.000
#> 567     4 0.000
#> 568     4 0.000
#> 569     2 0.253
#> 570     4 1.000
#> 571     4 0.751
#> 572     2 0.000
#> 573     2 1.000
#> 574     4 0.000
#> 575     4 0.000
#> 576     3 0.000
#> 577     4 0.000
#> 578     1 1.000
#> 579     4 1.000
#> 580     3 0.000
#> 581     2 0.751
#> 582     2 0.000
#> 583     2 0.000
#> 584     2 1.000
#> 585     3 0.000
#> 586     1 0.747
#> 587     4 0.000
#> 588     2 0.502
#> 589     2 1.000
#> 590     1 1.000
#> 591     4 0.000
#> 592     1 1.000
#> 593     2 1.000
#> 594     2 0.000
#> 595     1 1.000
#> 596     2 0.000
#> 597     3 0.000
#> 598     1 0.000
#> 599     4 0.000
#> 600     4 0.000
#> 601     4 0.000
#> 602     1 1.000
#> 603     2 0.498
#> 604     4 1.000
#> 605     2 0.249
#> 606     4 0.498
#> 607     2 0.000
#> 608     4 0.000
#> 609     2 1.000
#> 610     4 0.000
#> 611     2 1.000
#> 612     4 0.000
#> 613     1 1.000
#> 614     3 1.000
#> 615     2 1.000
#> 616     2 0.000
#> 617     4 1.000
#> 618     4 1.000
#> 619     2 0.000
#> 620     2 0.000
#> 621     2 0.000
#> 622     4 0.000
#> 623     4 0.000
#> 624     2 0.502
#> 625     4 0.000
#> 626     2 0.751
#> 627     4 0.000
#> 628     4 1.000
#> 629     4 1.000
#> 630     1 1.000
#> 631     1 1.000
#> 632     4 0.000
#> 633     1 1.000
#> 634     4 0.000
#> 635     4 0.000
#> 636     3 1.000
#> 637     1 1.000
#> 638     4 0.000
#> 639     4 0.000
#> 640     1 1.000
#> 641     4 0.000
#> 642     1 1.000
#> 643     4 0.000
#> 644     4 0.000
#> 645     2 0.000
#> 646     2 1.000
#> 647     2 0.249
#> 648     2 0.000
#> 649     2 0.249
#> 650     4 0.249
#> 651     4 1.000
#> 652     2 1.000
#> 653     4 0.000
#> 654     4 0.000
#> 655     2 1.000
#> 656     2 0.000
#> 657     4 1.000
#> 658     4 1.000
#> 659     2 0.747
#> 660     1 1.000
#> 661     4 1.000
#> 662     4 0.000
#> 663     4 1.000
#> 664     4 1.000
#> 665     1 1.000
#> 666     4 1.000
#> 667     4 0.000
#> 668     1 0.000
#> 669     1 0.498
#> 670     4 1.000
#> 671     4 0.000
#> 672     2 1.000
#> 673     4 1.000
#> 674     4 0.253
#> 675     2 0.000
#> 676     4 0.000
#> 677     2 1.000
#> 678     4 0.000
#> 679     4 0.000
#> 680     4 0.751
#> 681     2 0.000
#> 682     4 0.000
#> 683     2 0.000
#> 684     1 1.000
#> 685     4 0.000
#> 686     1 1.000
#> 687     4 0.000
#> 688     4 0.000
#> 689     1 1.000
#> 690     4 0.000
#> 691     2 1.000
#> 692     4 0.000
#> 693     4 0.000
#> 694     1 0.253
#> 695     2 0.000
#> 696     2 0.000
#> 697     2 0.000
#> 698     4 0.000
#> 699     1 1.000
#> 700     2 0.498
#> 701     4 0.000
#> 702     1 1.000
#> 703     4 0.249
#> 704     1 1.000
#> 705     1 1.000
#> 706     1 1.000
#> 707     2 0.249
#> 708     2 1.000
#> 709     2 0.253
#> 710     3 0.000
#> 711     2 0.000
#> 712     2 0.502
#> 713     2 0.000
#> 714     2 0.000
#> 715     3 0.000
#> 716     2 0.000
#> 717     2 0.502
#> 718     4 0.000
#> 719     2 0.751
#> 720     4 0.000
#> 721     2 0.000
#> 722     1 1.000
#> 723     1 1.000
#> 724     4 0.000
#> 725     2 1.000
#> 726     2 0.000
#> 727     2 0.000
#> 728     2 0.000
#> 729     2 0.000
#> 730     2 0.751
#> 731     4 0.000
#> 732     2 0.000
#> 733     2 0.000
#> 734     1 1.000
#> 735     4 0.000
#> 736     1 1.000
#> 737     4 0.000
#> 738     2 1.000
#> 739     2 0.000
#> 740     2 0.000
#> 741     2 0.000
#> 742     2 0.000
#> 743     1 0.000
#> 744     3 0.000
#> 745     3 1.000
#> 746     3 0.000
#> 747     1 0.000
#> 748     1 0.000
#> 749     1 0.000
#> 750     1 0.000
#> 751     1 0.000
#> 752     1 0.000
#> 753     3 0.000
#> 754     1 0.000
#> 755     1 0.000
#> 756     1 0.000
#> 757     3 0.000
#> 758     1 0.000
#> 759     3 0.000
#> 760     3 0.000
#> 761     3 0.000
#> 762     3 0.253
#> 763     3 0.000
#> 764     1 1.000
#> 765     3 1.000
#> 766     2 0.498
#> 767     2 0.751
#> 768     2 1.000
#> 769     3 0.253
#> 770     3 1.000
#> 771     3 0.000
#> 772     3 0.000
#> 773     3 0.000
#> 774     1 0.000
#> 775     3 0.000
#> 776     3 0.000
#> 777     3 0.000
#> 778     1 1.000
#> 779     1 1.000
#> 780     1 0.000
#> 781     1 0.000
#> 782     1 0.000
#> 783     4 0.000
#> 784     4 0.000
#> 785     2 1.000
#> 786     2 1.000
#> 787     2 0.000
#> 788     2 1.000
#> 789     2 0.000
#> 790     2 0.000
#> 791     1 1.000
#> 792     2 0.498
#> 793     2 0.000
#> 794     4 0.249
#> 795     2 0.751
#> 796     2 0.000
#> 797     2 0.000
#> 798     2 0.000
#> 799     2 0.000
#> 800     2 1.000
#> 801     3 0.000
#> 802     2 0.253
#> 803     2 0.000
#> 804     2 0.000
#> 805     2 0.000
#> 806     2 0.747
#> 807     2 0.000
#> 808     2 0.000
#> 809     2 1.000
#> 810     2 0.498
#> 811     2 0.000
#> 812     2 0.000
#> 813     2 0.000
#> 814     2 0.000
#> 815     2 0.000
#> 816     3 0.000
#> 817     3 0.000
#> 818     1 0.000
#> 819     1 0.000
#> 820     1 1.000
#> 821     4 0.249
#> 822     3 0.000
#> 823     3 0.000
#> 824     2 0.498
#> 825     4 0.000
#> 826     2 1.000
#> 827     2 0.000
#> 828     1 0.000
#> 829     2 0.249
#> 830     2 0.000
#> 831     2 0.000
#> 832     2 0.000
#> 833     3 1.000
#> 834     4 0.751
#> 835     3 1.000
#> 836     3 0.000
#> 837     4 0.000
#> 838     4 0.000
#> 839     1 0.000
#> 840     4 0.000
#> 841     2 0.000
#> 842     2 0.000
#> 843     4 1.000
#> 844     2 0.000
#> 845     2 0.000
#> 846     2 0.000
#> 847     2 0.000
#> 848     1 0.000
#> 849     1 0.502
#> 850     1 0.000
#> 851     1 0.000
#> 852     1 0.000
#> 853     1 0.000
#> 854     1 0.000
#> 855     3 0.000
#> 856     2 1.000
#> 857     1 0.000
#> 858     1 0.000
#> 859     1 0.000
#> 860     1 0.000
#> 861     1 0.502
#> 862     1 0.000
#> 863     1 1.000
#> 864     1 0.000
#> 865     1 0.249
#> 866     1 0.000
#> 867     1 0.000
#> 868     1 0.000
#> 869     1 0.000
#> 870     3 0.000
#> 871     1 0.000
#> 872     1 0.000
#> 873     1 0.000
#> 874     3 0.000
#> 875     1 0.000
#> 876     3 0.000
#> 877     1 0.000
#> 878     4 0.751
#> 879     3 0.000
#> 880     3 0.249
#> 881     1 0.249
#> 882     1 0.253
#> 883     1 0.000
#> 884     1 0.249
#> 885     1 0.000
#> 886     1 0.000
#> 887     1 0.000
#> 888     1 1.000
#> 889     3 0.000
#> 890     1 0.000
#> 891     1 0.000
#> 892     1 0.000
#> 893     1 0.000
#> 894     3 0.000
#> 895     1 0.000
#> 896     1 0.000
#> 897     1 0.000
#> 898     1 0.498
#> 899     1 0.751
#> 900     1 0.000
#> 901     1 1.000
#> 902     1 0.751
#> 903     2 1.000
#> 904     2 1.000
#> 905     4 1.000
#> 906     3 0.000
#> 907     1 0.000
#> 908     1 1.000
#> 909     1 0.502
#> 910     1 0.000
#> 911     4 0.000
#> 912     1 0.000
#> 913     4 1.000
#> 914     1 1.000
#> 915     1 0.000
#> 916     1 0.000
#> 917     4 1.000
#> 918     3 0.000
#> 919     2 1.000
#> 920     1 0.253
#> 921     4 0.751
#> 922     3 0.000
#> 923     3 0.000
#> 924     1 0.000
#> 925     1 0.000
#> 926     1 1.000
#> 927     1 1.000
#> 928     4 0.249
#> 929     1 1.000
#> 930     1 1.000
#> 931     1 0.000
#> 932     1 0.751
#> 933     1 0.000
#> 934     1 0.000
#> 935     1 0.000
#> 936     3 0.000
#> 937     2 1.000
#> 938     4 0.000
#> 939     2 1.000
#> 940     1 0.000
#> 941     3 0.000
#> 942     3 0.498
#> 943     4 0.000
#> 944     2 1.000
#> 945     4 0.000
#> 946     4 0.000
#> 947     3 1.000
#> 948     2 0.000
#> 949     4 1.000
#> 950     2 1.000
#> 951     1 0.000
#> 952     4 1.000
#> 953     4 0.000
#> 954     1 0.000
#> 955     1 0.253
#> 956     1 0.000
#> 957     4 0.751
#> 958     1 1.000
#> 959     4 1.000
#> 960     4 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-02-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-02-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-02-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-02-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-02-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-02-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-02-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-02-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-02-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-02-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-02-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-02-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-02-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-02-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-02-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-02-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-02-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      590              7.23e-08 2
#> ATC:skmeans      526              2.08e-04 3
#> ATC:skmeans      542              4.67e-06 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node021

Parent node: Node02. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["021"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 9688 rows and 386 columns.
#>   Top rows (969) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-021-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-021-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.970       0.988         0.4999 0.501   0.501
#> 3 3 0.941           0.944       0.976         0.2689 0.824   0.663
#> 4 4 0.820           0.863       0.926         0.0885 0.940   0.836

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.987 0.00 1.00
#> 2       2   0.000      0.987 0.00 1.00
#> 3       1   0.000      0.988 1.00 0.00
#> 4       2   0.000      0.987 0.00 1.00
#> 5       1   0.000      0.988 1.00 0.00
#> 6       1   0.958      0.389 0.62 0.38
#> 7       2   0.000      0.987 0.00 1.00
#> 8       1   0.000      0.988 1.00 0.00
#> 9       1   0.000      0.988 1.00 0.00
#> 10      1   0.000      0.988 1.00 0.00
#> 11      2   0.000      0.987 0.00 1.00
#> 12      2   0.000      0.987 0.00 1.00
#> 13      2   0.000      0.987 0.00 1.00
#> 14      2   0.990      0.215 0.44 0.56
#> 15      2   0.000      0.987 0.00 1.00
#> 16      1   0.000      0.988 1.00 0.00
#> 17      1   0.000      0.988 1.00 0.00
#> 18      1   0.000      0.988 1.00 0.00
#> 19      2   0.000      0.987 0.00 1.00
#> 20      2   0.000      0.987 0.00 1.00
#> 21      2   0.000      0.987 0.00 1.00
#> 22      1   0.000      0.988 1.00 0.00
#> 23      2   0.000      0.987 0.00 1.00
#> 24      2   0.000      0.987 0.00 1.00
#> 25      1   0.000      0.988 1.00 0.00
#> 26      2   0.000      0.987 0.00 1.00
#> 27      2   0.000      0.987 0.00 1.00
#> 28      2   0.000      0.987 0.00 1.00
#> 29      2   0.000      0.987 0.00 1.00
#> 30      2   0.000      0.987 0.00 1.00
#> 31      1   0.000      0.988 1.00 0.00
#> 32      2   0.000      0.987 0.00 1.00
#> 33      2   0.000      0.987 0.00 1.00
#> 34      1   0.000      0.988 1.00 0.00
#> 35      1   0.000      0.988 1.00 0.00
#> 36      1   0.000      0.988 1.00 0.00
#> 37      2   0.000      0.987 0.00 1.00
#> 38      2   0.000      0.987 0.00 1.00
#> 39      1   0.000      0.988 1.00 0.00
#> 40      2   0.000      0.987 0.00 1.00
#> 41      1   0.000      0.988 1.00 0.00
#> 42      2   0.000      0.987 0.00 1.00
#> 43      2   0.000      0.987 0.00 1.00
#> 44      2   0.000      0.987 0.00 1.00
#> 45      1   0.000      0.988 1.00 0.00
#> 46      1   0.000      0.988 1.00 0.00
#> 47      1   0.000      0.988 1.00 0.00
#> 48      2   0.000      0.987 0.00 1.00
#> 49      1   0.000      0.988 1.00 0.00
#> 50      2   0.000      0.987 0.00 1.00
#> 51      1   0.000      0.988 1.00 0.00
#> 52      1   0.000      0.988 1.00 0.00
#> 53      1   0.000      0.988 1.00 0.00
#> 54      1   0.000      0.988 1.00 0.00
#> 55      1   0.000      0.988 1.00 0.00
#> 56      2   0.000      0.987 0.00 1.00
#> 57      2   0.000      0.987 0.00 1.00
#> 58      2   0.000      0.987 0.00 1.00
#> 59      2   0.000      0.987 0.00 1.00
#> 60      2   0.925      0.487 0.34 0.66
#> 61      2   0.000      0.987 0.00 1.00
#> 62      2   0.000      0.987 0.00 1.00
#> 63      1   0.000      0.988 1.00 0.00
#> 64      1   0.000      0.988 1.00 0.00
#> 65      2   0.000      0.987 0.00 1.00
#> 66      1   0.000      0.988 1.00 0.00
#> 67      1   0.958      0.391 0.62 0.38
#> 68      2   0.000      0.987 0.00 1.00
#> 69      2   0.000      0.987 0.00 1.00
#> 70      2   0.000      0.987 0.00 1.00
#> 71      1   0.000      0.988 1.00 0.00
#> 72      2   0.000      0.987 0.00 1.00
#> 73      2   0.000      0.987 0.00 1.00
#> 74      2   0.141      0.969 0.02 0.98
#> 75      1   0.000      0.988 1.00 0.00
#> 76      2   0.000      0.987 0.00 1.00
#> 77      2   0.000      0.987 0.00 1.00
#> 78      1   0.000      0.988 1.00 0.00
#> 79      1   0.000      0.988 1.00 0.00
#> 80      1   0.000      0.988 1.00 0.00
#> 81      1   0.000      0.988 1.00 0.00
#> 82      2   0.000      0.987 0.00 1.00
#> 83      2   0.000      0.987 0.00 1.00
#> 84      2   0.000      0.987 0.00 1.00
#> 85      1   0.000      0.988 1.00 0.00
#> 86      2   0.000      0.987 0.00 1.00
#> 87      2   0.000      0.987 0.00 1.00
#> 88      2   0.000      0.987 0.00 1.00
#> 89      2   0.000      0.987 0.00 1.00
#> 90      1   0.000      0.988 1.00 0.00
#> 91      1   0.000      0.988 1.00 0.00
#> 92      1   0.000      0.988 1.00 0.00
#> 93      1   0.000      0.988 1.00 0.00
#> 94      2   0.000      0.987 0.00 1.00
#> 95      2   0.000      0.987 0.00 1.00
#> 96      2   0.000      0.987 0.00 1.00
#> 97      1   0.000      0.988 1.00 0.00
#> 98      1   0.000      0.988 1.00 0.00
#> 99      1   0.000      0.988 1.00 0.00
#> 100     2   0.000      0.987 0.00 1.00
#> 101     2   0.000      0.987 0.00 1.00
#> 102     1   0.000      0.988 1.00 0.00
#> 103     2   0.000      0.987 0.00 1.00
#> 104     2   0.000      0.987 0.00 1.00
#> 105     2   0.000      0.987 0.00 1.00
#> 106     2   0.000      0.987 0.00 1.00
#> 107     1   0.000      0.988 1.00 0.00
#> 108     1   0.000      0.988 1.00 0.00
#> 109     1   0.000      0.988 1.00 0.00
#> 110     1   0.402      0.907 0.92 0.08
#> 111     1   0.000      0.988 1.00 0.00
#> 112     1   0.000      0.988 1.00 0.00
#> 113     1   0.000      0.988 1.00 0.00
#> 114     2   0.000      0.987 0.00 1.00
#> 115     2   0.000      0.987 0.00 1.00
#> 116     2   0.000      0.987 0.00 1.00
#> 117     2   0.000      0.987 0.00 1.00
#> 118     2   0.000      0.987 0.00 1.00
#> 119     2   0.000      0.987 0.00 1.00
#> 120     2   0.000      0.987 0.00 1.00
#> 121     2   0.000      0.987 0.00 1.00
#> 122     2   0.000      0.987 0.00 1.00
#> 123     2   0.000      0.987 0.00 1.00
#> 124     2   0.000      0.987 0.00 1.00
#> 125     2   0.000      0.987 0.00 1.00
#> 126     2   0.000      0.987 0.00 1.00
#> 127     1   0.000      0.988 1.00 0.00
#> 128     1   0.000      0.988 1.00 0.00
#> 129     2   0.000      0.987 0.00 1.00
#> 130     1   0.000      0.988 1.00 0.00
#> 131     1   0.000      0.988 1.00 0.00
#> 132     1   0.000      0.988 1.00 0.00
#> 133     1   0.000      0.988 1.00 0.00
#> 134     1   0.000      0.988 1.00 0.00
#> 135     1   0.000      0.988 1.00 0.00
#> 136     2   0.000      0.987 0.00 1.00
#> 137     2   0.000      0.987 0.00 1.00
#> 138     2   0.000      0.987 0.00 1.00
#> 139     2   0.000      0.987 0.00 1.00
#> 140     1   0.000      0.988 1.00 0.00
#> 141     1   0.000      0.988 1.00 0.00
#> 142     2   0.925      0.489 0.34 0.66
#> 143     2   0.000      0.987 0.00 1.00
#> 144     1   0.141      0.969 0.98 0.02
#> 145     1   0.000      0.988 1.00 0.00
#> 146     1   0.000      0.988 1.00 0.00
#> 147     2   0.000      0.987 0.00 1.00
#> 148     2   0.469      0.883 0.10 0.90
#> 149     2   0.000      0.987 0.00 1.00
#> 150     2   0.000      0.987 0.00 1.00
#> 151     2   0.000      0.987 0.00 1.00
#> 152     2   0.000      0.987 0.00 1.00
#> 153     2   0.000      0.987 0.00 1.00
#> 154     1   0.000      0.988 1.00 0.00
#> 155     2   0.000      0.987 0.00 1.00
#> 156     2   0.000      0.987 0.00 1.00
#> 157     1   0.000      0.988 1.00 0.00
#> 158     2   0.000      0.987 0.00 1.00
#> 159     1   0.584      0.835 0.86 0.14
#> 160     2   0.000      0.987 0.00 1.00
#> 161     2   0.000      0.987 0.00 1.00
#> 162     2   0.000      0.987 0.00 1.00
#> 163     1   0.000      0.988 1.00 0.00
#> 164     2   0.000      0.987 0.00 1.00
#> 165     2   0.141      0.969 0.02 0.98
#> 166     2   0.000      0.987 0.00 1.00
#> 167     1   0.000      0.988 1.00 0.00
#> 168     1   0.000      0.988 1.00 0.00
#> 169     2   0.469      0.884 0.10 0.90
#> 170     2   0.000      0.987 0.00 1.00
#> 171     2   0.881      0.573 0.30 0.70
#> 172     2   0.000      0.987 0.00 1.00
#> 173     2   0.000      0.987 0.00 1.00
#> 174     1   0.000      0.988 1.00 0.00
#> 175     1   0.000      0.988 1.00 0.00
#> 176     2   0.000      0.987 0.00 1.00
#> 177     2   0.000      0.987 0.00 1.00
#> 178     2   0.000      0.987 0.00 1.00
#> 179     2   0.000      0.987 0.00 1.00
#> 180     2   0.000      0.987 0.00 1.00
#> 181     1   0.000      0.988 1.00 0.00
#> 182     1   0.000      0.988 1.00 0.00
#> 183     2   0.000      0.987 0.00 1.00
#> 184     2   0.000      0.987 0.00 1.00
#> 185     2   0.000      0.987 0.00 1.00
#> 186     1   0.000      0.988 1.00 0.00
#> 187     2   0.000      0.987 0.00 1.00
#> 188     2   0.000      0.987 0.00 1.00
#> 189     2   0.000      0.987 0.00 1.00
#> 190     1   0.000      0.988 1.00 0.00
#> 191     2   0.000      0.987 0.00 1.00
#> 192     2   0.000      0.987 0.00 1.00
#> 193     2   0.000      0.987 0.00 1.00
#> 194     2   0.529      0.859 0.12 0.88
#> 195     1   0.958      0.389 0.62 0.38
#> 196     1   0.000      0.988 1.00 0.00
#> 197     2   0.000      0.987 0.00 1.00
#> 198     2   0.000      0.987 0.00 1.00
#> 199     2   0.000      0.987 0.00 1.00
#> 200     2   0.000      0.987 0.00 1.00
#> 201     1   0.000      0.988 1.00 0.00
#> 202     2   0.000      0.987 0.00 1.00
#> 203     1   0.000      0.988 1.00 0.00
#> 204     1   0.000      0.988 1.00 0.00
#> 205     2   0.000      0.987 0.00 1.00
#> 206     2   0.000      0.987 0.00 1.00
#> 207     2   0.000      0.987 0.00 1.00
#> 208     1   0.000      0.988 1.00 0.00
#> 209     2   0.000      0.987 0.00 1.00
#> 210     2   0.000      0.987 0.00 1.00
#> 211     2   0.000      0.987 0.00 1.00
#> 212     2   0.000      0.987 0.00 1.00
#> 213     2   0.000      0.987 0.00 1.00
#> 214     2   0.000      0.987 0.00 1.00
#> 215     2   0.000      0.987 0.00 1.00
#> 216     2   0.000      0.987 0.00 1.00
#> 217     2   0.000      0.987 0.00 1.00
#> 218     1   0.000      0.988 1.00 0.00
#> 219     2   0.000      0.987 0.00 1.00
#> 220     2   0.000      0.987 0.00 1.00
#> 221     1   0.584      0.835 0.86 0.14
#> 222     2   0.000      0.987 0.00 1.00
#> 223     2   0.000      0.987 0.00 1.00
#> 224     2   0.795      0.685 0.24 0.76
#> 225     2   0.000      0.987 0.00 1.00
#> 226     2   0.000      0.987 0.00 1.00
#> 227     2   0.141      0.969 0.02 0.98
#> 228     2   0.000      0.987 0.00 1.00
#> 229     2   0.000      0.987 0.00 1.00
#> 230     2   0.000      0.987 0.00 1.00
#> 231     2   0.000      0.987 0.00 1.00
#> 232     2   0.000      0.987 0.00 1.00
#> 233     2   0.000      0.987 0.00 1.00
#> 234     2   0.000      0.987 0.00 1.00
#> 235     2   0.000      0.987 0.00 1.00
#> 236     1   0.000      0.988 1.00 0.00
#> 237     2   0.000      0.987 0.00 1.00
#> 238     2   0.000      0.987 0.00 1.00
#> 239     2   0.000      0.987 0.00 1.00
#> 240     1   0.000      0.988 1.00 0.00
#> 241     2   0.000      0.987 0.00 1.00
#> 242     2   0.000      0.987 0.00 1.00
#> 243     2   0.995      0.149 0.46 0.54
#> 244     1   0.000      0.988 1.00 0.00
#> 245     2   0.000      0.987 0.00 1.00
#> 246     2   0.000      0.987 0.00 1.00
#> 247     2   0.000      0.987 0.00 1.00
#> 248     2   0.000      0.987 0.00 1.00
#> 249     2   0.000      0.987 0.00 1.00
#> 250     2   0.242      0.949 0.04 0.96
#> 251     2   0.000      0.987 0.00 1.00
#> 252     1   0.000      0.988 1.00 0.00
#> 253     2   0.000      0.987 0.00 1.00
#> 254     2   0.000      0.987 0.00 1.00
#> 255     1   0.881      0.574 0.70 0.30
#> 256     2   0.000      0.987 0.00 1.00
#> 257     2   0.000      0.987 0.00 1.00
#> 258     2   0.000      0.987 0.00 1.00
#> 259     1   0.000      0.988 1.00 0.00
#> 260     2   0.000      0.987 0.00 1.00
#> 261     1   0.795      0.686 0.76 0.24
#> 262     2   0.000      0.987 0.00 1.00
#> 263     1   0.000      0.988 1.00 0.00
#> 264     2   0.000      0.987 0.00 1.00
#> 265     1   0.000      0.988 1.00 0.00
#> 266     2   0.000      0.987 0.00 1.00
#> 267     2   0.000      0.987 0.00 1.00
#> 268     1   0.000      0.988 1.00 0.00
#> 269     2   0.000      0.987 0.00 1.00
#> 270     2   0.000      0.987 0.00 1.00
#> 271     1   0.000      0.988 1.00 0.00
#> 272     2   0.000      0.987 0.00 1.00
#> 273     2   0.000      0.987 0.00 1.00
#> 274     1   0.000      0.988 1.00 0.00
#> 275     1   0.000      0.988 1.00 0.00
#> 276     1   0.000      0.988 1.00 0.00
#> 277     1   0.000      0.988 1.00 0.00
#> 278     1   0.000      0.988 1.00 0.00
#> 279     1   0.000      0.988 1.00 0.00
#> 280     1   0.000      0.988 1.00 0.00
#> 281     1   0.000      0.988 1.00 0.00
#> 282     1   0.000      0.988 1.00 0.00
#> 283     1   0.000      0.988 1.00 0.00
#> 284     1   0.000      0.988 1.00 0.00
#> 285     1   0.000      0.988 1.00 0.00
#> 286     1   0.000      0.988 1.00 0.00
#> 287     1   0.000      0.988 1.00 0.00
#> 288     1   0.000      0.988 1.00 0.00
#> 289     2   0.000      0.987 0.00 1.00
#> 290     1   0.000      0.988 1.00 0.00
#> 291     1   0.000      0.988 1.00 0.00
#> 292     2   0.000      0.987 0.00 1.00
#> 293     2   0.000      0.987 0.00 1.00
#> 294     1   0.000      0.988 1.00 0.00
#> 295     1   0.469      0.884 0.90 0.10
#> 296     2   0.000      0.987 0.00 1.00
#> 297     2   0.000      0.987 0.00 1.00
#> 298     2   0.000      0.987 0.00 1.00
#> 299     2   0.000      0.987 0.00 1.00
#> 300     1   0.000      0.988 1.00 0.00
#> 301     2   0.000      0.987 0.00 1.00
#> 302     2   0.000      0.987 0.00 1.00
#> 303     1   0.000      0.988 1.00 0.00
#> 304     1   0.000      0.988 1.00 0.00
#> 305     1   0.000      0.988 1.00 0.00
#> 306     1   0.000      0.988 1.00 0.00
#> 307     1   0.000      0.988 1.00 0.00
#> 308     1   0.000      0.988 1.00 0.00
#> 309     1   0.000      0.988 1.00 0.00
#> 310     1   0.000      0.988 1.00 0.00
#> 311     1   0.000      0.988 1.00 0.00
#> 312     1   0.000      0.988 1.00 0.00
#> 313     1   0.000      0.988 1.00 0.00
#> 314     1   0.000      0.988 1.00 0.00
#> 315     1   0.000      0.988 1.00 0.00
#> 316     1   0.000      0.988 1.00 0.00
#> 317     1   0.000      0.988 1.00 0.00
#> 318     1   0.000      0.988 1.00 0.00
#> 319     1   0.000      0.988 1.00 0.00
#> 320     1   0.000      0.988 1.00 0.00
#> 321     1   0.000      0.988 1.00 0.00
#> 322     1   0.000      0.988 1.00 0.00
#> 323     1   0.000      0.988 1.00 0.00
#> 324     1   0.000      0.988 1.00 0.00
#> 325     1   0.000      0.988 1.00 0.00
#> 326     1   0.000      0.988 1.00 0.00
#> 327     1   0.000      0.988 1.00 0.00
#> 328     1   0.000      0.988 1.00 0.00
#> 329     1   0.000      0.988 1.00 0.00
#> 330     1   0.000      0.988 1.00 0.00
#> 331     1   0.000      0.988 1.00 0.00
#> 332     1   0.000      0.988 1.00 0.00
#> 333     1   0.000      0.988 1.00 0.00
#> 334     1   0.000      0.988 1.00 0.00
#> 335     1   0.000      0.988 1.00 0.00
#> 336     1   0.000      0.988 1.00 0.00
#> 337     1   0.000      0.988 1.00 0.00
#> 338     1   0.000      0.988 1.00 0.00
#> 339     1   0.000      0.988 1.00 0.00
#> 340     1   0.000      0.988 1.00 0.00
#> 341     1   0.000      0.988 1.00 0.00
#> 342     1   0.000      0.988 1.00 0.00
#> 343     1   0.000      0.988 1.00 0.00
#> 344     1   0.000      0.988 1.00 0.00
#> 345     1   0.000      0.988 1.00 0.00
#> 346     1   0.000      0.988 1.00 0.00
#> 347     1   0.000      0.988 1.00 0.00
#> 348     2   0.000      0.987 0.00 1.00
#> 349     1   0.000      0.988 1.00 0.00
#> 350     1   0.000      0.988 1.00 0.00
#> 351     2   0.000      0.987 0.00 1.00
#> 352     1   0.000      0.988 1.00 0.00
#> 353     2   0.000      0.987 0.00 1.00
#> 354     1   0.000      0.988 1.00 0.00
#> 355     2   0.000      0.987 0.00 1.00
#> 356     2   0.000      0.987 0.00 1.00
#> 357     1   0.000      0.988 1.00 0.00
#> 358     2   0.000      0.987 0.00 1.00
#> 359     2   0.000      0.987 0.00 1.00
#> 360     2   0.000      0.987 0.00 1.00
#> 361     1   0.000      0.988 1.00 0.00
#> 362     1   0.000      0.988 1.00 0.00
#> 363     1   0.000      0.988 1.00 0.00
#> 364     1   0.000      0.988 1.00 0.00
#> 365     2   0.000      0.987 0.00 1.00
#> 366     1   0.000      0.988 1.00 0.00
#> 367     1   0.000      0.988 1.00 0.00
#> 368     1   0.000      0.988 1.00 0.00
#> 369     1   0.000      0.988 1.00 0.00
#> 370     1   0.000      0.988 1.00 0.00
#> 371     1   0.000      0.988 1.00 0.00
#> 372     1   0.000      0.988 1.00 0.00
#> 373     2   0.000      0.987 0.00 1.00
#> 374     1   0.000      0.988 1.00 0.00
#> 375     2   0.000      0.987 0.00 1.00
#> 376     2   0.000      0.987 0.00 1.00
#> 377     2   0.000      0.987 0.00 1.00
#> 378     1   0.141      0.969 0.98 0.02
#> 379     2   0.000      0.987 0.00 1.00
#> 380     2   0.000      0.987 0.00 1.00
#> 381     1   0.000      0.988 1.00 0.00
#> 382     1   0.000      0.988 1.00 0.00
#> 383     2   0.000      0.987 0.00 1.00
#> 384     2   0.000      0.987 0.00 1.00
#> 385     2   0.000      0.987 0.00 1.00
#> 386     2   0.000      0.987 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       2  0.0000      0.992 0.00 1.00 0.00
#> 2       2  0.0000      0.992 0.00 1.00 0.00
#> 3       1  0.1529      0.935 0.96 0.00 0.04
#> 4       2  0.0000      0.992 0.00 1.00 0.00
#> 5       1  0.0000      0.969 1.00 0.00 0.00
#> 6       1  0.4209      0.815 0.86 0.12 0.02
#> 7       2  0.0000      0.992 0.00 1.00 0.00
#> 8       1  0.0892      0.953 0.98 0.00 0.02
#> 9       1  0.0000      0.969 1.00 0.00 0.00
#> 10      1  0.1529      0.935 0.96 0.00 0.04
#> 11      2  0.0000      0.992 0.00 1.00 0.00
#> 12      2  0.0000      0.992 0.00 1.00 0.00
#> 13      2  0.0000      0.992 0.00 1.00 0.00
#> 14      1  0.8321      0.506 0.62 0.24 0.14
#> 15      2  0.0000      0.992 0.00 1.00 0.00
#> 16      1  0.4002      0.802 0.84 0.00 0.16
#> 17      1  0.4291      0.778 0.82 0.00 0.18
#> 18      1  0.5948      0.451 0.64 0.00 0.36
#> 19      2  0.0000      0.992 0.00 1.00 0.00
#> 20      2  0.0000      0.992 0.00 1.00 0.00
#> 21      2  0.0000      0.992 0.00 1.00 0.00
#> 22      1  0.5706      0.541 0.68 0.00 0.32
#> 23      2  0.0000      0.992 0.00 1.00 0.00
#> 24      2  0.0000      0.992 0.00 1.00 0.00
#> 25      1  0.5560      0.579 0.70 0.00 0.30
#> 26      2  0.0000      0.992 0.00 1.00 0.00
#> 27      2  0.0000      0.992 0.00 1.00 0.00
#> 28      2  0.0000      0.992 0.00 1.00 0.00
#> 29      2  0.3340      0.861 0.00 0.88 0.12
#> 30      2  0.0000      0.992 0.00 1.00 0.00
#> 31      1  0.0892      0.953 0.98 0.00 0.02
#> 32      2  0.0000      0.992 0.00 1.00 0.00
#> 33      2  0.5397      0.611 0.00 0.72 0.28
#> 34      3  0.2959      0.866 0.10 0.00 0.90
#> 35      3  0.0000      0.945 0.00 0.00 1.00
#> 36      3  0.0000      0.945 0.00 0.00 1.00
#> 37      2  0.0000      0.992 0.00 1.00 0.00
#> 38      2  0.0000      0.992 0.00 1.00 0.00
#> 39      3  0.0000      0.945 0.00 0.00 1.00
#> 40      2  0.0000      0.992 0.00 1.00 0.00
#> 41      3  0.0000      0.945 0.00 0.00 1.00
#> 42      2  0.0000      0.992 0.00 1.00 0.00
#> 43      2  0.0000      0.992 0.00 1.00 0.00
#> 44      2  0.0000      0.992 0.00 1.00 0.00
#> 45      1  0.0000      0.969 1.00 0.00 0.00
#> 46      1  0.0892      0.953 0.98 0.00 0.02
#> 47      1  0.0000      0.969 1.00 0.00 0.00
#> 48      2  0.0000      0.992 0.00 1.00 0.00
#> 49      1  0.0000      0.969 1.00 0.00 0.00
#> 50      2  0.0000      0.992 0.00 1.00 0.00
#> 51      3  0.0000      0.945 0.00 0.00 1.00
#> 52      1  0.0000      0.969 1.00 0.00 0.00
#> 53      1  0.0000      0.969 1.00 0.00 0.00
#> 54      3  0.0000      0.945 0.00 0.00 1.00
#> 55      3  0.0892      0.932 0.02 0.00 0.98
#> 56      2  0.0000      0.992 0.00 1.00 0.00
#> 57      2  0.0000      0.992 0.00 1.00 0.00
#> 58      3  0.5706      0.534 0.00 0.32 0.68
#> 59      2  0.2959      0.886 0.00 0.90 0.10
#> 60      3  0.3340      0.828 0.00 0.12 0.88
#> 61      2  0.0000      0.992 0.00 1.00 0.00
#> 62      2  0.0000      0.992 0.00 1.00 0.00
#> 63      3  0.0000      0.945 0.00 0.00 1.00
#> 64      3  0.0000      0.945 0.00 0.00 1.00
#> 65      2  0.0000      0.992 0.00 1.00 0.00
#> 66      1  0.4002      0.802 0.84 0.00 0.16
#> 67      3  0.6500      0.737 0.14 0.10 0.76
#> 68      2  0.0000      0.992 0.00 1.00 0.00
#> 69      2  0.0000      0.992 0.00 1.00 0.00
#> 70      2  0.3340      0.861 0.12 0.88 0.00
#> 71      3  0.0000      0.945 0.00 0.00 1.00
#> 72      2  0.0000      0.992 0.00 1.00 0.00
#> 73      3  0.0000      0.945 0.00 0.00 1.00
#> 74      2  0.4796      0.716 0.00 0.78 0.22
#> 75      3  0.0000      0.945 0.00 0.00 1.00
#> 76      2  0.0000      0.992 0.00 1.00 0.00
#> 77      2  0.0000      0.992 0.00 1.00 0.00
#> 78      3  0.0000      0.945 0.00 0.00 1.00
#> 79      1  0.2959      0.874 0.90 0.00 0.10
#> 80      3  0.2066      0.902 0.06 0.00 0.94
#> 81      3  0.0000      0.945 0.00 0.00 1.00
#> 82      2  0.0000      0.992 0.00 1.00 0.00
#> 83      2  0.0000      0.992 0.00 1.00 0.00
#> 84      2  0.0000      0.992 0.00 1.00 0.00
#> 85      3  0.0000      0.945 0.00 0.00 1.00
#> 86      2  0.0000      0.992 0.00 1.00 0.00
#> 87      2  0.0000      0.992 0.00 1.00 0.00
#> 88      2  0.0000      0.992 0.00 1.00 0.00
#> 89      2  0.0000      0.992 0.00 1.00 0.00
#> 90      1  0.5835      0.494 0.66 0.00 0.34
#> 91      3  0.0000      0.945 0.00 0.00 1.00
#> 92      3  0.0000      0.945 0.00 0.00 1.00
#> 93      3  0.0000      0.945 0.00 0.00 1.00
#> 94      2  0.0000      0.992 0.00 1.00 0.00
#> 95      2  0.0000      0.992 0.00 1.00 0.00
#> 96      2  0.0000      0.992 0.00 1.00 0.00
#> 97      1  0.0000      0.969 1.00 0.00 0.00
#> 98      3  0.0000      0.945 0.00 0.00 1.00
#> 99      3  0.0000      0.945 0.00 0.00 1.00
#> 100     2  0.0000      0.992 0.00 1.00 0.00
#> 101     2  0.0000      0.992 0.00 1.00 0.00
#> 102     3  0.0000      0.945 0.00 0.00 1.00
#> 103     2  0.0000      0.992 0.00 1.00 0.00
#> 104     3  0.4002      0.782 0.00 0.16 0.84
#> 105     2  0.0000      0.992 0.00 1.00 0.00
#> 106     2  0.0000      0.992 0.00 1.00 0.00
#> 107     3  0.0000      0.945 0.00 0.00 1.00
#> 108     3  0.0000      0.945 0.00 0.00 1.00
#> 109     1  0.0000      0.969 1.00 0.00 0.00
#> 110     3  0.0000      0.945 0.00 0.00 1.00
#> 111     3  0.0000      0.945 0.00 0.00 1.00
#> 112     3  0.5835      0.497 0.34 0.00 0.66
#> 113     3  0.0000      0.945 0.00 0.00 1.00
#> 114     2  0.0000      0.992 0.00 1.00 0.00
#> 115     2  0.0000      0.992 0.00 1.00 0.00
#> 116     2  0.0000      0.992 0.00 1.00 0.00
#> 117     2  0.0000      0.992 0.00 1.00 0.00
#> 118     2  0.0000      0.992 0.00 1.00 0.00
#> 119     2  0.0000      0.992 0.00 1.00 0.00
#> 120     2  0.0000      0.992 0.00 1.00 0.00
#> 121     2  0.0000      0.992 0.00 1.00 0.00
#> 122     2  0.0000      0.992 0.00 1.00 0.00
#> 123     2  0.0000      0.992 0.00 1.00 0.00
#> 124     2  0.0000      0.992 0.00 1.00 0.00
#> 125     2  0.0000      0.992 0.00 1.00 0.00
#> 126     2  0.0000      0.992 0.00 1.00 0.00
#> 127     3  0.0000      0.945 0.00 0.00 1.00
#> 128     3  0.0000      0.945 0.00 0.00 1.00
#> 129     2  0.0000      0.992 0.00 1.00 0.00
#> 130     3  0.0000      0.945 0.00 0.00 1.00
#> 131     3  0.3686      0.826 0.14 0.00 0.86
#> 132     3  0.4002      0.802 0.16 0.00 0.84
#> 133     3  0.0000      0.945 0.00 0.00 1.00
#> 134     3  0.0000      0.945 0.00 0.00 1.00
#> 135     3  0.0000      0.945 0.00 0.00 1.00
#> 136     2  0.0000      0.992 0.00 1.00 0.00
#> 137     2  0.0000      0.992 0.00 1.00 0.00
#> 138     2  0.0000      0.992 0.00 1.00 0.00
#> 139     3  0.6302      0.083 0.00 0.48 0.52
#> 140     3  0.0000      0.945 0.00 0.00 1.00
#> 141     3  0.0892      0.932 0.02 0.00 0.98
#> 142     3  0.0000      0.945 0.00 0.00 1.00
#> 143     2  0.0000      0.992 0.00 1.00 0.00
#> 144     3  0.0000      0.945 0.00 0.00 1.00
#> 145     3  0.3686      0.826 0.14 0.00 0.86
#> 146     3  0.0000      0.945 0.00 0.00 1.00
#> 147     2  0.0000      0.992 0.00 1.00 0.00
#> 148     3  0.0000      0.945 0.00 0.00 1.00
#> 149     2  0.0000      0.992 0.00 1.00 0.00
#> 150     2  0.0000      0.992 0.00 1.00 0.00
#> 151     2  0.0000      0.992 0.00 1.00 0.00
#> 152     2  0.0000      0.992 0.00 1.00 0.00
#> 153     2  0.0000      0.992 0.00 1.00 0.00
#> 154     3  0.0000      0.945 0.00 0.00 1.00
#> 155     2  0.0000      0.992 0.00 1.00 0.00
#> 156     2  0.0000      0.992 0.00 1.00 0.00
#> 157     3  0.0000      0.945 0.00 0.00 1.00
#> 158     2  0.0000      0.992 0.00 1.00 0.00
#> 159     3  0.0000      0.945 0.00 0.00 1.00
#> 160     2  0.0000      0.992 0.00 1.00 0.00
#> 161     2  0.0000      0.992 0.00 1.00 0.00
#> 162     2  0.0000      0.992 0.00 1.00 0.00
#> 163     1  0.0000      0.969 1.00 0.00 0.00
#> 164     2  0.0892      0.972 0.00 0.98 0.02
#> 165     3  0.0000      0.945 0.00 0.00 1.00
#> 166     2  0.0000      0.992 0.00 1.00 0.00
#> 167     1  0.2066      0.917 0.94 0.00 0.06
#> 168     3  0.0000      0.945 0.00 0.00 1.00
#> 169     3  0.2959      0.852 0.00 0.10 0.90
#> 170     2  0.0000      0.992 0.00 1.00 0.00
#> 171     3  0.0000      0.945 0.00 0.00 1.00
#> 172     2  0.0000      0.992 0.00 1.00 0.00
#> 173     2  0.0000      0.992 0.00 1.00 0.00
#> 174     3  0.3340      0.847 0.12 0.00 0.88
#> 175     3  0.0000      0.945 0.00 0.00 1.00
#> 176     2  0.0000      0.992 0.00 1.00 0.00
#> 177     2  0.0000      0.992 0.00 1.00 0.00
#> 178     2  0.0000      0.992 0.00 1.00 0.00
#> 179     2  0.4796      0.719 0.00 0.78 0.22
#> 180     2  0.0000      0.992 0.00 1.00 0.00
#> 181     3  0.1529      0.918 0.04 0.00 0.96
#> 182     3  0.0000      0.945 0.00 0.00 1.00
#> 183     3  0.4002      0.780 0.00 0.16 0.84
#> 184     2  0.0000      0.992 0.00 1.00 0.00
#> 185     2  0.0000      0.992 0.00 1.00 0.00
#> 186     3  0.0000      0.945 0.00 0.00 1.00
#> 187     2  0.0000      0.992 0.00 1.00 0.00
#> 188     2  0.0000      0.992 0.00 1.00 0.00
#> 189     2  0.0000      0.992 0.00 1.00 0.00
#> 190     3  0.6280      0.189 0.46 0.00 0.54
#> 191     2  0.0000      0.992 0.00 1.00 0.00
#> 192     2  0.0000      0.992 0.00 1.00 0.00
#> 193     2  0.0000      0.992 0.00 1.00 0.00
#> 194     3  0.0000      0.945 0.00 0.00 1.00
#> 195     3  0.0000      0.945 0.00 0.00 1.00
#> 196     3  0.0000      0.945 0.00 0.00 1.00
#> 197     2  0.0000      0.992 0.00 1.00 0.00
#> 198     2  0.0000      0.992 0.00 1.00 0.00
#> 199     2  0.0000      0.992 0.00 1.00 0.00
#> 200     2  0.0000      0.992 0.00 1.00 0.00
#> 201     3  0.0000      0.945 0.00 0.00 1.00
#> 202     2  0.0000      0.992 0.00 1.00 0.00
#> 203     3  0.0000      0.945 0.00 0.00 1.00
#> 204     1  0.0000      0.969 1.00 0.00 0.00
#> 205     2  0.0000      0.992 0.00 1.00 0.00
#> 206     2  0.0000      0.992 0.00 1.00 0.00
#> 207     2  0.0000      0.992 0.00 1.00 0.00
#> 208     1  0.0000      0.969 1.00 0.00 0.00
#> 209     2  0.0000      0.992 0.00 1.00 0.00
#> 210     2  0.5397      0.610 0.00 0.72 0.28
#> 211     2  0.0000      0.992 0.00 1.00 0.00
#> 212     2  0.0000      0.992 0.00 1.00 0.00
#> 213     2  0.0000      0.992 0.00 1.00 0.00
#> 214     2  0.0000      0.992 0.00 1.00 0.00
#> 215     2  0.0000      0.992 0.00 1.00 0.00
#> 216     2  0.0000      0.992 0.00 1.00 0.00
#> 217     2  0.0000      0.992 0.00 1.00 0.00
#> 218     3  0.3686      0.826 0.14 0.00 0.86
#> 219     2  0.0000      0.992 0.00 1.00 0.00
#> 220     2  0.0000      0.992 0.00 1.00 0.00
#> 221     3  0.0000      0.945 0.00 0.00 1.00
#> 222     2  0.0000      0.992 0.00 1.00 0.00
#> 223     2  0.0000      0.992 0.00 1.00 0.00
#> 224     3  0.0000      0.945 0.00 0.00 1.00
#> 225     2  0.0000      0.992 0.00 1.00 0.00
#> 226     2  0.0000      0.992 0.00 1.00 0.00
#> 227     2  0.3042      0.917 0.04 0.92 0.04
#> 228     2  0.0000      0.992 0.00 1.00 0.00
#> 229     2  0.0000      0.992 0.00 1.00 0.00
#> 230     2  0.0000      0.992 0.00 1.00 0.00
#> 231     2  0.0000      0.992 0.00 1.00 0.00
#> 232     2  0.0000      0.992 0.00 1.00 0.00
#> 233     3  0.0892      0.928 0.00 0.02 0.98
#> 234     2  0.0000      0.992 0.00 1.00 0.00
#> 235     2  0.0000      0.992 0.00 1.00 0.00
#> 236     3  0.0000      0.945 0.00 0.00 1.00
#> 237     2  0.0000      0.992 0.00 1.00 0.00
#> 238     2  0.0000      0.992 0.00 1.00 0.00
#> 239     2  0.0000      0.992 0.00 1.00 0.00
#> 240     1  0.0000      0.969 1.00 0.00 0.00
#> 241     2  0.0000      0.992 0.00 1.00 0.00
#> 242     2  0.0000      0.992 0.00 1.00 0.00
#> 243     3  0.0000      0.945 0.00 0.00 1.00
#> 244     3  0.0892      0.932 0.02 0.00 0.98
#> 245     2  0.0000      0.992 0.00 1.00 0.00
#> 246     2  0.0892      0.973 0.00 0.98 0.02
#> 247     2  0.0000      0.992 0.00 1.00 0.00
#> 248     2  0.0000      0.992 0.00 1.00 0.00
#> 249     2  0.0000      0.992 0.00 1.00 0.00
#> 250     3  0.0000      0.945 0.00 0.00 1.00
#> 251     2  0.0000      0.992 0.00 1.00 0.00
#> 252     3  0.0000      0.945 0.00 0.00 1.00
#> 253     2  0.0000      0.992 0.00 1.00 0.00
#> 254     2  0.0000      0.992 0.00 1.00 0.00
#> 255     3  0.0000      0.945 0.00 0.00 1.00
#> 256     2  0.0000      0.992 0.00 1.00 0.00
#> 257     2  0.0000      0.992 0.00 1.00 0.00
#> 258     2  0.0000      0.992 0.00 1.00 0.00
#> 259     3  0.0000      0.945 0.00 0.00 1.00
#> 260     2  0.0000      0.992 0.00 1.00 0.00
#> 261     3  0.0000      0.945 0.00 0.00 1.00
#> 262     2  0.0000      0.992 0.00 1.00 0.00
#> 263     3  0.5706      0.525 0.32 0.00 0.68
#> 264     3  0.3340      0.829 0.00 0.12 0.88
#> 265     3  0.0000      0.945 0.00 0.00 1.00
#> 266     2  0.0000      0.992 0.00 1.00 0.00
#> 267     2  0.0000      0.992 0.00 1.00 0.00
#> 268     3  0.0000      0.945 0.00 0.00 1.00
#> 269     2  0.0000      0.992 0.00 1.00 0.00
#> 270     2  0.0000      0.992 0.00 1.00 0.00
#> 271     3  0.0000      0.945 0.00 0.00 1.00
#> 272     2  0.0000      0.992 0.00 1.00 0.00
#> 273     2  0.0000      0.992 0.00 1.00 0.00
#> 274     1  0.6126      0.297 0.60 0.00 0.40
#> 275     1  0.0000      0.969 1.00 0.00 0.00
#> 276     1  0.0000      0.969 1.00 0.00 0.00
#> 277     1  0.0000      0.969 1.00 0.00 0.00
#> 278     1  0.0000      0.969 1.00 0.00 0.00
#> 279     1  0.0000      0.969 1.00 0.00 0.00
#> 280     1  0.0000      0.969 1.00 0.00 0.00
#> 281     1  0.0000      0.969 1.00 0.00 0.00
#> 282     1  0.0000      0.969 1.00 0.00 0.00
#> 283     1  0.0000      0.969 1.00 0.00 0.00
#> 284     1  0.0000      0.969 1.00 0.00 0.00
#> 285     3  0.6280      0.179 0.46 0.00 0.54
#> 286     3  0.0000      0.945 0.00 0.00 1.00
#> 287     3  0.0000      0.945 0.00 0.00 1.00
#> 288     3  0.0000      0.945 0.00 0.00 1.00
#> 289     3  0.0000      0.945 0.00 0.00 1.00
#> 290     3  0.4796      0.720 0.22 0.00 0.78
#> 291     3  0.4555      0.749 0.20 0.00 0.80
#> 292     2  0.0000      0.992 0.00 1.00 0.00
#> 293     2  0.0000      0.992 0.00 1.00 0.00
#> 294     1  0.1529      0.934 0.96 0.00 0.04
#> 295     3  0.0000      0.945 0.00 0.00 1.00
#> 296     2  0.0000      0.992 0.00 1.00 0.00
#> 297     2  0.0000      0.992 0.00 1.00 0.00
#> 298     2  0.0000      0.992 0.00 1.00 0.00
#> 299     2  0.0000      0.992 0.00 1.00 0.00
#> 300     3  0.0000      0.945 0.00 0.00 1.00
#> 301     2  0.0000      0.992 0.00 1.00 0.00
#> 302     2  0.0000      0.992 0.00 1.00 0.00
#> 303     1  0.0000      0.969 1.00 0.00 0.00
#> 304     1  0.0000      0.969 1.00 0.00 0.00
#> 305     1  0.0000      0.969 1.00 0.00 0.00
#> 306     1  0.0000      0.969 1.00 0.00 0.00
#> 307     1  0.0000      0.969 1.00 0.00 0.00
#> 308     1  0.0000      0.969 1.00 0.00 0.00
#> 309     1  0.0000      0.969 1.00 0.00 0.00
#> 310     1  0.0000      0.969 1.00 0.00 0.00
#> 311     1  0.0000      0.969 1.00 0.00 0.00
#> 312     1  0.0000      0.969 1.00 0.00 0.00
#> 313     1  0.0000      0.969 1.00 0.00 0.00
#> 314     1  0.0000      0.969 1.00 0.00 0.00
#> 315     1  0.0000      0.969 1.00 0.00 0.00
#> 316     1  0.0000      0.969 1.00 0.00 0.00
#> 317     1  0.0000      0.969 1.00 0.00 0.00
#> 318     1  0.0000      0.969 1.00 0.00 0.00
#> 319     1  0.0000      0.969 1.00 0.00 0.00
#> 320     1  0.0000      0.969 1.00 0.00 0.00
#> 321     1  0.0000      0.969 1.00 0.00 0.00
#> 322     1  0.0000      0.969 1.00 0.00 0.00
#> 323     1  0.0000      0.969 1.00 0.00 0.00
#> 324     1  0.0000      0.969 1.00 0.00 0.00
#> 325     1  0.0000      0.969 1.00 0.00 0.00
#> 326     1  0.0000      0.969 1.00 0.00 0.00
#> 327     1  0.0000      0.969 1.00 0.00 0.00
#> 328     1  0.0000      0.969 1.00 0.00 0.00
#> 329     1  0.0000      0.969 1.00 0.00 0.00
#> 330     1  0.0000      0.969 1.00 0.00 0.00
#> 331     1  0.0000      0.969 1.00 0.00 0.00
#> 332     1  0.0000      0.969 1.00 0.00 0.00
#> 333     1  0.0000      0.969 1.00 0.00 0.00
#> 334     1  0.0000      0.969 1.00 0.00 0.00
#> 335     1  0.0000      0.969 1.00 0.00 0.00
#> 336     1  0.0000      0.969 1.00 0.00 0.00
#> 337     1  0.0000      0.969 1.00 0.00 0.00
#> 338     1  0.0000      0.969 1.00 0.00 0.00
#> 339     1  0.0000      0.969 1.00 0.00 0.00
#> 340     1  0.0000      0.969 1.00 0.00 0.00
#> 341     1  0.0000      0.969 1.00 0.00 0.00
#> 342     1  0.0000      0.969 1.00 0.00 0.00
#> 343     1  0.0000      0.969 1.00 0.00 0.00
#> 344     1  0.0000      0.969 1.00 0.00 0.00
#> 345     1  0.0000      0.969 1.00 0.00 0.00
#> 346     1  0.0000      0.969 1.00 0.00 0.00
#> 347     1  0.0000      0.969 1.00 0.00 0.00
#> 348     2  0.0000      0.992 0.00 1.00 0.00
#> 349     1  0.0000      0.969 1.00 0.00 0.00
#> 350     1  0.0000      0.969 1.00 0.00 0.00
#> 351     2  0.0000      0.992 0.00 1.00 0.00
#> 352     1  0.0000      0.969 1.00 0.00 0.00
#> 353     2  0.0000      0.992 0.00 1.00 0.00
#> 354     1  0.0000      0.969 1.00 0.00 0.00
#> 355     2  0.0000      0.992 0.00 1.00 0.00
#> 356     2  0.0892      0.972 0.02 0.98 0.00
#> 357     1  0.0000      0.969 1.00 0.00 0.00
#> 358     2  0.0000      0.992 0.00 1.00 0.00
#> 359     2  0.0000      0.992 0.00 1.00 0.00
#> 360     2  0.0000      0.992 0.00 1.00 0.00
#> 361     1  0.0000      0.969 1.00 0.00 0.00
#> 362     1  0.0000      0.969 1.00 0.00 0.00
#> 363     1  0.0000      0.969 1.00 0.00 0.00
#> 364     1  0.0000      0.969 1.00 0.00 0.00
#> 365     2  0.0000      0.992 0.00 1.00 0.00
#> 366     1  0.0000      0.969 1.00 0.00 0.00
#> 367     1  0.0000      0.969 1.00 0.00 0.00
#> 368     1  0.0000      0.969 1.00 0.00 0.00
#> 369     1  0.0000      0.969 1.00 0.00 0.00
#> 370     1  0.0000      0.969 1.00 0.00 0.00
#> 371     1  0.0000      0.969 1.00 0.00 0.00
#> 372     1  0.0000      0.969 1.00 0.00 0.00
#> 373     2  0.0000      0.992 0.00 1.00 0.00
#> 374     3  0.1529      0.918 0.04 0.00 0.96
#> 375     2  0.0000      0.992 0.00 1.00 0.00
#> 376     2  0.0000      0.992 0.00 1.00 0.00
#> 377     2  0.0000      0.992 0.00 1.00 0.00
#> 378     1  0.0000      0.969 1.00 0.00 0.00
#> 379     2  0.0000      0.992 0.00 1.00 0.00
#> 380     2  0.0000      0.992 0.00 1.00 0.00
#> 381     1  0.0000      0.969 1.00 0.00 0.00
#> 382     1  0.0000      0.969 1.00 0.00 0.00
#> 383     2  0.0000      0.992 0.00 1.00 0.00
#> 384     2  0.0000      0.992 0.00 1.00 0.00
#> 385     2  0.0000      0.992 0.00 1.00 0.00
#> 386     2  0.0000      0.992 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 2       4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 3       1  0.0707     0.9133 0.98 0.00 0.02 0.00
#> 4       4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 5       1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 6       4  0.4753     0.7205 0.18 0.02 0.02 0.78
#> 7       4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 8       4  0.4284     0.6975 0.20 0.00 0.02 0.78
#> 9       1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 10      4  0.4284     0.6975 0.20 0.00 0.02 0.78
#> 11      4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 12      4  0.4790     0.6069 0.00 0.38 0.00 0.62
#> 13      4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 14      4  0.5006     0.7408 0.16 0.04 0.02 0.78
#> 15      4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 16      4  0.5271     0.4839 0.34 0.00 0.02 0.64
#> 17      4  0.4284     0.6975 0.20 0.00 0.02 0.78
#> 18      4  0.4284     0.6975 0.20 0.00 0.02 0.78
#> 19      4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 20      4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 21      4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 22      4  0.4284     0.6975 0.20 0.00 0.02 0.78
#> 23      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 24      4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 25      4  0.4284     0.6975 0.20 0.00 0.02 0.78
#> 26      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 27      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 28      2  0.1637     0.9061 0.00 0.94 0.00 0.06
#> 29      4  0.4332     0.8049 0.00 0.16 0.04 0.80
#> 30      2  0.2647     0.8280 0.00 0.88 0.00 0.12
#> 31      1  0.1211     0.8971 0.96 0.00 0.04 0.00
#> 32      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 33      4  0.5677     0.7390 0.00 0.14 0.14 0.72
#> 34      3  0.4134     0.6838 0.26 0.00 0.74 0.00
#> 35      3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 36      3  0.1637     0.8439 0.06 0.00 0.94 0.00
#> 37      2  0.4522     0.3937 0.00 0.68 0.00 0.32
#> 38      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 39      3  0.2345     0.8245 0.10 0.00 0.90 0.00
#> 40      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 41      3  0.1211     0.8517 0.04 0.00 0.96 0.00
#> 42      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 43      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 44      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 45      1  0.0707     0.9133 0.98 0.00 0.02 0.00
#> 46      1  0.0707     0.9133 0.98 0.00 0.02 0.00
#> 47      1  0.0707     0.9133 0.98 0.00 0.02 0.00
#> 48      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 49      1  0.0707     0.9133 0.98 0.00 0.02 0.00
#> 50      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 51      3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 52      1  0.5606    -0.0683 0.50 0.00 0.02 0.48
#> 53      1  0.0707     0.9133 0.98 0.00 0.02 0.00
#> 54      3  0.3400     0.7631 0.18 0.00 0.82 0.00
#> 55      3  0.3610     0.7477 0.20 0.00 0.80 0.00
#> 56      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 57      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 58      3  0.5173     0.3652 0.00 0.32 0.66 0.02
#> 59      2  0.3335     0.8029 0.00 0.86 0.12 0.02
#> 60      3  0.5902     0.5437 0.00 0.14 0.70 0.16
#> 61      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 62      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 63      3  0.1211     0.8445 0.00 0.00 0.96 0.04
#> 64      3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 65      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 66      1  0.1637     0.8776 0.94 0.00 0.06 0.00
#> 67      3  0.7828     0.0815 0.06 0.08 0.50 0.36
#> 68      2  0.0707     0.9483 0.00 0.98 0.00 0.02
#> 69      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 70      2  0.6286     0.4879 0.14 0.66 0.00 0.20
#> 71      3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 72      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 73      3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 74      4  0.4894     0.7437 0.00 0.10 0.12 0.78
#> 75      3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 76      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 77      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 78      3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 79      1  0.1913     0.8859 0.94 0.00 0.02 0.04
#> 80      3  0.3975     0.7038 0.24 0.00 0.76 0.00
#> 81      3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 82      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 83      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 84      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 85      3  0.2647     0.8116 0.12 0.00 0.88 0.00
#> 86      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 87      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 88      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 89      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 90      1  0.6649     0.2270 0.56 0.00 0.34 0.10
#> 91      3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 92      3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 93      3  0.3400     0.7631 0.18 0.00 0.82 0.00
#> 94      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 95      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 96      2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 97      1  0.0707     0.9133 0.98 0.00 0.02 0.00
#> 98      3  0.2345     0.8245 0.10 0.00 0.90 0.00
#> 99      3  0.2647     0.8116 0.12 0.00 0.88 0.00
#> 100     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 101     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 102     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 103     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 104     3  0.4994     0.1356 0.00 0.00 0.52 0.48
#> 105     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 106     2  0.1211     0.9265 0.00 0.96 0.04 0.00
#> 107     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 108     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 109     1  0.0707     0.9133 0.98 0.00 0.02 0.00
#> 110     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 111     3  0.0707     0.8572 0.02 0.00 0.98 0.00
#> 112     3  0.4855     0.4596 0.40 0.00 0.60 0.00
#> 113     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 114     2  0.0707     0.9485 0.00 0.98 0.00 0.02
#> 115     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 116     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 117     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 118     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 119     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 120     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 121     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 122     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 123     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 124     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 125     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 126     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 127     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 128     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 129     2  0.0707     0.9487 0.00 0.98 0.00 0.02
#> 130     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 131     3  0.4624     0.5845 0.34 0.00 0.66 0.00
#> 132     3  0.4406     0.6365 0.30 0.00 0.70 0.00
#> 133     3  0.2011     0.8351 0.08 0.00 0.92 0.00
#> 134     3  0.2647     0.8116 0.12 0.00 0.88 0.00
#> 135     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 136     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 137     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 138     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 139     3  0.5606     0.0176 0.00 0.48 0.50 0.02
#> 140     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 141     3  0.3400     0.7649 0.18 0.00 0.82 0.00
#> 142     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 143     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 144     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 145     3  0.4713     0.5467 0.36 0.00 0.64 0.00
#> 146     3  0.1211     0.8515 0.04 0.00 0.96 0.00
#> 147     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 148     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 149     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 150     2  0.1411     0.9296 0.00 0.96 0.02 0.02
#> 151     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 152     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 153     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 154     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 155     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 156     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 157     3  0.1637     0.8439 0.06 0.00 0.94 0.00
#> 158     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 159     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 160     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 161     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 162     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 163     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 164     2  0.2706     0.8581 0.00 0.90 0.08 0.02
#> 165     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 166     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 167     1  0.3400     0.7228 0.82 0.00 0.18 0.00
#> 168     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 169     3  0.2706     0.7873 0.00 0.08 0.90 0.02
#> 170     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 171     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 172     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 173     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 174     3  0.4277     0.6598 0.28 0.00 0.72 0.00
#> 175     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 176     2  0.0707     0.9487 0.00 0.98 0.00 0.02
#> 177     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 178     4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 179     2  0.4642     0.6008 0.00 0.74 0.24 0.02
#> 180     2  0.0707     0.9487 0.00 0.98 0.00 0.02
#> 181     3  0.3172     0.7825 0.16 0.00 0.84 0.00
#> 182     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 183     3  0.3606     0.6983 0.00 0.14 0.84 0.02
#> 184     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 185     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 186     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 187     2  0.0707     0.9487 0.00 0.98 0.00 0.02
#> 188     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 189     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 190     3  0.6649     0.3922 0.34 0.00 0.56 0.10
#> 191     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 192     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 193     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 194     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 195     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 196     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 197     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 198     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 199     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 200     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 201     3  0.2345     0.8245 0.10 0.00 0.90 0.00
#> 202     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 203     3  0.3172     0.7811 0.16 0.00 0.84 0.00
#> 204     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 205     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 206     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 207     2  0.1637     0.9060 0.00 0.94 0.00 0.06
#> 208     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 209     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 210     2  0.5883     0.4054 0.00 0.64 0.30 0.06
#> 211     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 212     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 213     2  0.0707     0.9498 0.00 0.98 0.00 0.02
#> 214     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 215     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 216     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 217     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 218     3  0.4406     0.6367 0.30 0.00 0.70 0.00
#> 219     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 220     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 221     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 222     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 223     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 224     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 225     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 226     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 227     4  0.4284     0.8309 0.02 0.20 0.00 0.78
#> 228     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 229     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 230     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 231     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 232     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 233     3  0.4790     0.3692 0.00 0.00 0.62 0.38
#> 234     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 235     4  0.5570     0.4520 0.00 0.44 0.02 0.54
#> 236     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 237     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 238     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 239     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 240     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 241     4  0.3801     0.8366 0.00 0.22 0.00 0.78
#> 242     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 243     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 244     3  0.2345     0.8255 0.10 0.00 0.90 0.00
#> 245     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 246     4  0.4134     0.8023 0.00 0.26 0.00 0.74
#> 247     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 248     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 249     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 250     3  0.1411     0.8467 0.00 0.02 0.96 0.02
#> 251     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 252     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 253     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 254     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 255     3  0.3172     0.7416 0.00 0.00 0.84 0.16
#> 256     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 257     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 258     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 259     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 260     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 261     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 262     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 263     4  0.4284     0.6975 0.20 0.00 0.02 0.78
#> 264     3  0.4553     0.6129 0.00 0.18 0.78 0.04
#> 265     3  0.2647     0.8116 0.12 0.00 0.88 0.00
#> 266     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 267     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 268     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 269     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 270     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 271     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 272     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 273     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 274     1  0.4713     0.3244 0.64 0.00 0.36 0.00
#> 275     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 276     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 277     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 278     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 279     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 280     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 281     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 282     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 283     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 284     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 285     3  0.5957     0.2993 0.42 0.00 0.54 0.04
#> 286     3  0.2011     0.8347 0.08 0.00 0.92 0.00
#> 287     3  0.3801     0.6671 0.00 0.00 0.78 0.22
#> 288     3  0.0000     0.8610 0.00 0.00 1.00 0.00
#> 289     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 290     3  0.4624     0.5849 0.34 0.00 0.66 0.00
#> 291     3  0.4522     0.6114 0.32 0.00 0.68 0.00
#> 292     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 293     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 294     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 295     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 296     2  0.3400     0.7717 0.00 0.82 0.00 0.18
#> 297     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 298     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 299     2  0.3400     0.7717 0.00 0.82 0.00 0.18
#> 300     3  0.0707     0.8598 0.00 0.00 0.98 0.02
#> 301     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 302     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 303     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 304     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 305     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 306     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 307     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 308     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 309     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 310     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 311     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 312     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 313     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 314     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 315     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 316     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 317     1  0.2011     0.8934 0.92 0.00 0.00 0.08
#> 318     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 319     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 320     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 321     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 322     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 323     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 324     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 325     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 326     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 327     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 328     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 329     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 330     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 331     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 332     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 333     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 334     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 335     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 336     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 337     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 338     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 339     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 340     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 341     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 342     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 343     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 344     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 345     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 346     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 347     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 348     2  0.0707     0.9500 0.00 0.98 0.00 0.02
#> 349     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 350     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 351     2  0.3610     0.7441 0.00 0.80 0.00 0.20
#> 352     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 353     2  0.3172     0.7975 0.00 0.84 0.00 0.16
#> 354     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 355     2  0.3610     0.7441 0.00 0.80 0.00 0.20
#> 356     2  0.4284     0.7147 0.02 0.78 0.00 0.20
#> 357     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 358     2  0.3172     0.7975 0.00 0.84 0.00 0.16
#> 359     2  0.3610     0.7441 0.00 0.80 0.00 0.20
#> 360     2  0.3400     0.7717 0.00 0.82 0.00 0.18
#> 361     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 362     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 363     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 364     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 365     2  0.2011     0.8907 0.00 0.92 0.00 0.08
#> 366     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 367     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 368     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 369     1  0.0707     0.9237 0.98 0.00 0.00 0.02
#> 370     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 371     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 372     1  0.1211     0.9176 0.96 0.00 0.00 0.04
#> 373     2  0.2011     0.8903 0.00 0.92 0.00 0.08
#> 374     3  0.3801     0.7259 0.22 0.00 0.78 0.00
#> 375     2  0.2921     0.8222 0.00 0.86 0.00 0.14
#> 376     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 377     2  0.3172     0.7975 0.00 0.84 0.00 0.16
#> 378     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 379     2  0.0000     0.9666 0.00 1.00 0.00 0.00
#> 380     4  0.4134     0.8020 0.00 0.26 0.00 0.74
#> 381     1  0.0000     0.9254 1.00 0.00 0.00 0.00
#> 382     1  0.3610     0.8054 0.80 0.00 0.00 0.20
#> 383     2  0.1211     0.9338 0.00 0.96 0.00 0.04
#> 384     2  0.3400     0.7717 0.00 0.82 0.00 0.18
#> 385     2  0.3172     0.7975 0.00 0.84 0.00 0.16
#> 386     2  0.0000     0.9666 0.00 1.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-021-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-021-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-021-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-021-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-021-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-021-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-021-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-021-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-021-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-021-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-021-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-021-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-021-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-021-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-021-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-021-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-021-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      379              2.59e-01 2
#> ATC:skmeans      379              5.32e-02 3
#> ATC:skmeans      370              2.65e-30 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node0211

Parent node: Node021. Child nodes: Node01131-leaf , Node01132-leaf , Node01133-leaf , Node01211-leaf , Node01212-leaf , Node01221-leaf , Node01222-leaf , Node01223-leaf , Node01231-leaf , Node01232-leaf , Node01233-leaf , Node01234-leaf , Node02111 , Node02112 , Node02113-leaf , Node02121-leaf , Node02122-leaf , Node02123-leaf , Node02221-leaf , Node02222-leaf , Node03111-leaf , Node03112-leaf , Node03121-leaf , Node03122 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0211"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 9465 rows and 181 columns.
#>   Top rows (946) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0211-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0211-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.988       0.995          0.490 0.510   0.510
#> 3 3 1.000           0.975       0.990          0.346 0.769   0.574
#> 4 4 0.793           0.800       0.871          0.110 0.915   0.757

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.996 0.00 1.00
#> 2       1   0.000      0.994 1.00 0.00
#> 3       2   0.000      0.996 0.00 1.00
#> 4       2   0.000      0.996 0.00 1.00
#> 5       2   0.000      0.996 0.00 1.00
#> 6       2   0.000      0.996 0.00 1.00
#> 7       2   0.000      0.996 0.00 1.00
#> 8       2   0.000      0.996 0.00 1.00
#> 9       2   0.000      0.996 0.00 1.00
#> 10      2   0.000      0.996 0.00 1.00
#> 11      2   0.000      0.996 0.00 1.00
#> 12      2   0.000      0.996 0.00 1.00
#> 13      2   0.000      0.996 0.00 1.00
#> 14      2   0.000      0.996 0.00 1.00
#> 15      2   0.000      0.996 0.00 1.00
#> 16      2   0.000      0.996 0.00 1.00
#> 17      2   0.000      0.996 0.00 1.00
#> 18      2   0.000      0.996 0.00 1.00
#> 19      2   0.000      0.996 0.00 1.00
#> 20      2   0.000      0.996 0.00 1.00
#> 21      2   0.000      0.996 0.00 1.00
#> 22      2   0.000      0.996 0.00 1.00
#> 23      2   0.000      0.996 0.00 1.00
#> 24      2   0.000      0.996 0.00 1.00
#> 25      2   0.000      0.996 0.00 1.00
#> 26      2   0.000      0.996 0.00 1.00
#> 27      2   0.000      0.996 0.00 1.00
#> 28      2   0.000      0.996 0.00 1.00
#> 29      2   0.000      0.996 0.00 1.00
#> 30      2   0.000      0.996 0.00 1.00
#> 31      2   0.000      0.996 0.00 1.00
#> 32      2   0.000      0.996 0.00 1.00
#> 33      2   0.000      0.996 0.00 1.00
#> 34      2   0.000      0.996 0.00 1.00
#> 35      2   0.000      0.996 0.00 1.00
#> 36      2   0.000      0.996 0.00 1.00
#> 37      2   0.000      0.996 0.00 1.00
#> 38      2   0.000      0.996 0.00 1.00
#> 39      2   0.000      0.996 0.00 1.00
#> 40      2   0.000      0.996 0.00 1.00
#> 41      2   0.000      0.996 0.00 1.00
#> 42      2   0.000      0.996 0.00 1.00
#> 43      2   0.000      0.996 0.00 1.00
#> 44      2   0.000      0.996 0.00 1.00
#> 45      2   0.000      0.996 0.00 1.00
#> 46      2   0.000      0.996 0.00 1.00
#> 47      2   0.000      0.996 0.00 1.00
#> 48      2   0.000      0.996 0.00 1.00
#> 49      2   0.000      0.996 0.00 1.00
#> 50      2   0.000      0.996 0.00 1.00
#> 51      2   0.000      0.996 0.00 1.00
#> 52      2   0.000      0.996 0.00 1.00
#> 53      2   0.000      0.996 0.00 1.00
#> 54      2   0.000      0.996 0.00 1.00
#> 55      2   0.000      0.996 0.00 1.00
#> 56      2   0.000      0.996 0.00 1.00
#> 57      2   0.000      0.996 0.00 1.00
#> 58      2   0.000      0.996 0.00 1.00
#> 59      2   0.000      0.996 0.00 1.00
#> 60      2   0.000      0.996 0.00 1.00
#> 61      2   0.000      0.996 0.00 1.00
#> 62      2   0.000      0.996 0.00 1.00
#> 63      2   0.000      0.996 0.00 1.00
#> 64      2   0.000      0.996 0.00 1.00
#> 65      2   0.000      0.996 0.00 1.00
#> 66      2   0.000      0.996 0.00 1.00
#> 67      2   0.000      0.996 0.00 1.00
#> 68      2   0.000      0.996 0.00 1.00
#> 69      1   0.000      0.994 1.00 0.00
#> 70      2   0.000      0.996 0.00 1.00
#> 71      2   0.000      0.996 0.00 1.00
#> 72      2   0.000      0.996 0.00 1.00
#> 73      2   0.000      0.996 0.00 1.00
#> 74      2   0.000      0.996 0.00 1.00
#> 75      2   0.000      0.996 0.00 1.00
#> 76      2   0.000      0.996 0.00 1.00
#> 77      1   0.943      0.437 0.64 0.36
#> 78      2   0.000      0.996 0.00 1.00
#> 79      2   0.000      0.996 0.00 1.00
#> 80      2   0.000      0.996 0.00 1.00
#> 81      2   0.000      0.996 0.00 1.00
#> 82      1   0.000      0.994 1.00 0.00
#> 83      1   0.000      0.994 1.00 0.00
#> 84      2   0.000      0.996 0.00 1.00
#> 85      2   0.000      0.996 0.00 1.00
#> 86      2   0.000      0.996 0.00 1.00
#> 87      2   0.000      0.996 0.00 1.00
#> 88      2   0.000      0.996 0.00 1.00
#> 89      2   0.000      0.996 0.00 1.00
#> 90      2   0.000      0.996 0.00 1.00
#> 91      2   0.000      0.996 0.00 1.00
#> 92      2   0.000      0.996 0.00 1.00
#> 93      2   0.000      0.996 0.00 1.00
#> 94      2   0.000      0.996 0.00 1.00
#> 95      2   0.000      0.996 0.00 1.00
#> 96      2   0.000      0.996 0.00 1.00
#> 97      1   0.000      0.994 1.00 0.00
#> 98      1   0.000      0.994 1.00 0.00
#> 99      2   0.000      0.996 0.00 1.00
#> 100     1   0.000      0.994 1.00 0.00
#> 101     1   0.000      0.994 1.00 0.00
#> 102     2   0.000      0.996 0.00 1.00
#> 103     1   0.000      0.994 1.00 0.00
#> 104     1   0.000      0.994 1.00 0.00
#> 105     1   0.000      0.994 1.00 0.00
#> 106     1   0.000      0.994 1.00 0.00
#> 107     1   0.000      0.994 1.00 0.00
#> 108     2   0.000      0.996 0.00 1.00
#> 109     2   0.000      0.996 0.00 1.00
#> 110     2   0.000      0.996 0.00 1.00
#> 111     2   0.000      0.996 0.00 1.00
#> 112     2   0.000      0.996 0.00 1.00
#> 113     2   0.000      0.996 0.00 1.00
#> 114     1   0.529      0.861 0.88 0.12
#> 115     2   0.000      0.996 0.00 1.00
#> 116     2   0.000      0.996 0.00 1.00
#> 117     1   0.000      0.994 1.00 0.00
#> 118     1   0.000      0.994 1.00 0.00
#> 119     1   0.000      0.994 1.00 0.00
#> 120     1   0.000      0.994 1.00 0.00
#> 121     1   0.000      0.994 1.00 0.00
#> 122     1   0.000      0.994 1.00 0.00
#> 123     1   0.000      0.994 1.00 0.00
#> 124     1   0.000      0.994 1.00 0.00
#> 125     1   0.000      0.994 1.00 0.00
#> 126     1   0.000      0.994 1.00 0.00
#> 127     1   0.000      0.994 1.00 0.00
#> 128     1   0.000      0.994 1.00 0.00
#> 129     1   0.000      0.994 1.00 0.00
#> 130     1   0.000      0.994 1.00 0.00
#> 131     1   0.000      0.994 1.00 0.00
#> 132     1   0.000      0.994 1.00 0.00
#> 133     1   0.000      0.994 1.00 0.00
#> 134     1   0.000      0.994 1.00 0.00
#> 135     1   0.000      0.994 1.00 0.00
#> 136     1   0.000      0.994 1.00 0.00
#> 137     1   0.000      0.994 1.00 0.00
#> 138     1   0.000      0.994 1.00 0.00
#> 139     1   0.000      0.994 1.00 0.00
#> 140     1   0.000      0.994 1.00 0.00
#> 141     1   0.000      0.994 1.00 0.00
#> 142     1   0.000      0.994 1.00 0.00
#> 143     1   0.000      0.994 1.00 0.00
#> 144     1   0.000      0.994 1.00 0.00
#> 145     1   0.000      0.994 1.00 0.00
#> 146     1   0.000      0.994 1.00 0.00
#> 147     1   0.000      0.994 1.00 0.00
#> 148     1   0.000      0.994 1.00 0.00
#> 149     1   0.000      0.994 1.00 0.00
#> 150     1   0.000      0.994 1.00 0.00
#> 151     1   0.000      0.994 1.00 0.00
#> 152     1   0.000      0.994 1.00 0.00
#> 153     1   0.000      0.994 1.00 0.00
#> 154     1   0.000      0.994 1.00 0.00
#> 155     1   0.000      0.994 1.00 0.00
#> 156     1   0.000      0.994 1.00 0.00
#> 157     1   0.000      0.994 1.00 0.00
#> 158     1   0.000      0.994 1.00 0.00
#> 159     1   0.000      0.994 1.00 0.00
#> 160     1   0.000      0.994 1.00 0.00
#> 161     1   0.000      0.994 1.00 0.00
#> 162     1   0.000      0.994 1.00 0.00
#> 163     1   0.000      0.994 1.00 0.00
#> 164     1   0.000      0.994 1.00 0.00
#> 165     1   0.000      0.994 1.00 0.00
#> 166     1   0.000      0.994 1.00 0.00
#> 167     1   0.000      0.994 1.00 0.00
#> 168     1   0.000      0.994 1.00 0.00
#> 169     1   0.000      0.994 1.00 0.00
#> 170     2   0.000      0.996 0.00 1.00
#> 171     1   0.000      0.994 1.00 0.00
#> 172     2   0.000      0.996 0.00 1.00
#> 173     1   0.000      0.994 1.00 0.00
#> 174     1   0.000      0.994 1.00 0.00
#> 175     2   0.971      0.326 0.40 0.60
#> 176     1   0.000      0.994 1.00 0.00
#> 177     1   0.000      0.994 1.00 0.00
#> 178     2   0.000      0.996 0.00 1.00
#> 179     1   0.000      0.994 1.00 0.00
#> 180     1   0.000      0.994 1.00 0.00
#> 181     1   0.000      0.994 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       3  0.0000     0.9883 0.00 0.00 1.00
#> 2       3  0.0000     0.9883 0.00 0.00 1.00
#> 3       3  0.0000     0.9883 0.00 0.00 1.00
#> 4       3  0.0000     0.9883 0.00 0.00 1.00
#> 5       3  0.0000     0.9883 0.00 0.00 1.00
#> 6       3  0.0000     0.9883 0.00 0.00 1.00
#> 7       3  0.0000     0.9883 0.00 0.00 1.00
#> 8       3  0.0000     0.9883 0.00 0.00 1.00
#> 9       3  0.0000     0.9883 0.00 0.00 1.00
#> 10      3  0.0000     0.9883 0.00 0.00 1.00
#> 11      3  0.0000     0.9883 0.00 0.00 1.00
#> 12      3  0.0000     0.9883 0.00 0.00 1.00
#> 13      3  0.0000     0.9883 0.00 0.00 1.00
#> 14      3  0.0000     0.9883 0.00 0.00 1.00
#> 15      3  0.0000     0.9883 0.00 0.00 1.00
#> 16      3  0.0000     0.9883 0.00 0.00 1.00
#> 17      3  0.0000     0.9883 0.00 0.00 1.00
#> 18      3  0.0000     0.9883 0.00 0.00 1.00
#> 19      3  0.0000     0.9883 0.00 0.00 1.00
#> 20      3  0.0000     0.9883 0.00 0.00 1.00
#> 21      3  0.0000     0.9883 0.00 0.00 1.00
#> 22      3  0.0000     0.9883 0.00 0.00 1.00
#> 23      3  0.0000     0.9883 0.00 0.00 1.00
#> 24      3  0.0000     0.9883 0.00 0.00 1.00
#> 25      3  0.0000     0.9883 0.00 0.00 1.00
#> 26      3  0.0000     0.9883 0.00 0.00 1.00
#> 27      2  0.0000     0.9965 0.00 1.00 0.00
#> 28      2  0.0000     0.9965 0.00 1.00 0.00
#> 29      3  0.0000     0.9883 0.00 0.00 1.00
#> 30      2  0.0000     0.9965 0.00 1.00 0.00
#> 31      2  0.0000     0.9965 0.00 1.00 0.00
#> 32      2  0.0000     0.9965 0.00 1.00 0.00
#> 33      2  0.0000     0.9965 0.00 1.00 0.00
#> 34      3  0.0000     0.9883 0.00 0.00 1.00
#> 35      2  0.0000     0.9965 0.00 1.00 0.00
#> 36      2  0.0000     0.9965 0.00 1.00 0.00
#> 37      2  0.0000     0.9965 0.00 1.00 0.00
#> 38      3  0.0000     0.9883 0.00 0.00 1.00
#> 39      2  0.0000     0.9965 0.00 1.00 0.00
#> 40      2  0.0000     0.9965 0.00 1.00 0.00
#> 41      3  0.0000     0.9883 0.00 0.00 1.00
#> 42      3  0.0892     0.9686 0.00 0.02 0.98
#> 43      3  0.0000     0.9883 0.00 0.00 1.00
#> 44      2  0.0000     0.9965 0.00 1.00 0.00
#> 45      2  0.0000     0.9965 0.00 1.00 0.00
#> 46      2  0.0000     0.9965 0.00 1.00 0.00
#> 47      2  0.0000     0.9965 0.00 1.00 0.00
#> 48      3  0.0000     0.9883 0.00 0.00 1.00
#> 49      2  0.0000     0.9965 0.00 1.00 0.00
#> 50      2  0.0000     0.9965 0.00 1.00 0.00
#> 51      2  0.0000     0.9965 0.00 1.00 0.00
#> 52      2  0.0000     0.9965 0.00 1.00 0.00
#> 53      2  0.0000     0.9965 0.00 1.00 0.00
#> 54      2  0.0000     0.9965 0.00 1.00 0.00
#> 55      2  0.0000     0.9965 0.00 1.00 0.00
#> 56      2  0.0000     0.9965 0.00 1.00 0.00
#> 57      2  0.0000     0.9965 0.00 1.00 0.00
#> 58      2  0.0000     0.9965 0.00 1.00 0.00
#> 59      2  0.0000     0.9965 0.00 1.00 0.00
#> 60      2  0.0000     0.9965 0.00 1.00 0.00
#> 61      2  0.0000     0.9965 0.00 1.00 0.00
#> 62      2  0.0000     0.9965 0.00 1.00 0.00
#> 63      2  0.0000     0.9965 0.00 1.00 0.00
#> 64      2  0.0000     0.9965 0.00 1.00 0.00
#> 65      2  0.0000     0.9965 0.00 1.00 0.00
#> 66      2  0.0000     0.9965 0.00 1.00 0.00
#> 67      2  0.0000     0.9965 0.00 1.00 0.00
#> 68      2  0.0000     0.9965 0.00 1.00 0.00
#> 69      1  0.0000     0.9844 1.00 0.00 0.00
#> 70      3  0.0000     0.9883 0.00 0.00 1.00
#> 71      2  0.0000     0.9965 0.00 1.00 0.00
#> 72      2  0.0000     0.9965 0.00 1.00 0.00
#> 73      2  0.0000     0.9965 0.00 1.00 0.00
#> 74      2  0.0000     0.9965 0.00 1.00 0.00
#> 75      2  0.0000     0.9965 0.00 1.00 0.00
#> 76      2  0.0000     0.9965 0.00 1.00 0.00
#> 77      2  0.0000     0.9965 0.00 1.00 0.00
#> 78      2  0.0000     0.9965 0.00 1.00 0.00
#> 79      2  0.0000     0.9965 0.00 1.00 0.00
#> 80      2  0.0000     0.9965 0.00 1.00 0.00
#> 81      3  0.0000     0.9883 0.00 0.00 1.00
#> 82      1  0.0000     0.9844 1.00 0.00 0.00
#> 83      1  0.0000     0.9844 1.00 0.00 0.00
#> 84      2  0.0000     0.9965 0.00 1.00 0.00
#> 85      2  0.0000     0.9965 0.00 1.00 0.00
#> 86      2  0.0000     0.9965 0.00 1.00 0.00
#> 87      2  0.0000     0.9965 0.00 1.00 0.00
#> 88      2  0.0000     0.9965 0.00 1.00 0.00
#> 89      2  0.0000     0.9965 0.00 1.00 0.00
#> 90      2  0.0000     0.9965 0.00 1.00 0.00
#> 91      2  0.0000     0.9965 0.00 1.00 0.00
#> 92      2  0.0000     0.9965 0.00 1.00 0.00
#> 93      3  0.0000     0.9883 0.00 0.00 1.00
#> 94      2  0.0000     0.9965 0.00 1.00 0.00
#> 95      2  0.0000     0.9965 0.00 1.00 0.00
#> 96      2  0.0000     0.9965 0.00 1.00 0.00
#> 97      1  0.0000     0.9844 1.00 0.00 0.00
#> 98      3  0.0000     0.9883 0.00 0.00 1.00
#> 99      3  0.0000     0.9883 0.00 0.00 1.00
#> 100     1  0.0000     0.9844 1.00 0.00 0.00
#> 101     3  0.0000     0.9883 0.00 0.00 1.00
#> 102     3  0.0000     0.9883 0.00 0.00 1.00
#> 103     1  0.0000     0.9844 1.00 0.00 0.00
#> 104     3  0.1529     0.9483 0.04 0.00 0.96
#> 105     1  0.0000     0.9844 1.00 0.00 0.00
#> 106     1  0.6302     0.0762 0.52 0.00 0.48
#> 107     3  0.0000     0.9883 0.00 0.00 1.00
#> 108     2  0.0000     0.9965 0.00 1.00 0.00
#> 109     2  0.0000     0.9965 0.00 1.00 0.00
#> 110     2  0.0000     0.9965 0.00 1.00 0.00
#> 111     2  0.0000     0.9965 0.00 1.00 0.00
#> 112     2  0.0000     0.9965 0.00 1.00 0.00
#> 113     2  0.0000     0.9965 0.00 1.00 0.00
#> 114     2  0.0000     0.9965 0.00 1.00 0.00
#> 115     2  0.0000     0.9965 0.00 1.00 0.00
#> 116     2  0.0000     0.9965 0.00 1.00 0.00
#> 117     1  0.0000     0.9844 1.00 0.00 0.00
#> 118     1  0.0000     0.9844 1.00 0.00 0.00
#> 119     1  0.0000     0.9844 1.00 0.00 0.00
#> 120     1  0.3686     0.8297 0.86 0.00 0.14
#> 121     1  0.0000     0.9844 1.00 0.00 0.00
#> 122     1  0.0000     0.9844 1.00 0.00 0.00
#> 123     1  0.0000     0.9844 1.00 0.00 0.00
#> 124     1  0.0000     0.9844 1.00 0.00 0.00
#> 125     3  0.0000     0.9883 0.00 0.00 1.00
#> 126     1  0.0000     0.9844 1.00 0.00 0.00
#> 127     1  0.0000     0.9844 1.00 0.00 0.00
#> 128     1  0.0000     0.9844 1.00 0.00 0.00
#> 129     1  0.0000     0.9844 1.00 0.00 0.00
#> 130     1  0.0000     0.9844 1.00 0.00 0.00
#> 131     1  0.0000     0.9844 1.00 0.00 0.00
#> 132     1  0.0000     0.9844 1.00 0.00 0.00
#> 133     1  0.0000     0.9844 1.00 0.00 0.00
#> 134     1  0.0000     0.9844 1.00 0.00 0.00
#> 135     1  0.0000     0.9844 1.00 0.00 0.00
#> 136     1  0.0000     0.9844 1.00 0.00 0.00
#> 137     1  0.0000     0.9844 1.00 0.00 0.00
#> 138     1  0.0000     0.9844 1.00 0.00 0.00
#> 139     1  0.0000     0.9844 1.00 0.00 0.00
#> 140     1  0.0000     0.9844 1.00 0.00 0.00
#> 141     1  0.0000     0.9844 1.00 0.00 0.00
#> 142     1  0.0000     0.9844 1.00 0.00 0.00
#> 143     1  0.0000     0.9844 1.00 0.00 0.00
#> 144     1  0.0000     0.9844 1.00 0.00 0.00
#> 145     1  0.0000     0.9844 1.00 0.00 0.00
#> 146     1  0.5706     0.5289 0.68 0.00 0.32
#> 147     1  0.0000     0.9844 1.00 0.00 0.00
#> 148     1  0.0000     0.9844 1.00 0.00 0.00
#> 149     3  0.0000     0.9883 0.00 0.00 1.00
#> 150     1  0.0000     0.9844 1.00 0.00 0.00
#> 151     3  0.6244     0.1906 0.44 0.00 0.56
#> 152     1  0.0000     0.9844 1.00 0.00 0.00
#> 153     1  0.0000     0.9844 1.00 0.00 0.00
#> 154     1  0.0000     0.9844 1.00 0.00 0.00
#> 155     1  0.0000     0.9844 1.00 0.00 0.00
#> 156     1  0.0000     0.9844 1.00 0.00 0.00
#> 157     1  0.0000     0.9844 1.00 0.00 0.00
#> 158     1  0.0000     0.9844 1.00 0.00 0.00
#> 159     1  0.0000     0.9844 1.00 0.00 0.00
#> 160     1  0.0000     0.9844 1.00 0.00 0.00
#> 161     1  0.0000     0.9844 1.00 0.00 0.00
#> 162     1  0.0000     0.9844 1.00 0.00 0.00
#> 163     1  0.0000     0.9844 1.00 0.00 0.00
#> 164     1  0.0000     0.9844 1.00 0.00 0.00
#> 165     1  0.0000     0.9844 1.00 0.00 0.00
#> 166     1  0.0000     0.9844 1.00 0.00 0.00
#> 167     1  0.0000     0.9844 1.00 0.00 0.00
#> 168     1  0.0000     0.9844 1.00 0.00 0.00
#> 169     2  0.0892     0.9753 0.02 0.98 0.00
#> 170     2  0.0000     0.9965 0.00 1.00 0.00
#> 171     1  0.0000     0.9844 1.00 0.00 0.00
#> 172     2  0.0000     0.9965 0.00 1.00 0.00
#> 173     1  0.0000     0.9844 1.00 0.00 0.00
#> 174     1  0.0000     0.9844 1.00 0.00 0.00
#> 175     2  0.6500     0.7226 0.10 0.76 0.14
#> 176     1  0.0000     0.9844 1.00 0.00 0.00
#> 177     1  0.0000     0.9844 1.00 0.00 0.00
#> 178     2  0.0000     0.9965 0.00 1.00 0.00
#> 179     1  0.0000     0.9844 1.00 0.00 0.00
#> 180     1  0.1529     0.9462 0.96 0.00 0.04
#> 181     1  0.0000     0.9844 1.00 0.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 2       3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 3       3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 4       3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 5       3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 6       3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 7       3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 8       3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 9       3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 10      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 11      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 12      3  0.2345      0.830 0.00 0.10 0.90 0.00
#> 13      3  0.4790      0.540 0.00 0.00 0.62 0.38
#> 14      3  0.2647      0.807 0.00 0.12 0.88 0.00
#> 15      3  0.1637      0.868 0.00 0.06 0.94 0.00
#> 16      3  0.4713      0.563 0.00 0.00 0.64 0.36
#> 17      3  0.2345      0.829 0.00 0.10 0.90 0.00
#> 18      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 19      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 20      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 21      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 22      3  0.4790      0.540 0.00 0.00 0.62 0.38
#> 23      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 24      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 25      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 26      3  0.1211      0.891 0.00 0.00 0.96 0.04
#> 27      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 28      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 29      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 30      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 31      2  0.4624      0.740 0.00 0.66 0.00 0.34
#> 32      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 33      2  0.2345      0.803 0.00 0.90 0.00 0.10
#> 34      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 35      2  0.1637      0.773 0.00 0.94 0.00 0.06
#> 36      2  0.4713      0.731 0.00 0.64 0.00 0.36
#> 37      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 38      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 39      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 40      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 41      3  0.4790      0.540 0.00 0.00 0.62 0.38
#> 42      4  0.6656      0.562 0.00 0.16 0.22 0.62
#> 43      3  0.2411      0.869 0.00 0.04 0.92 0.04
#> 44      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 45      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 46      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 47      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 48      4  0.0707      0.495 0.00 0.00 0.02 0.98
#> 49      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 50      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 51      2  0.4522      0.328 0.00 0.68 0.00 0.32
#> 52      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 53      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 54      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 55      2  0.4713      0.731 0.00 0.64 0.00 0.36
#> 56      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 57      2  0.1637      0.812 0.00 0.94 0.00 0.06
#> 58      2  0.4624      0.741 0.00 0.66 0.00 0.34
#> 59      2  0.4522      0.747 0.00 0.68 0.00 0.32
#> 60      2  0.4624      0.740 0.00 0.66 0.00 0.34
#> 61      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 62      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 63      2  0.4624      0.741 0.00 0.66 0.00 0.34
#> 64      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 65      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 66      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 67      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 68      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 69      1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 70      3  0.4790      0.540 0.00 0.00 0.62 0.38
#> 71      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 72      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 73      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 74      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 75      2  0.4522      0.747 0.00 0.68 0.00 0.32
#> 76      2  0.4624      0.740 0.00 0.66 0.00 0.34
#> 77      2  0.5271      0.730 0.02 0.64 0.00 0.34
#> 78      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 79      2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 80      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 81      3  0.2647      0.807 0.00 0.12 0.88 0.00
#> 82      1  0.0707      0.940 0.98 0.02 0.00 0.00
#> 83      1  0.1211      0.915 0.96 0.00 0.00 0.04
#> 84      2  0.2345      0.732 0.00 0.90 0.00 0.10
#> 85      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 86      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 87      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 88      2  0.1211      0.816 0.00 0.96 0.00 0.04
#> 89      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 90      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 91      2  0.4713      0.731 0.00 0.64 0.00 0.36
#> 92      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 93      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 94      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 95      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 96      2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 97      1  0.4790      0.347 0.62 0.00 0.00 0.38
#> 98      4  0.4790      0.449 0.00 0.00 0.38 0.62
#> 99      3  0.0000      0.913 0.00 0.00 1.00 0.00
#> 100     4  0.4790      0.585 0.38 0.00 0.00 0.62
#> 101     3  0.0707      0.903 0.00 0.00 0.98 0.02
#> 102     3  0.0707      0.903 0.00 0.00 0.98 0.02
#> 103     4  0.4907      0.535 0.42 0.00 0.00 0.58
#> 104     4  0.4790      0.449 0.00 0.00 0.38 0.62
#> 105     1  0.1637      0.892 0.94 0.00 0.00 0.06
#> 106     4  0.6513      0.675 0.18 0.00 0.18 0.64
#> 107     4  0.0707      0.495 0.00 0.00 0.02 0.98
#> 108     2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 109     2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 110     2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 111     2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 112     2  0.4907      0.688 0.00 0.58 0.00 0.42
#> 113     2  0.2011      0.754 0.00 0.92 0.00 0.08
#> 114     2  0.7139      0.568 0.14 0.50 0.00 0.36
#> 115     2  0.4713      0.731 0.00 0.64 0.00 0.36
#> 116     2  0.4713      0.731 0.00 0.64 0.00 0.36
#> 117     4  0.5355      0.624 0.36 0.00 0.02 0.62
#> 118     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 119     4  0.4790      0.607 0.38 0.00 0.00 0.62
#> 120     4  0.6370      0.604 0.10 0.00 0.28 0.62
#> 121     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 122     4  0.4790      0.607 0.38 0.00 0.00 0.62
#> 123     4  0.4790      0.607 0.38 0.00 0.00 0.62
#> 124     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 125     3  0.0707      0.903 0.00 0.00 0.98 0.02
#> 126     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 127     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 128     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 129     1  0.4977     -0.238 0.54 0.00 0.00 0.46
#> 130     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 131     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 132     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 133     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 134     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 135     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 136     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 137     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 138     4  0.4790      0.607 0.38 0.00 0.00 0.62
#> 139     4  0.5986      0.650 0.32 0.00 0.06 0.62
#> 140     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 141     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 142     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 143     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 144     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 145     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 146     4  0.6201      0.580 0.08 0.00 0.30 0.62
#> 147     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 148     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 149     4  0.4948      0.331 0.00 0.00 0.44 0.56
#> 150     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 151     4  0.6609      0.607 0.08 0.02 0.26 0.64
#> 152     4  0.4790      0.607 0.38 0.00 0.00 0.62
#> 153     1  0.0707      0.942 0.98 0.00 0.00 0.02
#> 154     4  0.4790      0.607 0.38 0.00 0.00 0.62
#> 155     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 156     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 157     4  0.6594      0.663 0.24 0.14 0.00 0.62
#> 158     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 159     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 160     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 161     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 162     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 163     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 164     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 165     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 166     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 167     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 168     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 169     4  0.4855      0.451 0.00 0.40 0.00 0.60
#> 170     4  0.4790      0.483 0.00 0.38 0.00 0.62
#> 171     4  0.6686      0.662 0.18 0.20 0.00 0.62
#> 172     2  0.0000      0.822 0.00 1.00 0.00 0.00
#> 173     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 174     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 175     4  0.4855      0.452 0.00 0.40 0.00 0.60
#> 176     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 177     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 178     2  0.4790      0.720 0.00 0.62 0.00 0.38
#> 179     1  0.0000      0.966 1.00 0.00 0.00 0.00
#> 180     1  0.5175      0.608 0.76 0.00 0.12 0.12
#> 181     1  0.0000      0.966 1.00 0.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0211-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0211-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0211-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0211-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0211-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0211-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0211-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0211-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0211-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0211-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0211-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0211-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0211-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0211-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0211-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0211-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0211-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      179              1.78e-04 2
#> ATC:skmeans      179              2.24e-17 3
#> ATC:skmeans      170              5.53e-18 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node02111

Parent node: Node0211. Child nodes: Node021111-leaf , Node021112-leaf , Node021121-leaf , Node021122-leaf , Node031221-leaf , Node031222-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["02111"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 9056 rows and 65 columns.
#>   Top rows (906) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-02111-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-02111-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.994       0.997          0.507 0.493   0.493
#> 3 3 0.932           0.908       0.961          0.299 0.805   0.622
#> 4 4 0.689           0.640       0.829          0.094 0.877   0.670

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>    class entropy silhouette   p1   p2
#> 1      2   0.469      0.889 0.10 0.90
#> 2      2   0.000      0.997 0.00 1.00
#> 3      2   0.000      0.997 0.00 1.00
#> 4      2   0.000      0.997 0.00 1.00
#> 5      1   0.000      0.998 1.00 0.00
#> 6      1   0.000      0.998 1.00 0.00
#> 7      1   0.000      0.998 1.00 0.00
#> 8      1   0.000      0.998 1.00 0.00
#> 9      1   0.000      0.998 1.00 0.00
#> 10     1   0.000      0.998 1.00 0.00
#> 11     1   0.000      0.998 1.00 0.00
#> 12     1   0.000      0.998 1.00 0.00
#> 13     1   0.000      0.998 1.00 0.00
#> 14     1   0.000      0.998 1.00 0.00
#> 15     1   0.000      0.998 1.00 0.00
#> 16     1   0.000      0.998 1.00 0.00
#> 17     2   0.000      0.997 0.00 1.00
#> 18     2   0.000      0.997 0.00 1.00
#> 19     1   0.000      0.998 1.00 0.00
#> 20     1   0.000      0.998 1.00 0.00
#> 21     1   0.000      0.998 1.00 0.00
#> 22     2   0.000      0.997 0.00 1.00
#> 23     1   0.000      0.998 1.00 0.00
#> 24     1   0.000      0.998 1.00 0.00
#> 25     2   0.000      0.997 0.00 1.00
#> 26     2   0.000      0.997 0.00 1.00
#> 27     2   0.000      0.997 0.00 1.00
#> 28     1   0.000      0.998 1.00 0.00
#> 29     1   0.000      0.998 1.00 0.00
#> 30     1   0.000      0.998 1.00 0.00
#> 31     1   0.000      0.998 1.00 0.00
#> 32     1   0.000      0.998 1.00 0.00
#> 33     2   0.000      0.997 0.00 1.00
#> 34     2   0.000      0.997 0.00 1.00
#> 35     2   0.000      0.997 0.00 1.00
#> 36     2   0.000      0.997 0.00 1.00
#> 37     1   0.000      0.998 1.00 0.00
#> 38     1   0.000      0.998 1.00 0.00
#> 39     1   0.000      0.998 1.00 0.00
#> 40     2   0.000      0.997 0.00 1.00
#> 41     1   0.000      0.998 1.00 0.00
#> 42     2   0.000      0.997 0.00 1.00
#> 43     1   0.000      0.998 1.00 0.00
#> 44     1   0.000      0.998 1.00 0.00
#> 45     1   0.000      0.998 1.00 0.00
#> 46     1   0.000      0.998 1.00 0.00
#> 47     2   0.000      0.997 0.00 1.00
#> 48     2   0.000      0.997 0.00 1.00
#> 49     1   0.000      0.998 1.00 0.00
#> 50     2   0.000      0.997 0.00 1.00
#> 51     2   0.000      0.997 0.00 1.00
#> 52     2   0.000      0.997 0.00 1.00
#> 53     2   0.000      0.997 0.00 1.00
#> 54     2   0.000      0.997 0.00 1.00
#> 55     2   0.000      0.997 0.00 1.00
#> 56     2   0.000      0.997 0.00 1.00
#> 57     2   0.000      0.997 0.00 1.00
#> 58     1   0.000      0.998 1.00 0.00
#> 59     2   0.000      0.997 0.00 1.00
#> 60     2   0.000      0.997 0.00 1.00
#> 61     2   0.000      0.997 0.00 1.00
#> 62     1   0.402      0.913 0.92 0.08
#> 63     2   0.000      0.997 0.00 1.00
#> 64     1   0.000      0.998 1.00 0.00
#> 65     2   0.000      0.997 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>    class entropy silhouette   p1   p2   p3
#> 1      3  0.7277      0.556 0.06 0.28 0.66
#> 2      2  0.0000      0.978 0.00 1.00 0.00
#> 3      2  0.0000      0.978 0.00 1.00 0.00
#> 4      2  0.0000      0.978 0.00 1.00 0.00
#> 5      1  0.0000      0.950 1.00 0.00 0.00
#> 6      1  0.0000      0.950 1.00 0.00 0.00
#> 7      1  0.0000      0.950 1.00 0.00 0.00
#> 8      1  0.0000      0.950 1.00 0.00 0.00
#> 9      1  0.0000      0.950 1.00 0.00 0.00
#> 10     3  0.5835      0.447 0.34 0.00 0.66
#> 11     1  0.0000      0.950 1.00 0.00 0.00
#> 12     1  0.0000      0.950 1.00 0.00 0.00
#> 13     1  0.0000      0.950 1.00 0.00 0.00
#> 14     1  0.0000      0.950 1.00 0.00 0.00
#> 15     1  0.0000      0.950 1.00 0.00 0.00
#> 16     1  0.0000      0.950 1.00 0.00 0.00
#> 17     2  0.2537      0.905 0.00 0.92 0.08
#> 18     2  0.0000      0.978 0.00 1.00 0.00
#> 19     3  0.0000      0.936 0.00 0.00 1.00
#> 20     1  0.0000      0.950 1.00 0.00 0.00
#> 21     3  0.0000      0.936 0.00 0.00 1.00
#> 22     3  0.0000      0.936 0.00 0.00 1.00
#> 23     3  0.0892      0.924 0.02 0.00 0.98
#> 24     1  0.5560      0.567 0.70 0.00 0.30
#> 25     2  0.0000      0.978 0.00 1.00 0.00
#> 26     2  0.0000      0.978 0.00 1.00 0.00
#> 27     3  0.2537      0.874 0.00 0.08 0.92
#> 28     1  0.0000      0.950 1.00 0.00 0.00
#> 29     1  0.0000      0.950 1.00 0.00 0.00
#> 30     1  0.0000      0.950 1.00 0.00 0.00
#> 31     1  0.0000      0.950 1.00 0.00 0.00
#> 32     1  0.0000      0.950 1.00 0.00 0.00
#> 33     2  0.5706      0.527 0.00 0.68 0.32
#> 34     2  0.2537      0.905 0.00 0.92 0.08
#> 35     2  0.0000      0.978 0.00 1.00 0.00
#> 36     2  0.0000      0.978 0.00 1.00 0.00
#> 37     1  0.0000      0.950 1.00 0.00 0.00
#> 38     1  0.6244      0.222 0.56 0.00 0.44
#> 39     1  0.0000      0.950 1.00 0.00 0.00
#> 40     2  0.0000      0.978 0.00 1.00 0.00
#> 41     1  0.0000      0.950 1.00 0.00 0.00
#> 42     2  0.0000      0.978 0.00 1.00 0.00
#> 43     1  0.0000      0.950 1.00 0.00 0.00
#> 44     3  0.0000      0.936 0.00 0.00 1.00
#> 45     1  0.2537      0.882 0.92 0.00 0.08
#> 46     1  0.5397      0.609 0.72 0.00 0.28
#> 47     3  0.0000      0.936 0.00 0.00 1.00
#> 48     2  0.0000      0.978 0.00 1.00 0.00
#> 49     3  0.1529      0.908 0.04 0.00 0.96
#> 50     2  0.0000      0.978 0.00 1.00 0.00
#> 51     2  0.0000      0.978 0.00 1.00 0.00
#> 52     3  0.0000      0.936 0.00 0.00 1.00
#> 53     2  0.0000      0.978 0.00 1.00 0.00
#> 54     2  0.0000      0.978 0.00 1.00 0.00
#> 55     3  0.0000      0.936 0.00 0.00 1.00
#> 56     2  0.0000      0.978 0.00 1.00 0.00
#> 57     2  0.0000      0.978 0.00 1.00 0.00
#> 58     1  0.0000      0.950 1.00 0.00 0.00
#> 59     2  0.0000      0.978 0.00 1.00 0.00
#> 60     3  0.0000      0.936 0.00 0.00 1.00
#> 61     2  0.0000      0.978 0.00 1.00 0.00
#> 62     3  0.0000      0.936 0.00 0.00 1.00
#> 63     2  0.0000      0.978 0.00 1.00 0.00
#> 64     1  0.3340      0.824 0.88 0.12 0.00
#> 65     2  0.0000      0.978 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>    class entropy silhouette   p1   p2   p3   p4
#> 1      4  0.8724    -0.2934 0.06 0.26 0.22 0.46
#> 2      2  0.2830     0.8898 0.00 0.90 0.04 0.06
#> 3      2  0.0707     0.9380 0.00 0.98 0.00 0.02
#> 4      2  0.0707     0.9380 0.00 0.98 0.00 0.02
#> 5      4  0.5000     0.5558 0.50 0.00 0.00 0.50
#> 6      1  0.4977    -0.5191 0.54 0.00 0.00 0.46
#> 7      4  0.5000     0.5558 0.50 0.00 0.00 0.50
#> 8      1  0.4522     0.0124 0.68 0.00 0.00 0.32
#> 9      1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 10     1  0.6656     0.3822 0.62 0.00 0.16 0.22
#> 11     1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 12     1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 13     1  0.4134     0.2410 0.74 0.00 0.00 0.26
#> 14     1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 15     1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 16     1  0.4907    -0.2717 0.58 0.00 0.00 0.42
#> 17     2  0.4610     0.7738 0.00 0.80 0.10 0.10
#> 18     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 19     3  0.4227     0.7254 0.06 0.00 0.82 0.12
#> 20     1  0.3801     0.3623 0.78 0.00 0.00 0.22
#> 21     3  0.6382     0.3631 0.34 0.00 0.58 0.08
#> 22     3  0.2011     0.7624 0.00 0.00 0.92 0.08
#> 23     3  0.7869     0.2455 0.34 0.00 0.38 0.28
#> 24     1  0.4841     0.5470 0.78 0.00 0.14 0.08
#> 25     2  0.2011     0.9059 0.00 0.92 0.00 0.08
#> 26     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 27     3  0.6320     0.6400 0.00 0.18 0.66 0.16
#> 28     4  0.4907     0.6386 0.42 0.00 0.00 0.58
#> 29     1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 30     1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 31     4  0.4948     0.6272 0.44 0.00 0.00 0.56
#> 32     4  0.4948     0.6370 0.44 0.00 0.00 0.56
#> 33     3  0.6605     0.0553 0.00 0.44 0.48 0.08
#> 34     2  0.6649     0.2846 0.00 0.56 0.34 0.10
#> 35     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 36     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 37     1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 38     1  0.5902     0.4685 0.70 0.00 0.16 0.14
#> 39     4  0.4713     0.6291 0.36 0.00 0.00 0.64
#> 40     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 41     1  0.2345     0.5949 0.90 0.00 0.00 0.10
#> 42     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 43     1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 44     3  0.0000     0.7637 0.00 0.00 1.00 0.00
#> 45     1  0.5956     0.4078 0.68 0.00 0.10 0.22
#> 46     1  0.3821     0.5961 0.84 0.00 0.12 0.04
#> 47     3  0.2345     0.7580 0.00 0.00 0.90 0.10
#> 48     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 49     1  0.7139     0.0525 0.50 0.00 0.36 0.14
#> 50     2  0.3335     0.8354 0.00 0.86 0.12 0.02
#> 51     2  0.0707     0.9375 0.00 0.98 0.00 0.02
#> 52     3  0.1211     0.7613 0.00 0.00 0.96 0.04
#> 53     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 54     2  0.1211     0.9331 0.00 0.96 0.00 0.04
#> 55     3  0.2345     0.7462 0.00 0.00 0.90 0.10
#> 56     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 57     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 58     1  0.0000     0.7024 1.00 0.00 0.00 0.00
#> 59     2  0.1637     0.9231 0.00 0.94 0.00 0.06
#> 60     3  0.5489     0.7041 0.00 0.06 0.70 0.24
#> 61     2  0.2011     0.9012 0.00 0.92 0.00 0.08
#> 62     3  0.1637     0.7653 0.00 0.00 0.94 0.06
#> 63     2  0.0000     0.9441 0.00 1.00 0.00 0.00
#> 64     4  0.5616     0.5028 0.18 0.06 0.02 0.74
#> 65     2  0.1211     0.9296 0.00 0.96 0.00 0.04

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-02111-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-02111-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-02111-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-02111-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-02111-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-02111-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-02111-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-02111-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-02111-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-02111-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-02111-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-02111-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-02111-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-02111-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-02111-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-02111-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-02111-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans       65                    NA 2
#> ATC:skmeans       63                    NA 3
#> ATC:skmeans       51                    NA 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node02112

Parent node: Node0211. Child nodes: Node021111-leaf , Node021112-leaf , Node021121-leaf , Node021122-leaf , Node031221-leaf , Node031222-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["02112"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 9147 rows and 71 columns.
#>   Top rows (915) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-02112-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-02112-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.999           0.964       0.984          0.506 0.495   0.495
#> 3 3 0.906           0.914       0.964          0.227 0.868   0.738
#> 4 4 0.762           0.744       0.886          0.101 0.930   0.823

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>    class entropy silhouette   p1   p2
#> 1      1   0.000      0.978 1.00 0.00
#> 2      1   0.327      0.930 0.94 0.06
#> 3      1   0.634      0.820 0.84 0.16
#> 4      2   0.000      0.988 0.00 1.00
#> 5      2   0.000      0.988 0.00 1.00
#> 6      2   0.000      0.988 0.00 1.00
#> 7      1   0.000      0.978 1.00 0.00
#> 8      2   0.000      0.988 0.00 1.00
#> 9      2   0.000      0.988 0.00 1.00
#> 10     1   0.000      0.978 1.00 0.00
#> 11     1   0.000      0.978 1.00 0.00
#> 12     2   0.000      0.988 0.00 1.00
#> 13     1   0.000      0.978 1.00 0.00
#> 14     1   0.000      0.978 1.00 0.00
#> 15     1   0.000      0.978 1.00 0.00
#> 16     2   0.000      0.988 0.00 1.00
#> 17     1   0.000      0.978 1.00 0.00
#> 18     1   0.000      0.978 1.00 0.00
#> 19     1   0.000      0.978 1.00 0.00
#> 20     1   0.000      0.978 1.00 0.00
#> 21     1   0.000      0.978 1.00 0.00
#> 22     2   0.000      0.988 0.00 1.00
#> 23     2   0.000      0.988 0.00 1.00
#> 24     1   0.760      0.728 0.78 0.22
#> 25     2   0.000      0.988 0.00 1.00
#> 26     2   0.000      0.988 0.00 1.00
#> 27     2   0.000      0.988 0.00 1.00
#> 28     1   0.000      0.978 1.00 0.00
#> 29     2   0.000      0.988 0.00 1.00
#> 30     2   0.000      0.988 0.00 1.00
#> 31     2   0.000      0.988 0.00 1.00
#> 32     1   0.000      0.978 1.00 0.00
#> 33     1   0.000      0.978 1.00 0.00
#> 34     1   0.000      0.978 1.00 0.00
#> 35     1   0.680      0.789 0.82 0.18
#> 36     1   0.000      0.978 1.00 0.00
#> 37     2   0.000      0.988 0.00 1.00
#> 38     1   0.000      0.978 1.00 0.00
#> 39     2   0.000      0.988 0.00 1.00
#> 40     2   0.000      0.988 0.00 1.00
#> 41     2   0.000      0.988 0.00 1.00
#> 42     2   0.000      0.988 0.00 1.00
#> 43     2   0.000      0.988 0.00 1.00
#> 44     2   0.000      0.988 0.00 1.00
#> 45     1   0.000      0.978 1.00 0.00
#> 46     1   0.000      0.978 1.00 0.00
#> 47     1   0.000      0.978 1.00 0.00
#> 48     1   0.000      0.978 1.00 0.00
#> 49     1   0.000      0.978 1.00 0.00
#> 50     2   0.000      0.988 0.00 1.00
#> 51     1   0.000      0.978 1.00 0.00
#> 52     1   0.000      0.978 1.00 0.00
#> 53     2   0.000      0.988 0.00 1.00
#> 54     2   0.000      0.988 0.00 1.00
#> 55     1   0.000      0.978 1.00 0.00
#> 56     2   0.000      0.988 0.00 1.00
#> 57     1   0.000      0.978 1.00 0.00
#> 58     1   0.402      0.911 0.92 0.08
#> 59     2   0.000      0.988 0.00 1.00
#> 60     1   0.000      0.978 1.00 0.00
#> 61     2   0.943      0.421 0.36 0.64
#> 62     2   0.000      0.988 0.00 1.00
#> 63     1   0.000      0.978 1.00 0.00
#> 64     2   0.000      0.988 0.00 1.00
#> 65     2   0.000      0.988 0.00 1.00
#> 66     2   0.000      0.988 0.00 1.00
#> 67     1   0.000      0.978 1.00 0.00
#> 68     1   0.000      0.978 1.00 0.00
#> 69     1   0.000      0.978 1.00 0.00
#> 70     1   0.402      0.912 0.92 0.08
#> 71     2   0.000      0.988 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>    class entropy silhouette   p1   p2   p3
#> 1      3  0.0000      0.870 0.00 0.00 1.00
#> 2      3  0.0000      0.870 0.00 0.00 1.00
#> 3      3  0.0000      0.870 0.00 0.00 1.00
#> 4      2  0.0000      0.965 0.00 1.00 0.00
#> 5      2  0.0000      0.965 0.00 1.00 0.00
#> 6      2  0.2959      0.876 0.00 0.90 0.10
#> 7      1  0.0000      0.981 1.00 0.00 0.00
#> 8      2  0.0000      0.965 0.00 1.00 0.00
#> 9      2  0.0000      0.965 0.00 1.00 0.00
#> 10     1  0.0000      0.981 1.00 0.00 0.00
#> 11     1  0.0000      0.981 1.00 0.00 0.00
#> 12     2  0.0000      0.965 0.00 1.00 0.00
#> 13     3  0.6280      0.186 0.46 0.00 0.54
#> 14     1  0.0000      0.981 1.00 0.00 0.00
#> 15     1  0.0000      0.981 1.00 0.00 0.00
#> 16     2  0.6244      0.208 0.00 0.56 0.44
#> 17     1  0.0000      0.981 1.00 0.00 0.00
#> 18     1  0.0000      0.981 1.00 0.00 0.00
#> 19     1  0.0000      0.981 1.00 0.00 0.00
#> 20     1  0.0000      0.981 1.00 0.00 0.00
#> 21     1  0.0000      0.981 1.00 0.00 0.00
#> 22     2  0.0000      0.965 0.00 1.00 0.00
#> 23     2  0.0000      0.965 0.00 1.00 0.00
#> 24     1  0.8838      0.264 0.58 0.20 0.22
#> 25     2  0.4291      0.773 0.00 0.82 0.18
#> 26     2  0.1529      0.936 0.00 0.96 0.04
#> 27     2  0.0000      0.965 0.00 1.00 0.00
#> 28     1  0.0000      0.981 1.00 0.00 0.00
#> 29     2  0.0000      0.965 0.00 1.00 0.00
#> 30     2  0.0000      0.965 0.00 1.00 0.00
#> 31     2  0.0000      0.965 0.00 1.00 0.00
#> 32     1  0.0000      0.981 1.00 0.00 0.00
#> 33     1  0.1529      0.942 0.96 0.00 0.04
#> 34     1  0.0000      0.981 1.00 0.00 0.00
#> 35     3  0.2959      0.831 0.10 0.00 0.90
#> 36     1  0.0000      0.981 1.00 0.00 0.00
#> 37     2  0.0000      0.965 0.00 1.00 0.00
#> 38     1  0.0000      0.981 1.00 0.00 0.00
#> 39     2  0.0000      0.965 0.00 1.00 0.00
#> 40     2  0.0892      0.951 0.00 0.98 0.02
#> 41     2  0.0000      0.965 0.00 1.00 0.00
#> 42     2  0.0000      0.965 0.00 1.00 0.00
#> 43     2  0.0000      0.965 0.00 1.00 0.00
#> 44     2  0.0000      0.965 0.00 1.00 0.00
#> 45     1  0.1529      0.942 0.96 0.00 0.04
#> 46     1  0.0000      0.981 1.00 0.00 0.00
#> 47     1  0.0000      0.981 1.00 0.00 0.00
#> 48     1  0.0000      0.981 1.00 0.00 0.00
#> 49     1  0.0000      0.981 1.00 0.00 0.00
#> 50     2  0.4449      0.833 0.04 0.86 0.10
#> 51     1  0.0000      0.981 1.00 0.00 0.00
#> 52     1  0.0000      0.981 1.00 0.00 0.00
#> 53     2  0.0000      0.965 0.00 1.00 0.00
#> 54     3  0.2959      0.816 0.00 0.10 0.90
#> 55     1  0.0000      0.981 1.00 0.00 0.00
#> 56     3  0.4555      0.701 0.00 0.20 0.80
#> 57     1  0.0000      0.981 1.00 0.00 0.00
#> 58     3  0.5147      0.752 0.18 0.02 0.80
#> 59     2  0.0000      0.965 0.00 1.00 0.00
#> 60     1  0.0892      0.962 0.98 0.00 0.02
#> 61     3  0.1529      0.858 0.00 0.04 0.96
#> 62     2  0.0000      0.965 0.00 1.00 0.00
#> 63     1  0.0000      0.981 1.00 0.00 0.00
#> 64     2  0.1529      0.936 0.00 0.96 0.04
#> 65     2  0.0000      0.965 0.00 1.00 0.00
#> 66     2  0.0000      0.965 0.00 1.00 0.00
#> 67     1  0.0000      0.981 1.00 0.00 0.00
#> 68     1  0.0000      0.981 1.00 0.00 0.00
#> 69     1  0.0000      0.981 1.00 0.00 0.00
#> 70     3  0.0000      0.870 0.00 0.00 1.00
#> 71     2  0.0000      0.965 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>    class entropy silhouette   p1   p2   p3   p4
#> 1      3  0.0707     0.7763 0.00 0.00 0.98 0.02
#> 2      3  0.0000     0.7818 0.00 0.00 1.00 0.00
#> 3      3  0.0000     0.7818 0.00 0.00 1.00 0.00
#> 4      2  0.3606     0.7719 0.00 0.84 0.02 0.14
#> 5      2  0.0707     0.8473 0.00 0.98 0.00 0.02
#> 6      2  0.4949     0.6390 0.00 0.76 0.18 0.06
#> 7      1  0.4855     0.3717 0.60 0.00 0.00 0.40
#> 8      2  0.0707     0.8401 0.00 0.98 0.00 0.02
#> 9      2  0.4713     0.4944 0.00 0.64 0.00 0.36
#> 10     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 11     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 12     2  0.0707     0.8473 0.00 0.98 0.00 0.02
#> 13     1  0.7805    -0.1368 0.42 0.00 0.28 0.30
#> 14     1  0.0707     0.9303 0.98 0.00 0.02 0.00
#> 15     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 16     2  0.7674    -0.0789 0.00 0.46 0.28 0.26
#> 17     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 18     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 19     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 20     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 21     1  0.1211     0.9159 0.96 0.00 0.00 0.04
#> 22     2  0.5000     0.0931 0.00 0.50 0.00 0.50
#> 23     2  0.2345     0.8232 0.00 0.90 0.00 0.10
#> 24     4  0.6367     0.4595 0.14 0.08 0.06 0.72
#> 25     2  0.6299     0.3733 0.00 0.60 0.08 0.32
#> 26     4  0.4790     0.2057 0.00 0.38 0.00 0.62
#> 27     2  0.0707     0.8401 0.00 0.98 0.00 0.02
#> 28     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 29     2  0.0707     0.8473 0.00 0.98 0.00 0.02
#> 30     2  0.0707     0.8473 0.00 0.98 0.00 0.02
#> 31     2  0.0707     0.8473 0.00 0.98 0.00 0.02
#> 32     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 33     1  0.5820     0.5644 0.68 0.00 0.08 0.24
#> 34     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 35     4  0.7040    -0.0447 0.12 0.00 0.42 0.46
#> 36     1  0.0707     0.9310 0.98 0.00 0.02 0.00
#> 37     2  0.0000     0.8433 0.00 1.00 0.00 0.00
#> 38     1  0.1211     0.9147 0.96 0.00 0.04 0.00
#> 39     2  0.1637     0.8280 0.00 0.94 0.00 0.06
#> 40     2  0.4642     0.6653 0.00 0.74 0.02 0.24
#> 41     2  0.3610     0.7559 0.00 0.80 0.00 0.20
#> 42     2  0.1637     0.8183 0.00 0.94 0.06 0.00
#> 43     2  0.1211     0.8411 0.00 0.96 0.00 0.04
#> 44     2  0.0707     0.8473 0.00 0.98 0.00 0.02
#> 45     1  0.3525     0.8212 0.86 0.00 0.10 0.04
#> 46     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 47     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 48     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 49     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 50     4  0.1913     0.5277 0.00 0.04 0.02 0.94
#> 51     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 52     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 53     2  0.4277     0.6385 0.00 0.72 0.00 0.28
#> 54     3  0.6497     0.3009 0.00 0.20 0.64 0.16
#> 55     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 56     4  0.7414     0.2136 0.00 0.18 0.34 0.48
#> 57     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 58     3  0.7201     0.3758 0.18 0.14 0.64 0.04
#> 59     2  0.0707     0.8473 0.00 0.98 0.00 0.02
#> 60     1  0.2335     0.8854 0.92 0.00 0.06 0.02
#> 61     3  0.2706     0.7361 0.00 0.02 0.90 0.08
#> 62     4  0.3400     0.5560 0.00 0.18 0.00 0.82
#> 63     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 64     2  0.3172     0.7539 0.00 0.84 0.00 0.16
#> 65     2  0.0000     0.8433 0.00 1.00 0.00 0.00
#> 66     2  0.0000     0.8433 0.00 1.00 0.00 0.00
#> 67     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 68     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 69     1  0.0000     0.9436 1.00 0.00 0.00 0.00
#> 70     3  0.1637     0.7566 0.00 0.00 0.94 0.06
#> 71     2  0.0707     0.8473 0.00 0.98 0.00 0.02

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-02112-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-02112-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-02112-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-02112-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-02112-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-02112-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-02112-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-02112-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-02112-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-02112-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-02112-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-02112-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-02112-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-02112-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-02112-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-02112-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-02112-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans       70              3.02e-01 2
#> ATC:skmeans       68              3.41e-05 3
#> ATC:skmeans       59              1.85e-07 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node0212

Parent node: Node021. Child nodes: Node01131-leaf , Node01132-leaf , Node01133-leaf , Node01211-leaf , Node01212-leaf , Node01221-leaf , Node01222-leaf , Node01223-leaf , Node01231-leaf , Node01232-leaf , Node01233-leaf , Node01234-leaf , Node02111 , Node02112 , Node02113-leaf , Node02121-leaf , Node02122-leaf , Node02123-leaf , Node02221-leaf , Node02222-leaf , Node03111-leaf , Node03112-leaf , Node03121-leaf , Node03122 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0212"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 9018 rows and 205 columns.
#>   Top rows (902) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0212-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0212-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.975       0.989          0.502 0.498   0.498
#> 3 3 0.991           0.955       0.983          0.242 0.777   0.592
#> 4 4 0.691           0.734       0.841          0.166 0.848   0.618

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.980 0.00 1.00
#> 2       2   0.000      0.980 0.00 1.00
#> 3       2   0.000      0.980 0.00 1.00
#> 4       2   0.000      0.980 0.00 1.00
#> 5       2   0.000      0.980 0.00 1.00
#> 6       2   0.000      0.980 0.00 1.00
#> 7       2   0.000      0.980 0.00 1.00
#> 8       2   0.000      0.980 0.00 1.00
#> 9       2   0.000      0.980 0.00 1.00
#> 10      2   0.000      0.980 0.00 1.00
#> 11      2   0.000      0.980 0.00 1.00
#> 12      2   0.000      0.980 0.00 1.00
#> 13      2   0.402      0.907 0.08 0.92
#> 14      2   0.000      0.980 0.00 1.00
#> 15      2   0.000      0.980 0.00 1.00
#> 16      1   0.000      0.997 1.00 0.00
#> 17      2   0.000      0.980 0.00 1.00
#> 18      2   0.000      0.980 0.00 1.00
#> 19      2   0.000      0.980 0.00 1.00
#> 20      2   0.000      0.980 0.00 1.00
#> 21      2   0.000      0.980 0.00 1.00
#> 22      2   0.000      0.980 0.00 1.00
#> 23      2   0.000      0.980 0.00 1.00
#> 24      1   0.000      0.997 1.00 0.00
#> 25      1   0.000      0.997 1.00 0.00
#> 26      1   0.000      0.997 1.00 0.00
#> 27      1   0.000      0.997 1.00 0.00
#> 28      1   0.000      0.997 1.00 0.00
#> 29      2   0.990      0.242 0.44 0.56
#> 30      2   0.000      0.980 0.00 1.00
#> 31      2   0.000      0.980 0.00 1.00
#> 32      1   0.000      0.997 1.00 0.00
#> 33      1   0.000      0.997 1.00 0.00
#> 34      2   0.827      0.664 0.26 0.74
#> 35      1   0.000      0.997 1.00 0.00
#> 36      1   0.141      0.978 0.98 0.02
#> 37      2   0.000      0.980 0.00 1.00
#> 38      2   0.000      0.980 0.00 1.00
#> 39      2   0.000      0.980 0.00 1.00
#> 40      1   0.000      0.997 1.00 0.00
#> 41      1   0.000      0.997 1.00 0.00
#> 42      1   0.000      0.997 1.00 0.00
#> 43      2   0.000      0.980 0.00 1.00
#> 44      1   0.000      0.997 1.00 0.00
#> 45      1   0.000      0.997 1.00 0.00
#> 46      1   0.000      0.997 1.00 0.00
#> 47      1   0.000      0.997 1.00 0.00
#> 48      1   0.000      0.997 1.00 0.00
#> 49      2   0.000      0.980 0.00 1.00
#> 50      2   0.000      0.980 0.00 1.00
#> 51      2   0.000      0.980 0.00 1.00
#> 52      2   0.000      0.980 0.00 1.00
#> 53      1   0.242      0.958 0.96 0.04
#> 54      1   0.000      0.997 1.00 0.00
#> 55      1   0.000      0.997 1.00 0.00
#> 56      1   0.000      0.997 1.00 0.00
#> 57      1   0.327      0.936 0.94 0.06
#> 58      1   0.141      0.978 0.98 0.02
#> 59      2   0.000      0.980 0.00 1.00
#> 60      2   0.760      0.728 0.22 0.78
#> 61      2   0.000      0.980 0.00 1.00
#> 62      2   0.000      0.980 0.00 1.00
#> 63      2   0.795      0.695 0.24 0.76
#> 64      1   0.000      0.997 1.00 0.00
#> 65      1   0.000      0.997 1.00 0.00
#> 66      1   0.000      0.997 1.00 0.00
#> 67      1   0.000      0.997 1.00 0.00
#> 68      1   0.000      0.997 1.00 0.00
#> 69      2   0.000      0.980 0.00 1.00
#> 70      1   0.000      0.997 1.00 0.00
#> 71      1   0.000      0.997 1.00 0.00
#> 72      1   0.000      0.997 1.00 0.00
#> 73      1   0.000      0.997 1.00 0.00
#> 74      2   0.000      0.980 0.00 1.00
#> 75      1   0.000      0.997 1.00 0.00
#> 76      2   0.000      0.980 0.00 1.00
#> 77      1   0.000      0.997 1.00 0.00
#> 78      1   0.000      0.997 1.00 0.00
#> 79      1   0.000      0.997 1.00 0.00
#> 80      2   0.000      0.980 0.00 1.00
#> 81      1   0.000      0.997 1.00 0.00
#> 82      1   0.000      0.997 1.00 0.00
#> 83      2   0.000      0.980 0.00 1.00
#> 84      1   0.000      0.997 1.00 0.00
#> 85      1   0.000      0.997 1.00 0.00
#> 86      1   0.000      0.997 1.00 0.00
#> 87      1   0.000      0.997 1.00 0.00
#> 88      1   0.000      0.997 1.00 0.00
#> 89      2   0.000      0.980 0.00 1.00
#> 90      2   0.000      0.980 0.00 1.00
#> 91      1   0.000      0.997 1.00 0.00
#> 92      2   0.000      0.980 0.00 1.00
#> 93      1   0.000      0.997 1.00 0.00
#> 94      1   0.000      0.997 1.00 0.00
#> 95      2   0.000      0.980 0.00 1.00
#> 96      2   0.000      0.980 0.00 1.00
#> 97      2   0.000      0.980 0.00 1.00
#> 98      1   0.000      0.997 1.00 0.00
#> 99      1   0.000      0.997 1.00 0.00
#> 100     1   0.000      0.997 1.00 0.00
#> 101     1   0.000      0.997 1.00 0.00
#> 102     1   0.000      0.997 1.00 0.00
#> 103     1   0.000      0.997 1.00 0.00
#> 104     1   0.000      0.997 1.00 0.00
#> 105     2   0.141      0.964 0.02 0.98
#> 106     1   0.000      0.997 1.00 0.00
#> 107     1   0.000      0.997 1.00 0.00
#> 108     1   0.000      0.997 1.00 0.00
#> 109     1   0.000      0.997 1.00 0.00
#> 110     1   0.000      0.997 1.00 0.00
#> 111     2   0.855      0.626 0.28 0.72
#> 112     2   0.000      0.980 0.00 1.00
#> 113     1   0.000      0.997 1.00 0.00
#> 114     1   0.000      0.997 1.00 0.00
#> 115     1   0.000      0.997 1.00 0.00
#> 116     1   0.000      0.997 1.00 0.00
#> 117     1   0.242      0.958 0.96 0.04
#> 118     1   0.000      0.997 1.00 0.00
#> 119     1   0.000      0.997 1.00 0.00
#> 120     2   0.141      0.964 0.02 0.98
#> 121     1   0.000      0.997 1.00 0.00
#> 122     1   0.000      0.997 1.00 0.00
#> 123     1   0.000      0.997 1.00 0.00
#> 124     1   0.529      0.864 0.88 0.12
#> 125     2   0.000      0.980 0.00 1.00
#> 126     2   0.000      0.980 0.00 1.00
#> 127     2   0.000      0.980 0.00 1.00
#> 128     2   0.000      0.980 0.00 1.00
#> 129     1   0.000      0.997 1.00 0.00
#> 130     1   0.000      0.997 1.00 0.00
#> 131     2   0.000      0.980 0.00 1.00
#> 132     2   0.000      0.980 0.00 1.00
#> 133     2   0.000      0.980 0.00 1.00
#> 134     2   0.000      0.980 0.00 1.00
#> 135     2   0.000      0.980 0.00 1.00
#> 136     2   0.000      0.980 0.00 1.00
#> 137     2   0.000      0.980 0.00 1.00
#> 138     2   0.000      0.980 0.00 1.00
#> 139     2   0.000      0.980 0.00 1.00
#> 140     2   0.000      0.980 0.00 1.00
#> 141     2   0.000      0.980 0.00 1.00
#> 142     2   0.000      0.980 0.00 1.00
#> 143     2   0.000      0.980 0.00 1.00
#> 144     2   0.000      0.980 0.00 1.00
#> 145     2   0.000      0.980 0.00 1.00
#> 146     2   0.000      0.980 0.00 1.00
#> 147     2   0.000      0.980 0.00 1.00
#> 148     2   0.000      0.980 0.00 1.00
#> 149     2   0.000      0.980 0.00 1.00
#> 150     2   0.000      0.980 0.00 1.00
#> 151     2   0.000      0.980 0.00 1.00
#> 152     2   0.000      0.980 0.00 1.00
#> 153     2   0.000      0.980 0.00 1.00
#> 154     2   0.000      0.980 0.00 1.00
#> 155     2   0.000      0.980 0.00 1.00
#> 156     2   0.000      0.980 0.00 1.00
#> 157     1   0.000      0.997 1.00 0.00
#> 158     2   0.000      0.980 0.00 1.00
#> 159     2   0.000      0.980 0.00 1.00
#> 160     2   0.000      0.980 0.00 1.00
#> 161     1   0.000      0.997 1.00 0.00
#> 162     2   0.000      0.980 0.00 1.00
#> 163     2   0.000      0.980 0.00 1.00
#> 164     2   0.000      0.980 0.00 1.00
#> 165     2   0.000      0.980 0.00 1.00
#> 166     2   0.529      0.861 0.12 0.88
#> 167     1   0.141      0.978 0.98 0.02
#> 168     1   0.000      0.997 1.00 0.00
#> 169     2   0.000      0.980 0.00 1.00
#> 170     2   0.000      0.980 0.00 1.00
#> 171     2   0.000      0.980 0.00 1.00
#> 172     1   0.000      0.997 1.00 0.00
#> 173     1   0.000      0.997 1.00 0.00
#> 174     1   0.000      0.997 1.00 0.00
#> 175     2   0.000      0.980 0.00 1.00
#> 176     2   0.000      0.980 0.00 1.00
#> 177     2   0.000      0.980 0.00 1.00
#> 178     1   0.000      0.997 1.00 0.00
#> 179     2   0.000      0.980 0.00 1.00
#> 180     1   0.000      0.997 1.00 0.00
#> 181     1   0.000      0.997 1.00 0.00
#> 182     1   0.000      0.997 1.00 0.00
#> 183     1   0.000      0.997 1.00 0.00
#> 184     1   0.000      0.997 1.00 0.00
#> 185     1   0.000      0.997 1.00 0.00
#> 186     1   0.000      0.997 1.00 0.00
#> 187     1   0.000      0.997 1.00 0.00
#> 188     1   0.000      0.997 1.00 0.00
#> 189     1   0.000      0.997 1.00 0.00
#> 190     1   0.000      0.997 1.00 0.00
#> 191     1   0.000      0.997 1.00 0.00
#> 192     1   0.000      0.997 1.00 0.00
#> 193     1   0.000      0.997 1.00 0.00
#> 194     1   0.000      0.997 1.00 0.00
#> 195     1   0.000      0.997 1.00 0.00
#> 196     2   0.795      0.697 0.24 0.76
#> 197     1   0.000      0.997 1.00 0.00
#> 198     1   0.000      0.997 1.00 0.00
#> 199     1   0.000      0.997 1.00 0.00
#> 200     1   0.000      0.997 1.00 0.00
#> 201     2   0.141      0.964 0.02 0.98
#> 202     1   0.000      0.997 1.00 0.00
#> 203     1   0.000      0.997 1.00 0.00
#> 204     1   0.000      0.997 1.00 0.00
#> 205     1   0.000      0.997 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       3  0.0000      0.982 0.00 0.00 1.00
#> 2       3  0.0000      0.982 0.00 0.00 1.00
#> 3       3  0.0000      0.982 0.00 0.00 1.00
#> 4       3  0.0000      0.982 0.00 0.00 1.00
#> 5       3  0.0000      0.982 0.00 0.00 1.00
#> 6       3  0.0000      0.982 0.00 0.00 1.00
#> 7       3  0.0000      0.982 0.00 0.00 1.00
#> 8       3  0.0000      0.982 0.00 0.00 1.00
#> 9       3  0.0000      0.982 0.00 0.00 1.00
#> 10      3  0.0000      0.982 0.00 0.00 1.00
#> 11      3  0.0000      0.982 0.00 0.00 1.00
#> 12      3  0.0000      0.982 0.00 0.00 1.00
#> 13      3  0.0000      0.982 0.00 0.00 1.00
#> 14      3  0.0000      0.982 0.00 0.00 1.00
#> 15      3  0.0000      0.982 0.00 0.00 1.00
#> 16      3  0.0000      0.982 0.00 0.00 1.00
#> 17      3  0.0000      0.982 0.00 0.00 1.00
#> 18      3  0.0000      0.982 0.00 0.00 1.00
#> 19      3  0.0000      0.982 0.00 0.00 1.00
#> 20      2  0.0000      0.973 0.00 1.00 0.00
#> 21      2  0.0000      0.973 0.00 1.00 0.00
#> 22      2  0.0000      0.973 0.00 1.00 0.00
#> 23      2  0.0000      0.973 0.00 1.00 0.00
#> 24      1  0.0000      0.985 1.00 0.00 0.00
#> 25      1  0.0000      0.985 1.00 0.00 0.00
#> 26      1  0.0000      0.985 1.00 0.00 0.00
#> 27      1  0.0000      0.985 1.00 0.00 0.00
#> 28      1  0.0892      0.967 0.98 0.00 0.02
#> 29      3  0.0892      0.965 0.02 0.00 0.98
#> 30      2  0.0000      0.973 0.00 1.00 0.00
#> 31      2  0.0000      0.973 0.00 1.00 0.00
#> 32      1  0.0000      0.985 1.00 0.00 0.00
#> 33      1  0.2066      0.927 0.94 0.00 0.06
#> 34      2  0.4002      0.786 0.16 0.84 0.00
#> 35      1  0.0000      0.985 1.00 0.00 0.00
#> 36      2  0.6280      0.166 0.46 0.54 0.00
#> 37      3  0.5706      0.528 0.00 0.32 0.68
#> 38      2  0.0000      0.973 0.00 1.00 0.00
#> 39      2  0.0000      0.973 0.00 1.00 0.00
#> 40      1  0.0000      0.985 1.00 0.00 0.00
#> 41      1  0.0000      0.985 1.00 0.00 0.00
#> 42      2  0.5706      0.543 0.32 0.68 0.00
#> 43      2  0.0000      0.973 0.00 1.00 0.00
#> 44      2  0.0892      0.952 0.02 0.98 0.00
#> 45      3  0.0000      0.982 0.00 0.00 1.00
#> 46      1  0.0000      0.985 1.00 0.00 0.00
#> 47      3  0.3686      0.833 0.14 0.00 0.86
#> 48      1  0.0000      0.985 1.00 0.00 0.00
#> 49      2  0.0000      0.973 0.00 1.00 0.00
#> 50      2  0.0000      0.973 0.00 1.00 0.00
#> 51      2  0.0000      0.973 0.00 1.00 0.00
#> 52      2  0.0000      0.973 0.00 1.00 0.00
#> 53      2  0.0000      0.973 0.00 1.00 0.00
#> 54      1  0.0000      0.985 1.00 0.00 0.00
#> 55      1  0.0000      0.985 1.00 0.00 0.00
#> 56      1  0.0000      0.985 1.00 0.00 0.00
#> 57      2  0.0000      0.973 0.00 1.00 0.00
#> 58      2  0.0000      0.973 0.00 1.00 0.00
#> 59      2  0.0000      0.973 0.00 1.00 0.00
#> 60      2  0.0000      0.973 0.00 1.00 0.00
#> 61      2  0.0000      0.973 0.00 1.00 0.00
#> 62      3  0.0000      0.982 0.00 0.00 1.00
#> 63      2  0.0000      0.973 0.00 1.00 0.00
#> 64      1  0.2537      0.896 0.92 0.08 0.00
#> 65      2  0.3340      0.838 0.12 0.88 0.00
#> 66      1  0.0000      0.985 1.00 0.00 0.00
#> 67      1  0.0000      0.985 1.00 0.00 0.00
#> 68      1  0.0000      0.985 1.00 0.00 0.00
#> 69      2  0.0000      0.973 0.00 1.00 0.00
#> 70      1  0.0000      0.985 1.00 0.00 0.00
#> 71      1  0.0000      0.985 1.00 0.00 0.00
#> 72      1  0.0000      0.985 1.00 0.00 0.00
#> 73      1  0.0000      0.985 1.00 0.00 0.00
#> 74      2  0.0000      0.973 0.00 1.00 0.00
#> 75      1  0.0000      0.985 1.00 0.00 0.00
#> 76      3  0.0000      0.982 0.00 0.00 1.00
#> 77      1  0.0000      0.985 1.00 0.00 0.00
#> 78      1  0.0000      0.985 1.00 0.00 0.00
#> 79      1  0.0000      0.985 1.00 0.00 0.00
#> 80      2  0.0000      0.973 0.00 1.00 0.00
#> 81      1  0.0000      0.985 1.00 0.00 0.00
#> 82      1  0.0000      0.985 1.00 0.00 0.00
#> 83      2  0.0000      0.973 0.00 1.00 0.00
#> 84      1  0.0000      0.985 1.00 0.00 0.00
#> 85      1  0.3340      0.844 0.88 0.12 0.00
#> 86      2  0.3686      0.814 0.14 0.86 0.00
#> 87      1  0.0000      0.985 1.00 0.00 0.00
#> 88      1  0.2066      0.920 0.94 0.06 0.00
#> 89      2  0.0000      0.973 0.00 1.00 0.00
#> 90      2  0.0000      0.973 0.00 1.00 0.00
#> 91      1  0.0000      0.985 1.00 0.00 0.00
#> 92      2  0.0000      0.973 0.00 1.00 0.00
#> 93      1  0.0000      0.985 1.00 0.00 0.00
#> 94      1  0.0000      0.985 1.00 0.00 0.00
#> 95      2  0.0000      0.973 0.00 1.00 0.00
#> 96      2  0.0000      0.973 0.00 1.00 0.00
#> 97      2  0.0000      0.973 0.00 1.00 0.00
#> 98      1  0.0000      0.985 1.00 0.00 0.00
#> 99      1  0.0000      0.985 1.00 0.00 0.00
#> 100     1  0.0000      0.985 1.00 0.00 0.00
#> 101     1  0.0000      0.985 1.00 0.00 0.00
#> 102     3  0.2537      0.906 0.08 0.00 0.92
#> 103     1  0.0000      0.985 1.00 0.00 0.00
#> 104     1  0.0000      0.985 1.00 0.00 0.00
#> 105     3  0.0000      0.982 0.00 0.00 1.00
#> 106     1  0.0000      0.985 1.00 0.00 0.00
#> 107     1  0.0000      0.985 1.00 0.00 0.00
#> 108     1  0.0000      0.985 1.00 0.00 0.00
#> 109     1  0.0000      0.985 1.00 0.00 0.00
#> 110     1  0.0000      0.985 1.00 0.00 0.00
#> 111     2  0.0000      0.973 0.00 1.00 0.00
#> 112     2  0.0000      0.973 0.00 1.00 0.00
#> 113     1  0.0000      0.985 1.00 0.00 0.00
#> 114     1  0.0000      0.985 1.00 0.00 0.00
#> 115     1  0.6280      0.126 0.54 0.46 0.00
#> 116     1  0.0000      0.985 1.00 0.00 0.00
#> 117     2  0.0000      0.973 0.00 1.00 0.00
#> 118     1  0.2066      0.920 0.94 0.06 0.00
#> 119     1  0.0000      0.985 1.00 0.00 0.00
#> 120     3  0.0000      0.982 0.00 0.00 1.00
#> 121     1  0.0000      0.985 1.00 0.00 0.00
#> 122     2  0.5216      0.646 0.26 0.74 0.00
#> 123     1  0.0000      0.985 1.00 0.00 0.00
#> 124     2  0.2066      0.909 0.06 0.94 0.00
#> 125     2  0.0000      0.973 0.00 1.00 0.00
#> 126     2  0.0000      0.973 0.00 1.00 0.00
#> 127     2  0.0000      0.973 0.00 1.00 0.00
#> 128     2  0.0000      0.973 0.00 1.00 0.00
#> 129     1  0.0000      0.985 1.00 0.00 0.00
#> 130     1  0.0000      0.985 1.00 0.00 0.00
#> 131     2  0.0000      0.973 0.00 1.00 0.00
#> 132     2  0.0000      0.973 0.00 1.00 0.00
#> 133     2  0.0000      0.973 0.00 1.00 0.00
#> 134     2  0.0000      0.973 0.00 1.00 0.00
#> 135     2  0.0000      0.973 0.00 1.00 0.00
#> 136     2  0.0000      0.973 0.00 1.00 0.00
#> 137     2  0.0000      0.973 0.00 1.00 0.00
#> 138     2  0.0000      0.973 0.00 1.00 0.00
#> 139     2  0.0000      0.973 0.00 1.00 0.00
#> 140     2  0.0000      0.973 0.00 1.00 0.00
#> 141     2  0.0000      0.973 0.00 1.00 0.00
#> 142     3  0.0892      0.964 0.00 0.02 0.98
#> 143     2  0.0000      0.973 0.00 1.00 0.00
#> 144     3  0.0000      0.982 0.00 0.00 1.00
#> 145     2  0.0000      0.973 0.00 1.00 0.00
#> 146     2  0.0000      0.973 0.00 1.00 0.00
#> 147     2  0.0000      0.973 0.00 1.00 0.00
#> 148     2  0.0000      0.973 0.00 1.00 0.00
#> 149     2  0.0000      0.973 0.00 1.00 0.00
#> 150     2  0.0000      0.973 0.00 1.00 0.00
#> 151     2  0.0000      0.973 0.00 1.00 0.00
#> 152     2  0.0000      0.973 0.00 1.00 0.00
#> 153     2  0.0000      0.973 0.00 1.00 0.00
#> 154     3  0.0000      0.982 0.00 0.00 1.00
#> 155     2  0.0000      0.973 0.00 1.00 0.00
#> 156     2  0.0000      0.973 0.00 1.00 0.00
#> 157     2  0.5835      0.499 0.34 0.66 0.00
#> 158     2  0.0000      0.973 0.00 1.00 0.00
#> 159     2  0.0000      0.973 0.00 1.00 0.00
#> 160     2  0.0000      0.973 0.00 1.00 0.00
#> 161     1  0.0000      0.985 1.00 0.00 0.00
#> 162     2  0.0000      0.973 0.00 1.00 0.00
#> 163     2  0.0000      0.973 0.00 1.00 0.00
#> 164     2  0.0000      0.973 0.00 1.00 0.00
#> 165     2  0.0000      0.973 0.00 1.00 0.00
#> 166     2  0.0000      0.973 0.00 1.00 0.00
#> 167     2  0.0000      0.973 0.00 1.00 0.00
#> 168     1  0.4796      0.701 0.78 0.22 0.00
#> 169     2  0.0000      0.973 0.00 1.00 0.00
#> 170     2  0.0000      0.973 0.00 1.00 0.00
#> 171     2  0.0000      0.973 0.00 1.00 0.00
#> 172     1  0.0000      0.985 1.00 0.00 0.00
#> 173     1  0.0000      0.985 1.00 0.00 0.00
#> 174     1  0.0000      0.985 1.00 0.00 0.00
#> 175     2  0.0000      0.973 0.00 1.00 0.00
#> 176     2  0.0000      0.973 0.00 1.00 0.00
#> 177     2  0.0000      0.973 0.00 1.00 0.00
#> 178     1  0.0000      0.985 1.00 0.00 0.00
#> 179     2  0.0000      0.973 0.00 1.00 0.00
#> 180     1  0.0892      0.964 0.98 0.02 0.00
#> 181     1  0.0000      0.985 1.00 0.00 0.00
#> 182     1  0.0000      0.985 1.00 0.00 0.00
#> 183     1  0.0000      0.985 1.00 0.00 0.00
#> 184     1  0.0000      0.985 1.00 0.00 0.00
#> 185     1  0.0000      0.985 1.00 0.00 0.00
#> 186     1  0.0000      0.985 1.00 0.00 0.00
#> 187     1  0.0000      0.985 1.00 0.00 0.00
#> 188     1  0.0000      0.985 1.00 0.00 0.00
#> 189     1  0.0000      0.985 1.00 0.00 0.00
#> 190     1  0.0000      0.985 1.00 0.00 0.00
#> 191     1  0.0000      0.985 1.00 0.00 0.00
#> 192     1  0.0000      0.985 1.00 0.00 0.00
#> 193     1  0.0000      0.985 1.00 0.00 0.00
#> 194     1  0.0000      0.985 1.00 0.00 0.00
#> 195     1  0.0000      0.985 1.00 0.00 0.00
#> 196     3  0.0000      0.982 0.00 0.00 1.00
#> 197     1  0.0000      0.985 1.00 0.00 0.00
#> 198     1  0.0000      0.985 1.00 0.00 0.00
#> 199     1  0.0000      0.985 1.00 0.00 0.00
#> 200     1  0.0000      0.985 1.00 0.00 0.00
#> 201     3  0.0000      0.982 0.00 0.00 1.00
#> 202     1  0.0000      0.985 1.00 0.00 0.00
#> 203     1  0.0000      0.985 1.00 0.00 0.00
#> 204     1  0.0000      0.985 1.00 0.00 0.00
#> 205     1  0.0000      0.985 1.00 0.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 2       3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 3       3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 4       3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 5       3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 6       3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 7       3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 8       3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 9       3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 10      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 11      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 12      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 13      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 14      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 15      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 16      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 17      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 18      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 19      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 20      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 21      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 22      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 23      2  0.3801     0.7804 0.00 0.78 0.00 0.22
#> 24      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 25      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 26      1  0.0707     0.8799 0.98 0.00 0.00 0.02
#> 27      1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 28      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 29      1  0.7525     0.3144 0.58 0.08 0.06 0.28
#> 30      2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 31      2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 32      1  0.3610     0.6421 0.80 0.00 0.00 0.20
#> 33      1  0.1637     0.8358 0.94 0.00 0.06 0.00
#> 34      2  0.7485     0.2193 0.38 0.44 0.00 0.18
#> 35      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 36      4  0.4581     0.5343 0.12 0.08 0.00 0.80
#> 37      2  0.6617     0.6627 0.00 0.60 0.12 0.28
#> 38      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 39      2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 40      1  0.2011     0.8403 0.92 0.00 0.00 0.08
#> 41      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 42      4  0.6933     0.4870 0.14 0.30 0.00 0.56
#> 43      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 44      4  0.4277     0.5527 0.00 0.28 0.00 0.72
#> 45      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 46      4  0.5661     0.6425 0.22 0.08 0.00 0.70
#> 47      3  0.4292     0.7627 0.08 0.00 0.82 0.10
#> 48      4  0.4713     0.5833 0.36 0.00 0.00 0.64
#> 49      2  0.3801     0.7804 0.00 0.78 0.00 0.22
#> 50      2  0.3975     0.7750 0.00 0.76 0.00 0.24
#> 51      2  0.3801     0.7804 0.00 0.78 0.00 0.22
#> 52      2  0.3172     0.7903 0.00 0.84 0.00 0.16
#> 53      4  0.5570    -0.3137 0.02 0.44 0.00 0.54
#> 54      4  0.4522     0.6093 0.32 0.00 0.00 0.68
#> 55      4  0.4790     0.5656 0.38 0.00 0.00 0.62
#> 56      4  0.4790     0.5656 0.38 0.00 0.00 0.62
#> 57      2  0.7357     0.5082 0.18 0.50 0.00 0.32
#> 58      4  0.4522     0.4898 0.00 0.32 0.00 0.68
#> 59      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 60      4  0.4948     0.2845 0.00 0.44 0.00 0.56
#> 61      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 62      3  0.0707     0.9516 0.00 0.02 0.98 0.00
#> 63      2  0.4994     0.1299 0.00 0.52 0.00 0.48
#> 64      4  0.7135     0.5815 0.24 0.20 0.00 0.56
#> 65      4  0.5271     0.4745 0.02 0.34 0.00 0.64
#> 66      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 67      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 68      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 69      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 70      4  0.5594     0.6455 0.10 0.18 0.00 0.72
#> 71      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 72      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 73      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 74      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 75      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 76      3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 77      1  0.2011     0.8212 0.92 0.00 0.00 0.08
#> 78      4  0.4790     0.5656 0.38 0.00 0.00 0.62
#> 79      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 80      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 81      4  0.5000     0.2984 0.50 0.00 0.00 0.50
#> 82      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 83      2  0.3610     0.7532 0.00 0.80 0.00 0.20
#> 84      1  0.1211     0.8570 0.96 0.00 0.00 0.04
#> 85      4  0.6611     0.1452 0.46 0.08 0.00 0.46
#> 86      4  0.4277     0.5527 0.00 0.28 0.00 0.72
#> 87      4  0.5327     0.6433 0.22 0.06 0.00 0.72
#> 88      1  0.3975     0.6189 0.76 0.00 0.00 0.24
#> 89      4  0.4855     0.3706 0.00 0.40 0.00 0.60
#> 90      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 91      1  0.4406     0.3466 0.70 0.00 0.00 0.30
#> 92      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 93      4  0.4790     0.5656 0.38 0.00 0.00 0.62
#> 94      4  0.4790     0.5656 0.38 0.00 0.00 0.62
#> 95      2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 96      2  0.6370     0.6691 0.10 0.62 0.00 0.28
#> 97      2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 98      1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 99      4  0.4790     0.5656 0.38 0.00 0.00 0.62
#> 100     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 101     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 102     3  0.5147     0.6534 0.06 0.00 0.74 0.20
#> 103     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 104     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 105     3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 106     1  0.4713     0.1856 0.64 0.00 0.00 0.36
#> 107     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 108     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 109     4  0.5657     0.6474 0.12 0.16 0.00 0.72
#> 110     1  0.4406     0.4232 0.70 0.00 0.00 0.30
#> 111     2  0.5767     0.7129 0.06 0.66 0.00 0.28
#> 112     2  0.4522     0.4157 0.00 0.68 0.00 0.32
#> 113     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 114     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 115     1  0.7707     0.0639 0.44 0.24 0.00 0.32
#> 116     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 117     2  0.5256     0.5240 0.04 0.70 0.00 0.26
#> 118     4  0.3247     0.5342 0.06 0.06 0.00 0.88
#> 119     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 120     3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 121     1  0.0707     0.8799 0.98 0.00 0.00 0.02
#> 122     4  0.5661     0.5439 0.08 0.22 0.00 0.70
#> 123     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 124     4  0.4277     0.5527 0.00 0.28 0.00 0.72
#> 125     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 126     2  0.3975     0.7759 0.00 0.76 0.00 0.24
#> 127     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 128     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 129     4  0.4790     0.5656 0.38 0.00 0.00 0.62
#> 130     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 131     2  0.3172     0.7918 0.00 0.84 0.00 0.16
#> 132     2  0.3610     0.7850 0.00 0.80 0.00 0.20
#> 133     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 134     2  0.0707     0.7785 0.00 0.98 0.00 0.02
#> 135     2  0.0000     0.7815 0.00 1.00 0.00 0.00
#> 136     2  0.3400     0.7881 0.00 0.82 0.00 0.18
#> 137     2  0.3400     0.7881 0.00 0.82 0.00 0.18
#> 138     2  0.1637     0.7883 0.00 0.94 0.00 0.06
#> 139     2  0.0707     0.7785 0.00 0.98 0.00 0.02
#> 140     2  0.2647     0.7914 0.00 0.88 0.00 0.12
#> 141     2  0.4134     0.7678 0.00 0.74 0.00 0.26
#> 142     3  0.3400     0.7696 0.00 0.18 0.82 0.00
#> 143     2  0.3400     0.7881 0.00 0.82 0.00 0.18
#> 144     3  0.3972     0.8078 0.00 0.08 0.84 0.08
#> 145     2  0.2647     0.7914 0.00 0.88 0.00 0.12
#> 146     2  0.0707     0.7785 0.00 0.98 0.00 0.02
#> 147     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 148     2  0.3801     0.7804 0.00 0.78 0.00 0.22
#> 149     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 150     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 151     2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 152     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 153     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 154     3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 155     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 156     2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 157     4  0.5486     0.6206 0.08 0.20 0.00 0.72
#> 158     2  0.3400     0.7896 0.00 0.82 0.00 0.18
#> 159     2  0.2647     0.7625 0.00 0.88 0.00 0.12
#> 160     2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 161     1  0.4939     0.5689 0.74 0.04 0.00 0.22
#> 162     2  0.4134     0.7679 0.00 0.74 0.00 0.26
#> 163     2  0.3172     0.7903 0.00 0.84 0.00 0.16
#> 164     2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 165     2  0.5767     0.7130 0.06 0.66 0.00 0.28
#> 166     2  0.4936     0.7464 0.02 0.70 0.00 0.28
#> 167     4  0.5000    -0.5383 0.00 0.50 0.00 0.50
#> 168     4  0.5956     0.5652 0.22 0.10 0.00 0.68
#> 169     2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 170     2  0.4134     0.7678 0.00 0.74 0.00 0.26
#> 171     2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 172     4  0.4713     0.5834 0.36 0.00 0.00 0.64
#> 173     4  0.4790     0.5656 0.38 0.00 0.00 0.62
#> 174     4  0.4948     0.4096 0.44 0.00 0.00 0.56
#> 175     2  0.3400     0.7896 0.00 0.82 0.00 0.18
#> 176     2  0.4277     0.7599 0.00 0.72 0.00 0.28
#> 177     2  0.2345     0.7595 0.00 0.90 0.00 0.10
#> 178     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 179     2  0.3400     0.6742 0.00 0.82 0.00 0.18
#> 180     4  0.5327     0.6174 0.06 0.22 0.00 0.72
#> 181     4  0.4977     0.4217 0.46 0.00 0.00 0.54
#> 182     4  0.4522     0.6091 0.32 0.00 0.00 0.68
#> 183     4  0.4994     0.3693 0.48 0.00 0.00 0.52
#> 184     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 185     4  0.4790     0.5656 0.38 0.00 0.00 0.62
#> 186     1  0.1211     0.8619 0.96 0.00 0.00 0.04
#> 187     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 188     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 189     4  0.4977     0.4217 0.46 0.00 0.00 0.54
#> 190     4  0.4907     0.5054 0.42 0.00 0.00 0.58
#> 191     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 192     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 193     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 194     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 195     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 196     3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 197     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 198     4  0.4855     0.5384 0.40 0.00 0.00 0.60
#> 199     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 200     1  0.2011     0.8403 0.92 0.00 0.00 0.08
#> 201     3  0.0000     0.9708 0.00 0.00 1.00 0.00
#> 202     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 203     1  0.2345     0.8230 0.90 0.00 0.00 0.10
#> 204     1  0.0000     0.8947 1.00 0.00 0.00 0.00
#> 205     1  0.0000     0.8947 1.00 0.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0212-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0212-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0212-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0212-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0212-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0212-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0212-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0212-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0212-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0212-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0212-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0212-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0212-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0212-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0212-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0212-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0212-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      204              8.37e-04 2
#> ATC:skmeans      202              2.62e-19 3
#> ATC:skmeans      184              2.27e-17 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node022

Parent node: Node02. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["022"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 9717 rows and 433 columns.
#>   Top rows (972) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-022-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-022-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.989         0.4236 0.577   0.577
#> 3 3 0.989           0.953       0.981         0.5380 0.718   0.534
#> 4 4 0.942           0.914       0.965         0.0927 0.897   0.722

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.982 0.00 1.00
#> 2       2   0.000      0.982 0.00 1.00
#> 3       2   0.000      0.982 0.00 1.00
#> 4       2   0.000      0.982 0.00 1.00
#> 5       2   0.000      0.982 0.00 1.00
#> 6       2   0.000      0.982 0.00 1.00
#> 7       2   0.000      0.982 0.00 1.00
#> 8       2   0.000      0.982 0.00 1.00
#> 9       2   0.000      0.982 0.00 1.00
#> 10      2   0.000      0.982 0.00 1.00
#> 11      2   0.000      0.982 0.00 1.00
#> 12      2   0.000      0.982 0.00 1.00
#> 13      2   0.000      0.982 0.00 1.00
#> 14      2   0.000      0.982 0.00 1.00
#> 15      2   0.000      0.982 0.00 1.00
#> 16      2   0.000      0.982 0.00 1.00
#> 17      2   0.000      0.982 0.00 1.00
#> 18      2   0.000      0.982 0.00 1.00
#> 19      2   0.000      0.982 0.00 1.00
#> 20      2   0.000      0.982 0.00 1.00
#> 21      2   0.000      0.982 0.00 1.00
#> 22      2   0.000      0.982 0.00 1.00
#> 23      2   0.000      0.982 0.00 1.00
#> 24      2   0.000      0.982 0.00 1.00
#> 25      2   0.000      0.982 0.00 1.00
#> 26      2   0.000      0.982 0.00 1.00
#> 27      2   0.000      0.982 0.00 1.00
#> 28      2   0.000      0.982 0.00 1.00
#> 29      2   0.000      0.982 0.00 1.00
#> 30      2   0.000      0.982 0.00 1.00
#> 31      2   0.000      0.982 0.00 1.00
#> 32      2   0.000      0.982 0.00 1.00
#> 33      2   0.000      0.982 0.00 1.00
#> 34      2   0.000      0.982 0.00 1.00
#> 35      2   0.000      0.982 0.00 1.00
#> 36      2   0.000      0.982 0.00 1.00
#> 37      2   0.000      0.982 0.00 1.00
#> 38      2   0.000      0.982 0.00 1.00
#> 39      2   0.000      0.982 0.00 1.00
#> 40      2   0.000      0.982 0.00 1.00
#> 41      2   0.000      0.982 0.00 1.00
#> 42      2   0.000      0.982 0.00 1.00
#> 43      2   0.000      0.982 0.00 1.00
#> 44      2   0.000      0.982 0.00 1.00
#> 45      2   0.000      0.982 0.00 1.00
#> 46      2   0.000      0.982 0.00 1.00
#> 47      2   0.000      0.982 0.00 1.00
#> 48      2   0.000      0.982 0.00 1.00
#> 49      2   0.000      0.982 0.00 1.00
#> 50      2   0.000      0.982 0.00 1.00
#> 51      2   0.000      0.982 0.00 1.00
#> 52      2   0.000      0.982 0.00 1.00
#> 53      2   0.000      0.982 0.00 1.00
#> 54      2   0.000      0.982 0.00 1.00
#> 55      2   0.000      0.982 0.00 1.00
#> 56      2   0.000      0.982 0.00 1.00
#> 57      2   0.000      0.982 0.00 1.00
#> 58      2   0.000      0.982 0.00 1.00
#> 59      2   0.000      0.982 0.00 1.00
#> 60      2   0.000      0.982 0.00 1.00
#> 61      2   0.000      0.982 0.00 1.00
#> 62      2   0.000      0.982 0.00 1.00
#> 63      2   0.000      0.982 0.00 1.00
#> 64      2   0.000      0.982 0.00 1.00
#> 65      2   0.000      0.982 0.00 1.00
#> 66      2   0.000      0.982 0.00 1.00
#> 67      2   0.000      0.982 0.00 1.00
#> 68      2   0.000      0.982 0.00 1.00
#> 69      2   0.000      0.982 0.00 1.00
#> 70      2   0.000      0.982 0.00 1.00
#> 71      2   0.000      0.982 0.00 1.00
#> 72      2   0.000      0.982 0.00 1.00
#> 73      1   0.000      0.992 1.00 0.00
#> 74      1   0.000      0.992 1.00 0.00
#> 75      1   0.000      0.992 1.00 0.00
#> 76      2   0.000      0.982 0.00 1.00
#> 77      1   0.000      0.992 1.00 0.00
#> 78      1   0.000      0.992 1.00 0.00
#> 79      1   0.000      0.992 1.00 0.00
#> 80      1   0.000      0.992 1.00 0.00
#> 81      1   0.000      0.992 1.00 0.00
#> 82      2   0.000      0.982 0.00 1.00
#> 83      1   0.000      0.992 1.00 0.00
#> 84      1   0.000      0.992 1.00 0.00
#> 85      2   0.000      0.982 0.00 1.00
#> 86      1   0.000      0.992 1.00 0.00
#> 87      2   0.000      0.982 0.00 1.00
#> 88      1   0.000      0.992 1.00 0.00
#> 89      1   0.000      0.992 1.00 0.00
#> 90      1   0.000      0.992 1.00 0.00
#> 91      1   0.000      0.992 1.00 0.00
#> 92      2   0.000      0.982 0.00 1.00
#> 93      2   0.990      0.228 0.44 0.56
#> 94      1   0.000      0.992 1.00 0.00
#> 95      1   0.000      0.992 1.00 0.00
#> 96      1   0.000      0.992 1.00 0.00
#> 97      2   0.000      0.982 0.00 1.00
#> 98      2   0.000      0.982 0.00 1.00
#> 99      2   0.000      0.982 0.00 1.00
#> 100     2   0.000      0.982 0.00 1.00
#> 101     2   0.000      0.982 0.00 1.00
#> 102     1   0.000      0.992 1.00 0.00
#> 103     1   0.000      0.992 1.00 0.00
#> 104     1   0.000      0.992 1.00 0.00
#> 105     1   0.958      0.379 0.62 0.38
#> 106     1   0.000      0.992 1.00 0.00
#> 107     1   0.000      0.992 1.00 0.00
#> 108     1   0.000      0.992 1.00 0.00
#> 109     1   0.000      0.992 1.00 0.00
#> 110     2   0.904      0.537 0.32 0.68
#> 111     1   0.000      0.992 1.00 0.00
#> 112     2   0.000      0.982 0.00 1.00
#> 113     1   0.000      0.992 1.00 0.00
#> 114     1   0.760      0.715 0.78 0.22
#> 115     1   0.000      0.992 1.00 0.00
#> 116     2   0.000      0.982 0.00 1.00
#> 117     2   0.000      0.982 0.00 1.00
#> 118     1   0.000      0.992 1.00 0.00
#> 119     2   0.000      0.982 0.00 1.00
#> 120     1   0.000      0.992 1.00 0.00
#> 121     1   0.000      0.992 1.00 0.00
#> 122     1   0.000      0.992 1.00 0.00
#> 123     2   0.000      0.982 0.00 1.00
#> 124     1   0.000      0.992 1.00 0.00
#> 125     1   0.000      0.992 1.00 0.00
#> 126     1   0.000      0.992 1.00 0.00
#> 127     2   0.000      0.982 0.00 1.00
#> 128     1   0.000      0.992 1.00 0.00
#> 129     1   0.000      0.992 1.00 0.00
#> 130     2   0.000      0.982 0.00 1.00
#> 131     1   0.000      0.992 1.00 0.00
#> 132     2   0.000      0.982 0.00 1.00
#> 133     2   0.000      0.982 0.00 1.00
#> 134     1   0.000      0.992 1.00 0.00
#> 135     1   0.000      0.992 1.00 0.00
#> 136     1   0.000      0.992 1.00 0.00
#> 137     1   0.000      0.992 1.00 0.00
#> 138     1   0.000      0.992 1.00 0.00
#> 139     1   0.000      0.992 1.00 0.00
#> 140     1   0.000      0.992 1.00 0.00
#> 141     1   0.000      0.992 1.00 0.00
#> 142     1   0.000      0.992 1.00 0.00
#> 143     1   0.000      0.992 1.00 0.00
#> 144     1   0.000      0.992 1.00 0.00
#> 145     1   0.000      0.992 1.00 0.00
#> 146     1   0.000      0.992 1.00 0.00
#> 147     1   0.000      0.992 1.00 0.00
#> 148     2   0.000      0.982 0.00 1.00
#> 149     2   0.000      0.982 0.00 1.00
#> 150     1   0.000      0.992 1.00 0.00
#> 151     1   0.000      0.992 1.00 0.00
#> 152     2   0.000      0.982 0.00 1.00
#> 153     2   0.327      0.923 0.06 0.94
#> 154     1   0.000      0.992 1.00 0.00
#> 155     1   0.000      0.992 1.00 0.00
#> 156     1   0.000      0.992 1.00 0.00
#> 157     2   0.000      0.982 0.00 1.00
#> 158     1   0.000      0.992 1.00 0.00
#> 159     1   0.000      0.992 1.00 0.00
#> 160     1   0.000      0.992 1.00 0.00
#> 161     2   0.000      0.982 0.00 1.00
#> 162     1   0.827      0.647 0.74 0.26
#> 163     1   0.000      0.992 1.00 0.00
#> 164     1   0.000      0.992 1.00 0.00
#> 165     2   0.000      0.982 0.00 1.00
#> 166     1   0.000      0.992 1.00 0.00
#> 167     2   0.000      0.982 0.00 1.00
#> 168     1   0.000      0.992 1.00 0.00
#> 169     1   0.000      0.992 1.00 0.00
#> 170     1   0.000      0.992 1.00 0.00
#> 171     1   0.000      0.992 1.00 0.00
#> 172     1   0.000      0.992 1.00 0.00
#> 173     1   0.904      0.524 0.68 0.32
#> 174     1   0.000      0.992 1.00 0.00
#> 175     2   0.000      0.982 0.00 1.00
#> 176     1   0.000      0.992 1.00 0.00
#> 177     1   0.000      0.992 1.00 0.00
#> 178     1   0.000      0.992 1.00 0.00
#> 179     1   0.000      0.992 1.00 0.00
#> 180     1   0.000      0.992 1.00 0.00
#> 181     1   0.000      0.992 1.00 0.00
#> 182     1   0.000      0.992 1.00 0.00
#> 183     1   0.000      0.992 1.00 0.00
#> 184     1   0.000      0.992 1.00 0.00
#> 185     1   0.000      0.992 1.00 0.00
#> 186     2   0.000      0.982 0.00 1.00
#> 187     1   0.000      0.992 1.00 0.00
#> 188     1   0.000      0.992 1.00 0.00
#> 189     1   0.000      0.992 1.00 0.00
#> 190     1   0.000      0.992 1.00 0.00
#> 191     1   0.000      0.992 1.00 0.00
#> 192     1   0.000      0.992 1.00 0.00
#> 193     1   0.000      0.992 1.00 0.00
#> 194     1   0.000      0.992 1.00 0.00
#> 195     1   0.000      0.992 1.00 0.00
#> 196     1   0.000      0.992 1.00 0.00
#> 197     1   0.000      0.992 1.00 0.00
#> 198     2   0.000      0.982 0.00 1.00
#> 199     1   0.000      0.992 1.00 0.00
#> 200     1   0.000      0.992 1.00 0.00
#> 201     1   0.000      0.992 1.00 0.00
#> 202     1   0.000      0.992 1.00 0.00
#> 203     1   0.000      0.992 1.00 0.00
#> 204     1   0.000      0.992 1.00 0.00
#> 205     1   0.000      0.992 1.00 0.00
#> 206     1   0.000      0.992 1.00 0.00
#> 207     1   0.000      0.992 1.00 0.00
#> 208     1   0.000      0.992 1.00 0.00
#> 209     2   0.000      0.982 0.00 1.00
#> 210     1   0.000      0.992 1.00 0.00
#> 211     1   0.000      0.992 1.00 0.00
#> 212     1   0.760      0.716 0.78 0.22
#> 213     1   0.000      0.992 1.00 0.00
#> 214     1   0.000      0.992 1.00 0.00
#> 215     2   0.990      0.227 0.44 0.56
#> 216     1   0.000      0.992 1.00 0.00
#> 217     1   0.000      0.992 1.00 0.00
#> 218     2   0.000      0.982 0.00 1.00
#> 219     2   0.242      0.944 0.04 0.96
#> 220     1   0.000      0.992 1.00 0.00
#> 221     1   0.000      0.992 1.00 0.00
#> 222     1   0.000      0.992 1.00 0.00
#> 223     1   0.000      0.992 1.00 0.00
#> 224     1   0.000      0.992 1.00 0.00
#> 225     1   0.000      0.992 1.00 0.00
#> 226     1   0.958      0.380 0.62 0.38
#> 227     1   0.000      0.992 1.00 0.00
#> 228     1   0.000      0.992 1.00 0.00
#> 229     1   0.000      0.992 1.00 0.00
#> 230     2   0.795      0.686 0.24 0.76
#> 231     1   0.000      0.992 1.00 0.00
#> 232     2   0.000      0.982 0.00 1.00
#> 233     1   0.000      0.992 1.00 0.00
#> 234     1   0.000      0.992 1.00 0.00
#> 235     2   0.000      0.982 0.00 1.00
#> 236     1   0.000      0.992 1.00 0.00
#> 237     2   0.000      0.982 0.00 1.00
#> 238     1   0.000      0.992 1.00 0.00
#> 239     1   0.000      0.992 1.00 0.00
#> 240     1   0.000      0.992 1.00 0.00
#> 241     1   0.000      0.992 1.00 0.00
#> 242     1   0.000      0.992 1.00 0.00
#> 243     1   0.000      0.992 1.00 0.00
#> 244     1   0.000      0.992 1.00 0.00
#> 245     1   0.000      0.992 1.00 0.00
#> 246     1   0.000      0.992 1.00 0.00
#> 247     1   0.000      0.992 1.00 0.00
#> 248     2   0.000      0.982 0.00 1.00
#> 249     1   0.000      0.992 1.00 0.00
#> 250     1   0.000      0.992 1.00 0.00
#> 251     1   0.000      0.992 1.00 0.00
#> 252     1   0.000      0.992 1.00 0.00
#> 253     1   0.000      0.992 1.00 0.00
#> 254     1   0.000      0.992 1.00 0.00
#> 255     1   0.000      0.992 1.00 0.00
#> 256     1   0.000      0.992 1.00 0.00
#> 257     1   0.000      0.992 1.00 0.00
#> 258     1   0.000      0.992 1.00 0.00
#> 259     1   0.000      0.992 1.00 0.00
#> 260     1   0.000      0.992 1.00 0.00
#> 261     1   0.000      0.992 1.00 0.00
#> 262     1   0.000      0.992 1.00 0.00
#> 263     1   0.000      0.992 1.00 0.00
#> 264     1   0.000      0.992 1.00 0.00
#> 265     1   0.000      0.992 1.00 0.00
#> 266     1   0.000      0.992 1.00 0.00
#> 267     1   0.000      0.992 1.00 0.00
#> 268     1   0.000      0.992 1.00 0.00
#> 269     1   0.000      0.992 1.00 0.00
#> 270     1   0.000      0.992 1.00 0.00
#> 271     2   0.000      0.982 0.00 1.00
#> 272     1   0.000      0.992 1.00 0.00
#> 273     1   0.000      0.992 1.00 0.00
#> 274     1   0.000      0.992 1.00 0.00
#> 275     1   0.000      0.992 1.00 0.00
#> 276     1   0.000      0.992 1.00 0.00
#> 277     1   0.000      0.992 1.00 0.00
#> 278     1   0.000      0.992 1.00 0.00
#> 279     1   0.000      0.992 1.00 0.00
#> 280     1   0.000      0.992 1.00 0.00
#> 281     1   0.000      0.992 1.00 0.00
#> 282     2   0.000      0.982 0.00 1.00
#> 283     1   0.000      0.992 1.00 0.00
#> 284     1   0.000      0.992 1.00 0.00
#> 285     1   0.000      0.992 1.00 0.00
#> 286     1   0.000      0.992 1.00 0.00
#> 287     1   0.000      0.992 1.00 0.00
#> 288     1   0.000      0.992 1.00 0.00
#> 289     1   0.000      0.992 1.00 0.00
#> 290     1   0.000      0.992 1.00 0.00
#> 291     1   0.000      0.992 1.00 0.00
#> 292     1   0.000      0.992 1.00 0.00
#> 293     1   0.000      0.992 1.00 0.00
#> 294     2   0.000      0.982 0.00 1.00
#> 295     1   0.000      0.992 1.00 0.00
#> 296     1   0.000      0.992 1.00 0.00
#> 297     2   0.995      0.161 0.46 0.54
#> 298     2   0.000      0.982 0.00 1.00
#> 299     1   0.000      0.992 1.00 0.00
#> 300     1   0.000      0.992 1.00 0.00
#> 301     1   0.000      0.992 1.00 0.00
#> 302     1   0.000      0.992 1.00 0.00
#> 303     1   0.000      0.992 1.00 0.00
#> 304     1   0.000      0.992 1.00 0.00
#> 305     1   0.000      0.992 1.00 0.00
#> 306     1   0.000      0.992 1.00 0.00
#> 307     1   0.000      0.992 1.00 0.00
#> 308     1   0.000      0.992 1.00 0.00
#> 309     1   0.000      0.992 1.00 0.00
#> 310     1   0.000      0.992 1.00 0.00
#> 311     1   0.000      0.992 1.00 0.00
#> 312     1   0.000      0.992 1.00 0.00
#> 313     1   0.000      0.992 1.00 0.00
#> 314     1   0.000      0.992 1.00 0.00
#> 315     1   0.402      0.907 0.92 0.08
#> 316     1   0.000      0.992 1.00 0.00
#> 317     2   0.000      0.982 0.00 1.00
#> 318     1   0.000      0.992 1.00 0.00
#> 319     1   0.000      0.992 1.00 0.00
#> 320     1   0.000      0.992 1.00 0.00
#> 321     1   0.000      0.992 1.00 0.00
#> 322     1   0.000      0.992 1.00 0.00
#> 323     2   0.881      0.577 0.30 0.70
#> 324     1   0.000      0.992 1.00 0.00
#> 325     1   0.000      0.992 1.00 0.00
#> 326     1   0.000      0.992 1.00 0.00
#> 327     1   0.000      0.992 1.00 0.00
#> 328     1   0.000      0.992 1.00 0.00
#> 329     1   0.000      0.992 1.00 0.00
#> 330     1   0.000      0.992 1.00 0.00
#> 331     1   0.000      0.992 1.00 0.00
#> 332     1   0.000      0.992 1.00 0.00
#> 333     1   0.000      0.992 1.00 0.00
#> 334     1   0.000      0.992 1.00 0.00
#> 335     1   0.000      0.992 1.00 0.00
#> 336     1   0.000      0.992 1.00 0.00
#> 337     1   0.000      0.992 1.00 0.00
#> 338     1   0.000      0.992 1.00 0.00
#> 339     1   0.000      0.992 1.00 0.00
#> 340     2   0.000      0.982 0.00 1.00
#> 341     1   0.000      0.992 1.00 0.00
#> 342     1   0.000      0.992 1.00 0.00
#> 343     1   0.000      0.992 1.00 0.00
#> 344     1   0.000      0.992 1.00 0.00
#> 345     1   0.000      0.992 1.00 0.00
#> 346     1   0.000      0.992 1.00 0.00
#> 347     1   0.000      0.992 1.00 0.00
#> 348     1   0.000      0.992 1.00 0.00
#> 349     1   0.000      0.992 1.00 0.00
#> 350     1   0.000      0.992 1.00 0.00
#> 351     1   0.000      0.992 1.00 0.00
#> 352     1   0.000      0.992 1.00 0.00
#> 353     1   0.000      0.992 1.00 0.00
#> 354     1   0.000      0.992 1.00 0.00
#> 355     1   0.000      0.992 1.00 0.00
#> 356     1   0.000      0.992 1.00 0.00
#> 357     1   0.000      0.992 1.00 0.00
#> 358     1   0.000      0.992 1.00 0.00
#> 359     1   0.000      0.992 1.00 0.00
#> 360     1   0.000      0.992 1.00 0.00
#> 361     1   0.000      0.992 1.00 0.00
#> 362     1   0.000      0.992 1.00 0.00
#> 363     1   0.000      0.992 1.00 0.00
#> 364     1   0.000      0.992 1.00 0.00
#> 365     1   0.000      0.992 1.00 0.00
#> 366     1   0.000      0.992 1.00 0.00
#> 367     1   0.000      0.992 1.00 0.00
#> 368     1   0.000      0.992 1.00 0.00
#> 369     2   0.000      0.982 0.00 1.00
#> 370     1   0.000      0.992 1.00 0.00
#> 371     1   0.000      0.992 1.00 0.00
#> 372     1   0.795      0.682 0.76 0.24
#> 373     1   0.795      0.681 0.76 0.24
#> 374     2   0.000      0.982 0.00 1.00
#> 375     1   0.000      0.992 1.00 0.00
#> 376     1   0.000      0.992 1.00 0.00
#> 377     1   0.000      0.992 1.00 0.00
#> 378     1   0.000      0.992 1.00 0.00
#> 379     1   0.000      0.992 1.00 0.00
#> 380     1   0.000      0.992 1.00 0.00
#> 381     1   0.000      0.992 1.00 0.00
#> 382     1   0.000      0.992 1.00 0.00
#> 383     1   0.000      0.992 1.00 0.00
#> 384     1   0.000      0.992 1.00 0.00
#> 385     1   0.000      0.992 1.00 0.00
#> 386     1   0.000      0.992 1.00 0.00
#> 387     1   0.000      0.992 1.00 0.00
#> 388     1   0.000      0.992 1.00 0.00
#> 389     1   0.000      0.992 1.00 0.00
#> 390     1   0.000      0.992 1.00 0.00
#> 391     1   0.000      0.992 1.00 0.00
#> 392     2   0.000      0.982 0.00 1.00
#> 393     1   0.000      0.992 1.00 0.00
#> 394     1   0.000      0.992 1.00 0.00
#> 395     1   0.000      0.992 1.00 0.00
#> 396     1   0.000      0.992 1.00 0.00
#> 397     1   0.000      0.992 1.00 0.00
#> 398     1   0.000      0.992 1.00 0.00
#> 399     1   0.000      0.992 1.00 0.00
#> 400     1   0.000      0.992 1.00 0.00
#> 401     1   0.000      0.992 1.00 0.00
#> 402     1   0.000      0.992 1.00 0.00
#> 403     1   0.000      0.992 1.00 0.00
#> 404     1   0.000      0.992 1.00 0.00
#> 405     1   0.000      0.992 1.00 0.00
#> 406     1   0.000      0.992 1.00 0.00
#> 407     1   0.000      0.992 1.00 0.00
#> 408     2   0.000      0.982 0.00 1.00
#> 409     2   0.000      0.982 0.00 1.00
#> 410     2   0.000      0.982 0.00 1.00
#> 411     2   0.000      0.982 0.00 1.00
#> 412     2   0.000      0.982 0.00 1.00
#> 413     2   0.000      0.982 0.00 1.00
#> 414     2   0.000      0.982 0.00 1.00
#> 415     1   0.000      0.992 1.00 0.00
#> 416     1   0.000      0.992 1.00 0.00
#> 417     1   0.000      0.992 1.00 0.00
#> 418     1   0.000      0.992 1.00 0.00
#> 419     1   0.000      0.992 1.00 0.00
#> 420     1   0.000      0.992 1.00 0.00
#> 421     1   0.000      0.992 1.00 0.00
#> 422     1   0.000      0.992 1.00 0.00
#> 423     1   0.000      0.992 1.00 0.00
#> 424     1   0.000      0.992 1.00 0.00
#> 425     1   0.000      0.992 1.00 0.00
#> 426     1   0.000      0.992 1.00 0.00
#> 427     1   0.000      0.992 1.00 0.00
#> 428     1   0.000      0.992 1.00 0.00
#> 429     1   0.000      0.992 1.00 0.00
#> 430     1   0.000      0.992 1.00 0.00
#> 431     1   0.000      0.992 1.00 0.00
#> 432     1   0.000      0.992 1.00 0.00
#> 433     1   0.000      0.992 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       2  0.0000      0.995 0.00 1.00 0.00
#> 2       2  0.0000      0.995 0.00 1.00 0.00
#> 3       2  0.0000      0.995 0.00 1.00 0.00
#> 4       2  0.0000      0.995 0.00 1.00 0.00
#> 5       2  0.0000      0.995 0.00 1.00 0.00
#> 6       2  0.0000      0.995 0.00 1.00 0.00
#> 7       2  0.0000      0.995 0.00 1.00 0.00
#> 8       2  0.0000      0.995 0.00 1.00 0.00
#> 9       2  0.0000      0.995 0.00 1.00 0.00
#> 10      2  0.0000      0.995 0.00 1.00 0.00
#> 11      2  0.0000      0.995 0.00 1.00 0.00
#> 12      2  0.0000      0.995 0.00 1.00 0.00
#> 13      2  0.0000      0.995 0.00 1.00 0.00
#> 14      2  0.0000      0.995 0.00 1.00 0.00
#> 15      2  0.0000      0.995 0.00 1.00 0.00
#> 16      2  0.0000      0.995 0.00 1.00 0.00
#> 17      2  0.0000      0.995 0.00 1.00 0.00
#> 18      2  0.0000      0.995 0.00 1.00 0.00
#> 19      2  0.0000      0.995 0.00 1.00 0.00
#> 20      2  0.0000      0.995 0.00 1.00 0.00
#> 21      2  0.0000      0.995 0.00 1.00 0.00
#> 22      2  0.0000      0.995 0.00 1.00 0.00
#> 23      2  0.0000      0.995 0.00 1.00 0.00
#> 24      2  0.0000      0.995 0.00 1.00 0.00
#> 25      2  0.0000      0.995 0.00 1.00 0.00
#> 26      2  0.0000      0.995 0.00 1.00 0.00
#> 27      2  0.0000      0.995 0.00 1.00 0.00
#> 28      2  0.0000      0.995 0.00 1.00 0.00
#> 29      2  0.0000      0.995 0.00 1.00 0.00
#> 30      2  0.0000      0.995 0.00 1.00 0.00
#> 31      2  0.0000      0.995 0.00 1.00 0.00
#> 32      2  0.0000      0.995 0.00 1.00 0.00
#> 33      2  0.0000      0.995 0.00 1.00 0.00
#> 34      2  0.0000      0.995 0.00 1.00 0.00
#> 35      2  0.0000      0.995 0.00 1.00 0.00
#> 36      2  0.0000      0.995 0.00 1.00 0.00
#> 37      2  0.0000      0.995 0.00 1.00 0.00
#> 38      2  0.0000      0.995 0.00 1.00 0.00
#> 39      2  0.0000      0.995 0.00 1.00 0.00
#> 40      2  0.0000      0.995 0.00 1.00 0.00
#> 41      2  0.0000      0.995 0.00 1.00 0.00
#> 42      2  0.0000      0.995 0.00 1.00 0.00
#> 43      2  0.0000      0.995 0.00 1.00 0.00
#> 44      2  0.0000      0.995 0.00 1.00 0.00
#> 45      2  0.0000      0.995 0.00 1.00 0.00
#> 46      2  0.0000      0.995 0.00 1.00 0.00
#> 47      2  0.0000      0.995 0.00 1.00 0.00
#> 48      2  0.0000      0.995 0.00 1.00 0.00
#> 49      2  0.0000      0.995 0.00 1.00 0.00
#> 50      2  0.0000      0.995 0.00 1.00 0.00
#> 51      2  0.0000      0.995 0.00 1.00 0.00
#> 52      2  0.0000      0.995 0.00 1.00 0.00
#> 53      2  0.0000      0.995 0.00 1.00 0.00
#> 54      2  0.0000      0.995 0.00 1.00 0.00
#> 55      2  0.0000      0.995 0.00 1.00 0.00
#> 56      2  0.0000      0.995 0.00 1.00 0.00
#> 57      2  0.0000      0.995 0.00 1.00 0.00
#> 58      2  0.0000      0.995 0.00 1.00 0.00
#> 59      2  0.0000      0.995 0.00 1.00 0.00
#> 60      2  0.0000      0.995 0.00 1.00 0.00
#> 61      2  0.0000      0.995 0.00 1.00 0.00
#> 62      2  0.0000      0.995 0.00 1.00 0.00
#> 63      2  0.0000      0.995 0.00 1.00 0.00
#> 64      2  0.0000      0.995 0.00 1.00 0.00
#> 65      2  0.0000      0.995 0.00 1.00 0.00
#> 66      2  0.0000      0.995 0.00 1.00 0.00
#> 67      2  0.0000      0.995 0.00 1.00 0.00
#> 68      2  0.0000      0.995 0.00 1.00 0.00
#> 69      2  0.0000      0.995 0.00 1.00 0.00
#> 70      2  0.0000      0.995 0.00 1.00 0.00
#> 71      2  0.0000      0.995 0.00 1.00 0.00
#> 72      2  0.0000      0.995 0.00 1.00 0.00
#> 73      1  0.0000      0.978 1.00 0.00 0.00
#> 74      3  0.0000      0.971 0.00 0.00 1.00
#> 75      1  0.0000      0.978 1.00 0.00 0.00
#> 76      2  0.0000      0.995 0.00 1.00 0.00
#> 77      1  0.0000      0.978 1.00 0.00 0.00
#> 78      3  0.0000      0.971 0.00 0.00 1.00
#> 79      1  0.0000      0.978 1.00 0.00 0.00
#> 80      1  0.0000      0.978 1.00 0.00 0.00
#> 81      1  0.0000      0.978 1.00 0.00 0.00
#> 82      3  0.0000      0.971 0.00 0.00 1.00
#> 83      3  0.0000      0.971 0.00 0.00 1.00
#> 84      1  0.0000      0.978 1.00 0.00 0.00
#> 85      2  0.0000      0.995 0.00 1.00 0.00
#> 86      3  0.0000      0.971 0.00 0.00 1.00
#> 87      3  0.0000      0.971 0.00 0.00 1.00
#> 88      1  0.0000      0.978 1.00 0.00 0.00
#> 89      1  0.0000      0.978 1.00 0.00 0.00
#> 90      3  0.6244      0.220 0.44 0.00 0.56
#> 91      1  0.0000      0.978 1.00 0.00 0.00
#> 92      2  0.0000      0.995 0.00 1.00 0.00
#> 93      3  0.0000      0.971 0.00 0.00 1.00
#> 94      1  0.0000      0.978 1.00 0.00 0.00
#> 95      1  0.0000      0.978 1.00 0.00 0.00
#> 96      1  0.0000      0.978 1.00 0.00 0.00
#> 97      3  0.0892      0.954 0.00 0.02 0.98
#> 98      3  0.5016      0.677 0.00 0.24 0.76
#> 99      3  0.0000      0.971 0.00 0.00 1.00
#> 100     2  0.1529      0.955 0.00 0.96 0.04
#> 101     2  0.0000      0.995 0.00 1.00 0.00
#> 102     1  0.0000      0.978 1.00 0.00 0.00
#> 103     1  0.0000      0.978 1.00 0.00 0.00
#> 104     1  0.0892      0.960 0.98 0.00 0.02
#> 105     3  0.0000      0.971 0.00 0.00 1.00
#> 106     1  0.0000      0.978 1.00 0.00 0.00
#> 107     1  0.0000      0.978 1.00 0.00 0.00
#> 108     3  0.3340      0.854 0.12 0.00 0.88
#> 109     3  0.0000      0.971 0.00 0.00 1.00
#> 110     3  0.0000      0.971 0.00 0.00 1.00
#> 111     1  0.0000      0.978 1.00 0.00 0.00
#> 112     3  0.0000      0.971 0.00 0.00 1.00
#> 113     3  0.0892      0.954 0.02 0.00 0.98
#> 114     3  0.0000      0.971 0.00 0.00 1.00
#> 115     1  0.0000      0.978 1.00 0.00 0.00
#> 116     3  0.0000      0.971 0.00 0.00 1.00
#> 117     2  0.0000      0.995 0.00 1.00 0.00
#> 118     1  0.0000      0.978 1.00 0.00 0.00
#> 119     2  0.0000      0.995 0.00 1.00 0.00
#> 120     1  0.0000      0.978 1.00 0.00 0.00
#> 121     3  0.0000      0.971 0.00 0.00 1.00
#> 122     3  0.0000      0.971 0.00 0.00 1.00
#> 123     2  0.0000      0.995 0.00 1.00 0.00
#> 124     1  0.3340      0.854 0.88 0.00 0.12
#> 125     1  0.0000      0.978 1.00 0.00 0.00
#> 126     3  0.0000      0.971 0.00 0.00 1.00
#> 127     2  0.0000      0.995 0.00 1.00 0.00
#> 128     3  0.0000      0.971 0.00 0.00 1.00
#> 129     1  0.0000      0.978 1.00 0.00 0.00
#> 130     2  0.0000      0.995 0.00 1.00 0.00
#> 131     3  0.0000      0.971 0.00 0.00 1.00
#> 132     3  0.0000      0.971 0.00 0.00 1.00
#> 133     2  0.0000      0.995 0.00 1.00 0.00
#> 134     3  0.0000      0.971 0.00 0.00 1.00
#> 135     1  0.0000      0.978 1.00 0.00 0.00
#> 136     1  0.0000      0.978 1.00 0.00 0.00
#> 137     3  0.0892      0.954 0.02 0.00 0.98
#> 138     3  0.0000      0.971 0.00 0.00 1.00
#> 139     1  0.0000      0.978 1.00 0.00 0.00
#> 140     1  0.0000      0.978 1.00 0.00 0.00
#> 141     3  0.0000      0.971 0.00 0.00 1.00
#> 142     3  0.0000      0.971 0.00 0.00 1.00
#> 143     3  0.0000      0.971 0.00 0.00 1.00
#> 144     3  0.0000      0.971 0.00 0.00 1.00
#> 145     1  0.0000      0.978 1.00 0.00 0.00
#> 146     3  0.0000      0.971 0.00 0.00 1.00
#> 147     3  0.0000      0.971 0.00 0.00 1.00
#> 148     2  0.0000      0.995 0.00 1.00 0.00
#> 149     2  0.0000      0.995 0.00 1.00 0.00
#> 150     1  0.0000      0.978 1.00 0.00 0.00
#> 151     3  0.5397      0.617 0.28 0.00 0.72
#> 152     3  0.0000      0.971 0.00 0.00 1.00
#> 153     3  0.0000      0.971 0.00 0.00 1.00
#> 154     3  0.0000      0.971 0.00 0.00 1.00
#> 155     3  0.0000      0.971 0.00 0.00 1.00
#> 156     3  0.2066      0.917 0.06 0.00 0.94
#> 157     3  0.0000      0.971 0.00 0.00 1.00
#> 158     3  0.0000      0.971 0.00 0.00 1.00
#> 159     3  0.0000      0.971 0.00 0.00 1.00
#> 160     1  0.0000      0.978 1.00 0.00 0.00
#> 161     2  0.2066      0.930 0.06 0.94 0.00
#> 162     3  0.0000      0.971 0.00 0.00 1.00
#> 163     1  0.0000      0.978 1.00 0.00 0.00
#> 164     1  0.0000      0.978 1.00 0.00 0.00
#> 165     2  0.0000      0.995 0.00 1.00 0.00
#> 166     3  0.1529      0.937 0.04 0.00 0.96
#> 167     3  0.3340      0.850 0.00 0.12 0.88
#> 168     3  0.0000      0.971 0.00 0.00 1.00
#> 169     3  0.0000      0.971 0.00 0.00 1.00
#> 170     3  0.0000      0.971 0.00 0.00 1.00
#> 171     3  0.0000      0.971 0.00 0.00 1.00
#> 172     1  0.0000      0.978 1.00 0.00 0.00
#> 173     3  0.0000      0.971 0.00 0.00 1.00
#> 174     1  0.0000      0.978 1.00 0.00 0.00
#> 175     3  0.0000      0.971 0.00 0.00 1.00
#> 176     3  0.0000      0.971 0.00 0.00 1.00
#> 177     1  0.0000      0.978 1.00 0.00 0.00
#> 178     3  0.0000      0.971 0.00 0.00 1.00
#> 179     3  0.0000      0.971 0.00 0.00 1.00
#> 180     3  0.0000      0.971 0.00 0.00 1.00
#> 181     1  0.0000      0.978 1.00 0.00 0.00
#> 182     1  0.0000      0.978 1.00 0.00 0.00
#> 183     1  0.0000      0.978 1.00 0.00 0.00
#> 184     1  0.0000      0.978 1.00 0.00 0.00
#> 185     3  0.2537      0.896 0.08 0.00 0.92
#> 186     2  0.0000      0.995 0.00 1.00 0.00
#> 187     3  0.0000      0.971 0.00 0.00 1.00
#> 188     1  0.0000      0.978 1.00 0.00 0.00
#> 189     1  0.0000      0.978 1.00 0.00 0.00
#> 190     1  0.0000      0.978 1.00 0.00 0.00
#> 191     1  0.0000      0.978 1.00 0.00 0.00
#> 192     1  0.5560      0.570 0.70 0.00 0.30
#> 193     1  0.0000      0.978 1.00 0.00 0.00
#> 194     1  0.0000      0.978 1.00 0.00 0.00
#> 195     1  0.0000      0.978 1.00 0.00 0.00
#> 196     1  0.0000      0.978 1.00 0.00 0.00
#> 197     3  0.0000      0.971 0.00 0.00 1.00
#> 198     2  0.0000      0.995 0.00 1.00 0.00
#> 199     1  0.0000      0.978 1.00 0.00 0.00
#> 200     3  0.0000      0.971 0.00 0.00 1.00
#> 201     3  0.0000      0.971 0.00 0.00 1.00
#> 202     1  0.2066      0.921 0.94 0.00 0.06
#> 203     3  0.0000      0.971 0.00 0.00 1.00
#> 204     3  0.0000      0.971 0.00 0.00 1.00
#> 205     3  0.0000      0.971 0.00 0.00 1.00
#> 206     3  0.0000      0.971 0.00 0.00 1.00
#> 207     3  0.0000      0.971 0.00 0.00 1.00
#> 208     1  0.0000      0.978 1.00 0.00 0.00
#> 209     2  0.0000      0.995 0.00 1.00 0.00
#> 210     1  0.0000      0.978 1.00 0.00 0.00
#> 211     1  0.0000      0.978 1.00 0.00 0.00
#> 212     3  0.0000      0.971 0.00 0.00 1.00
#> 213     1  0.0000      0.978 1.00 0.00 0.00
#> 214     3  0.0000      0.971 0.00 0.00 1.00
#> 215     3  0.0000      0.971 0.00 0.00 1.00
#> 216     3  0.0000      0.971 0.00 0.00 1.00
#> 217     1  0.0000      0.978 1.00 0.00 0.00
#> 218     2  0.0000      0.995 0.00 1.00 0.00
#> 219     2  0.5560      0.568 0.30 0.70 0.00
#> 220     1  0.0000      0.978 1.00 0.00 0.00
#> 221     1  0.0000      0.978 1.00 0.00 0.00
#> 222     1  0.0000      0.978 1.00 0.00 0.00
#> 223     1  0.0000      0.978 1.00 0.00 0.00
#> 224     1  0.0000      0.978 1.00 0.00 0.00
#> 225     1  0.0000      0.978 1.00 0.00 0.00
#> 226     3  0.0000      0.971 0.00 0.00 1.00
#> 227     1  0.0000      0.978 1.00 0.00 0.00
#> 228     3  0.0000      0.971 0.00 0.00 1.00
#> 229     3  0.0892      0.954 0.02 0.00 0.98
#> 230     3  0.0000      0.971 0.00 0.00 1.00
#> 231     3  0.2066      0.917 0.06 0.00 0.94
#> 232     2  0.0000      0.995 0.00 1.00 0.00
#> 233     3  0.2066      0.917 0.06 0.00 0.94
#> 234     1  0.0000      0.978 1.00 0.00 0.00
#> 235     2  0.0000      0.995 0.00 1.00 0.00
#> 236     1  0.5835      0.485 0.66 0.00 0.34
#> 237     2  0.0000      0.995 0.00 1.00 0.00
#> 238     1  0.0000      0.978 1.00 0.00 0.00
#> 239     1  0.0000      0.978 1.00 0.00 0.00
#> 240     1  0.0000      0.978 1.00 0.00 0.00
#> 241     1  0.0000      0.978 1.00 0.00 0.00
#> 242     1  0.0000      0.978 1.00 0.00 0.00
#> 243     1  0.0000      0.978 1.00 0.00 0.00
#> 244     1  0.0000      0.978 1.00 0.00 0.00
#> 245     1  0.0000      0.978 1.00 0.00 0.00
#> 246     1  0.0000      0.978 1.00 0.00 0.00
#> 247     3  0.0000      0.971 0.00 0.00 1.00
#> 248     2  0.0000      0.995 0.00 1.00 0.00
#> 249     3  0.0892      0.954 0.02 0.00 0.98
#> 250     1  0.0000      0.978 1.00 0.00 0.00
#> 251     1  0.0000      0.978 1.00 0.00 0.00
#> 252     1  0.0000      0.978 1.00 0.00 0.00
#> 253     3  0.5216      0.653 0.26 0.00 0.74
#> 254     1  0.0000      0.978 1.00 0.00 0.00
#> 255     1  0.0000      0.978 1.00 0.00 0.00
#> 256     1  0.0000      0.978 1.00 0.00 0.00
#> 257     1  0.0000      0.978 1.00 0.00 0.00
#> 258     1  0.0000      0.978 1.00 0.00 0.00
#> 259     1  0.0000      0.978 1.00 0.00 0.00
#> 260     3  0.6280      0.153 0.46 0.00 0.54
#> 261     1  0.0000      0.978 1.00 0.00 0.00
#> 262     1  0.0000      0.978 1.00 0.00 0.00
#> 263     3  0.0000      0.971 0.00 0.00 1.00
#> 264     1  0.0000      0.978 1.00 0.00 0.00
#> 265     1  0.0000      0.978 1.00 0.00 0.00
#> 266     3  0.5397      0.616 0.28 0.00 0.72
#> 267     3  0.0000      0.971 0.00 0.00 1.00
#> 268     3  0.1529      0.937 0.04 0.00 0.96
#> 269     1  0.0000      0.978 1.00 0.00 0.00
#> 270     1  0.0000      0.978 1.00 0.00 0.00
#> 271     2  0.0000      0.995 0.00 1.00 0.00
#> 272     3  0.0000      0.971 0.00 0.00 1.00
#> 273     3  0.0000      0.971 0.00 0.00 1.00
#> 274     1  0.0000      0.978 1.00 0.00 0.00
#> 275     1  0.0000      0.978 1.00 0.00 0.00
#> 276     1  0.0000      0.978 1.00 0.00 0.00
#> 277     1  0.0000      0.978 1.00 0.00 0.00
#> 278     1  0.3686      0.829 0.86 0.00 0.14
#> 279     1  0.0000      0.978 1.00 0.00 0.00
#> 280     3  0.0000      0.971 0.00 0.00 1.00
#> 281     3  0.0000      0.971 0.00 0.00 1.00
#> 282     3  0.0000      0.971 0.00 0.00 1.00
#> 283     3  0.0000      0.971 0.00 0.00 1.00
#> 284     1  0.0000      0.978 1.00 0.00 0.00
#> 285     1  0.0000      0.978 1.00 0.00 0.00
#> 286     3  0.0000      0.971 0.00 0.00 1.00
#> 287     1  0.0000      0.978 1.00 0.00 0.00
#> 288     3  0.0000      0.971 0.00 0.00 1.00
#> 289     3  0.0000      0.971 0.00 0.00 1.00
#> 290     3  0.0892      0.954 0.02 0.00 0.98
#> 291     3  0.0000      0.971 0.00 0.00 1.00
#> 292     1  0.6244      0.214 0.56 0.00 0.44
#> 293     1  0.0000      0.978 1.00 0.00 0.00
#> 294     3  0.0000      0.971 0.00 0.00 1.00
#> 295     1  0.0000      0.978 1.00 0.00 0.00
#> 296     1  0.0000      0.978 1.00 0.00 0.00
#> 297     3  0.0000      0.971 0.00 0.00 1.00
#> 298     2  0.1529      0.955 0.00 0.96 0.04
#> 299     1  0.6244      0.215 0.56 0.00 0.44
#> 300     1  0.0000      0.978 1.00 0.00 0.00
#> 301     3  0.0000      0.971 0.00 0.00 1.00
#> 302     1  0.0000      0.978 1.00 0.00 0.00
#> 303     3  0.0000      0.971 0.00 0.00 1.00
#> 304     3  0.0000      0.971 0.00 0.00 1.00
#> 305     1  0.0000      0.978 1.00 0.00 0.00
#> 306     3  0.0000      0.971 0.00 0.00 1.00
#> 307     1  0.0000      0.978 1.00 0.00 0.00
#> 308     3  0.0000      0.971 0.00 0.00 1.00
#> 309     3  0.0000      0.971 0.00 0.00 1.00
#> 310     1  0.0000      0.978 1.00 0.00 0.00
#> 311     1  0.0000      0.978 1.00 0.00 0.00
#> 312     1  0.0000      0.978 1.00 0.00 0.00
#> 313     3  0.0000      0.971 0.00 0.00 1.00
#> 314     3  0.0000      0.971 0.00 0.00 1.00
#> 315     1  0.0892      0.959 0.98 0.02 0.00
#> 316     3  0.6280      0.150 0.46 0.00 0.54
#> 317     2  0.0000      0.995 0.00 1.00 0.00
#> 318     1  0.0000      0.978 1.00 0.00 0.00
#> 319     1  0.3340      0.853 0.88 0.00 0.12
#> 320     1  0.0000      0.978 1.00 0.00 0.00
#> 321     1  0.0000      0.978 1.00 0.00 0.00
#> 322     3  0.0000      0.971 0.00 0.00 1.00
#> 323     3  0.0000      0.971 0.00 0.00 1.00
#> 324     1  0.6045      0.388 0.62 0.00 0.38
#> 325     3  0.4291      0.781 0.18 0.00 0.82
#> 326     3  0.0000      0.971 0.00 0.00 1.00
#> 327     3  0.0000      0.971 0.00 0.00 1.00
#> 328     3  0.0000      0.971 0.00 0.00 1.00
#> 329     3  0.0000      0.971 0.00 0.00 1.00
#> 330     3  0.0000      0.971 0.00 0.00 1.00
#> 331     1  0.0000      0.978 1.00 0.00 0.00
#> 332     3  0.0000      0.971 0.00 0.00 1.00
#> 333     3  0.0000      0.971 0.00 0.00 1.00
#> 334     3  0.0000      0.971 0.00 0.00 1.00
#> 335     1  0.0000      0.978 1.00 0.00 0.00
#> 336     3  0.0000      0.971 0.00 0.00 1.00
#> 337     1  0.0000      0.978 1.00 0.00 0.00
#> 338     1  0.6244      0.213 0.56 0.00 0.44
#> 339     1  0.0000      0.978 1.00 0.00 0.00
#> 340     2  0.0892      0.974 0.02 0.98 0.00
#> 341     1  0.0000      0.978 1.00 0.00 0.00
#> 342     1  0.4002      0.802 0.84 0.00 0.16
#> 343     3  0.0000      0.971 0.00 0.00 1.00
#> 344     1  0.0000      0.978 1.00 0.00 0.00
#> 345     1  0.0000      0.978 1.00 0.00 0.00
#> 346     1  0.0000      0.978 1.00 0.00 0.00
#> 347     1  0.0000      0.978 1.00 0.00 0.00
#> 348     1  0.0000      0.978 1.00 0.00 0.00
#> 349     1  0.0000      0.978 1.00 0.00 0.00
#> 350     1  0.0000      0.978 1.00 0.00 0.00
#> 351     1  0.0000      0.978 1.00 0.00 0.00
#> 352     1  0.0000      0.978 1.00 0.00 0.00
#> 353     3  0.0000      0.971 0.00 0.00 1.00
#> 354     1  0.0000      0.978 1.00 0.00 0.00
#> 355     1  0.0000      0.978 1.00 0.00 0.00
#> 356     3  0.0000      0.971 0.00 0.00 1.00
#> 357     1  0.0000      0.978 1.00 0.00 0.00
#> 358     1  0.0000      0.978 1.00 0.00 0.00
#> 359     1  0.0000      0.978 1.00 0.00 0.00
#> 360     1  0.0000      0.978 1.00 0.00 0.00
#> 361     1  0.0000      0.978 1.00 0.00 0.00
#> 362     3  0.0000      0.971 0.00 0.00 1.00
#> 363     1  0.0000      0.978 1.00 0.00 0.00
#> 364     1  0.0000      0.978 1.00 0.00 0.00
#> 365     3  0.0000      0.971 0.00 0.00 1.00
#> 366     3  0.0000      0.971 0.00 0.00 1.00
#> 367     1  0.0000      0.978 1.00 0.00 0.00
#> 368     1  0.0000      0.978 1.00 0.00 0.00
#> 369     2  0.0000      0.995 0.00 1.00 0.00
#> 370     1  0.0000      0.978 1.00 0.00 0.00
#> 371     1  0.2959      0.876 0.90 0.00 0.10
#> 372     3  0.0000      0.971 0.00 0.00 1.00
#> 373     1  0.0000      0.978 1.00 0.00 0.00
#> 374     2  0.0000      0.995 0.00 1.00 0.00
#> 375     3  0.0000      0.971 0.00 0.00 1.00
#> 376     3  0.0000      0.971 0.00 0.00 1.00
#> 377     3  0.2066      0.917 0.06 0.00 0.94
#> 378     1  0.0000      0.978 1.00 0.00 0.00
#> 379     1  0.0000      0.978 1.00 0.00 0.00
#> 380     1  0.0000      0.978 1.00 0.00 0.00
#> 381     1  0.0000      0.978 1.00 0.00 0.00
#> 382     1  0.0000      0.978 1.00 0.00 0.00
#> 383     1  0.0000      0.978 1.00 0.00 0.00
#> 384     3  0.0000      0.971 0.00 0.00 1.00
#> 385     1  0.0892      0.960 0.98 0.00 0.02
#> 386     1  0.0892      0.960 0.98 0.00 0.02
#> 387     1  0.0000      0.978 1.00 0.00 0.00
#> 388     1  0.0000      0.978 1.00 0.00 0.00
#> 389     1  0.0000      0.978 1.00 0.00 0.00
#> 390     1  0.6302      0.066 0.52 0.00 0.48
#> 391     1  0.0000      0.978 1.00 0.00 0.00
#> 392     2  0.0000      0.995 0.00 1.00 0.00
#> 393     1  0.0000      0.978 1.00 0.00 0.00
#> 394     1  0.0000      0.978 1.00 0.00 0.00
#> 395     1  0.0000      0.978 1.00 0.00 0.00
#> 396     1  0.0000      0.978 1.00 0.00 0.00
#> 397     1  0.0000      0.978 1.00 0.00 0.00
#> 398     1  0.0000      0.978 1.00 0.00 0.00
#> 399     1  0.0000      0.978 1.00 0.00 0.00
#> 400     1  0.0000      0.978 1.00 0.00 0.00
#> 401     1  0.0000      0.978 1.00 0.00 0.00
#> 402     1  0.0000      0.978 1.00 0.00 0.00
#> 403     1  0.0000      0.978 1.00 0.00 0.00
#> 404     1  0.0000      0.978 1.00 0.00 0.00
#> 405     1  0.0000      0.978 1.00 0.00 0.00
#> 406     1  0.0892      0.960 0.98 0.00 0.02
#> 407     1  0.0000      0.978 1.00 0.00 0.00
#> 408     2  0.0000      0.995 0.00 1.00 0.00
#> 409     2  0.0000      0.995 0.00 1.00 0.00
#> 410     2  0.0000      0.995 0.00 1.00 0.00
#> 411     2  0.0000      0.995 0.00 1.00 0.00
#> 412     2  0.0000      0.995 0.00 1.00 0.00
#> 413     3  0.0000      0.971 0.00 0.00 1.00
#> 414     2  0.0000      0.995 0.00 1.00 0.00
#> 415     1  0.0000      0.978 1.00 0.00 0.00
#> 416     1  0.0000      0.978 1.00 0.00 0.00
#> 417     1  0.0000      0.978 1.00 0.00 0.00
#> 418     1  0.0000      0.978 1.00 0.00 0.00
#> 419     1  0.0000      0.978 1.00 0.00 0.00
#> 420     1  0.0000      0.978 1.00 0.00 0.00
#> 421     1  0.0000      0.978 1.00 0.00 0.00
#> 422     3  0.0000      0.971 0.00 0.00 1.00
#> 423     1  0.0000      0.978 1.00 0.00 0.00
#> 424     1  0.0000      0.978 1.00 0.00 0.00
#> 425     3  0.0000      0.971 0.00 0.00 1.00
#> 426     3  0.0000      0.971 0.00 0.00 1.00
#> 427     1  0.0000      0.978 1.00 0.00 0.00
#> 428     1  0.6244      0.212 0.56 0.00 0.44
#> 429     3  0.0000      0.971 0.00 0.00 1.00
#> 430     3  0.4002      0.807 0.16 0.00 0.84
#> 431     1  0.0000      0.978 1.00 0.00 0.00
#> 432     1  0.0000      0.978 1.00 0.00 0.00
#> 433     3  0.0000      0.971 0.00 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 2       2  0.2345     0.8857 0.00 0.90 0.00 0.10
#> 3       2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 4       2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 5       2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 6       2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 7       2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 8       2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 9       2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 10      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 11      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 12      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 13      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 14      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 15      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 16      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 17      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 18      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 19      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 20      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 21      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 22      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 23      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 24      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 25      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 26      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 27      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 28      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 29      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 30      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 31      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 32      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 33      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 34      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 35      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 36      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 37      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 38      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 39      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 40      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 41      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 42      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 43      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 44      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 45      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 46      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 47      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 48      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 49      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 50      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 51      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 52      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 53      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 54      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 55      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 56      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 57      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 58      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 59      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 60      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 61      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 62      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 63      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 64      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 65      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 66      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 67      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 68      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 69      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 70      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 71      4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 72      4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 73      4  0.1637     0.8673 0.06 0.00 0.00 0.94
#> 74      3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 75      1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 76      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 77      1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 78      3  0.1211     0.9039 0.00 0.00 0.96 0.04
#> 79      1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 80      1  0.4522     0.5010 0.68 0.00 0.00 0.32
#> 81      1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 82      4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 83      4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 84      4  0.4522     0.5486 0.32 0.00 0.00 0.68
#> 85      4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 86      3  0.4977     0.1648 0.00 0.00 0.54 0.46
#> 87      4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 88      1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 89      4  0.4994     0.1223 0.48 0.00 0.00 0.52
#> 90      4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 91      1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 92      2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 93      4  0.1211     0.8768 0.00 0.00 0.04 0.96
#> 94      1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 95      1  0.0707     0.9576 0.98 0.00 0.00 0.02
#> 96      1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 97      4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 98      4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 99      4  0.3610     0.7048 0.00 0.00 0.20 0.80
#> 100     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 101     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 102     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 103     4  0.0707     0.8925 0.02 0.00 0.00 0.98
#> 104     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 105     4  0.0707     0.8906 0.00 0.00 0.02 0.98
#> 106     4  0.0707     0.8925 0.02 0.00 0.00 0.98
#> 107     1  0.4134     0.6255 0.74 0.00 0.00 0.26
#> 108     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 109     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 110     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 111     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 112     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 113     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 114     4  0.0707     0.8902 0.00 0.00 0.02 0.98
#> 115     4  0.4790     0.4185 0.38 0.00 0.00 0.62
#> 116     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 117     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 118     4  0.0707     0.8925 0.02 0.00 0.00 0.98
#> 119     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 120     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 121     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 122     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 123     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 124     1  0.4406     0.5531 0.70 0.00 0.30 0.00
#> 125     1  0.3172     0.7798 0.84 0.00 0.16 0.00
#> 126     3  0.1211     0.9044 0.00 0.00 0.96 0.04
#> 127     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 128     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 129     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 130     2  0.0707     0.9748 0.00 0.98 0.00 0.02
#> 131     3  0.1211     0.9044 0.00 0.00 0.96 0.04
#> 132     4  0.5000    -0.0450 0.00 0.00 0.50 0.50
#> 133     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 134     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 135     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 136     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 137     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 138     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 139     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 140     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 141     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 142     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 143     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 144     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 145     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 146     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 147     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 148     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 149     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 150     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 151     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 152     4  0.3610     0.7052 0.00 0.00 0.20 0.80
#> 153     3  0.4948     0.2284 0.00 0.00 0.56 0.44
#> 154     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 155     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 156     3  0.1211     0.8934 0.04 0.00 0.96 0.00
#> 157     3  0.3400     0.7587 0.00 0.00 0.82 0.18
#> 158     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 159     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 160     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 161     2  0.1637     0.9102 0.06 0.94 0.00 0.00
#> 162     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 163     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 164     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 165     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 166     3  0.3335     0.7884 0.12 0.00 0.86 0.02
#> 167     3  0.3400     0.7278 0.00 0.18 0.82 0.00
#> 168     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 169     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 170     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 171     4  0.4713     0.4068 0.00 0.00 0.36 0.64
#> 172     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 173     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 174     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 175     3  0.3400     0.7612 0.00 0.00 0.82 0.18
#> 176     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 177     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 178     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 179     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 180     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 181     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 182     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 183     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 184     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 185     3  0.4079     0.7466 0.02 0.00 0.80 0.18
#> 186     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 187     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 188     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 189     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 190     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 191     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 192     3  0.4855     0.3687 0.40 0.00 0.60 0.00
#> 193     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 194     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 195     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 196     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 197     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 198     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 199     4  0.1211     0.8815 0.04 0.00 0.00 0.96
#> 200     3  0.3975     0.6728 0.00 0.00 0.76 0.24
#> 201     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 202     3  0.5000     0.0309 0.50 0.00 0.50 0.00
#> 203     4  0.2647     0.8058 0.00 0.00 0.12 0.88
#> 204     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 205     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 206     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 207     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 208     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 209     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 210     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 211     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 212     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 213     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 214     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 215     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 216     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 217     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 218     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 219     4  0.4553     0.7225 0.04 0.18 0.00 0.78
#> 220     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 221     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 222     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 223     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 224     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 225     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 226     3  0.4907     0.2944 0.00 0.00 0.58 0.42
#> 227     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 228     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 229     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 230     3  0.4406     0.5673 0.00 0.00 0.70 0.30
#> 231     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 232     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 233     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 234     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 235     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 236     3  0.4977     0.1797 0.46 0.00 0.54 0.00
#> 237     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 238     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 239     1  0.2011     0.8938 0.92 0.00 0.00 0.08
#> 240     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 241     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 242     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 243     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 244     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 245     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 246     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 247     3  0.1211     0.9044 0.00 0.00 0.96 0.04
#> 248     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 249     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 250     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 251     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 252     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 253     3  0.1211     0.8930 0.04 0.00 0.96 0.00
#> 254     1  0.0707     0.9564 0.98 0.00 0.02 0.00
#> 255     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 256     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 257     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 258     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 259     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 260     1  0.6336    -0.0310 0.48 0.00 0.46 0.06
#> 261     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 262     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 263     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 264     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 265     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 266     3  0.1637     0.8718 0.06 0.00 0.94 0.00
#> 267     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 268     3  0.0707     0.9114 0.02 0.00 0.98 0.00
#> 269     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 270     1  0.1211     0.9353 0.96 0.00 0.04 0.00
#> 271     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 272     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 273     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 274     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 275     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 276     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 277     1  0.0707     0.9564 0.98 0.00 0.02 0.00
#> 278     1  0.4855     0.3101 0.60 0.00 0.40 0.00
#> 279     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 280     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 281     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 282     3  0.3853     0.7677 0.00 0.02 0.82 0.16
#> 283     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 284     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 285     1  0.0707     0.9557 0.98 0.00 0.02 0.00
#> 286     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 287     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 288     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 289     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 290     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 291     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 292     3  0.3610     0.6902 0.20 0.00 0.80 0.00
#> 293     1  0.4790     0.3520 0.62 0.00 0.00 0.38
#> 294     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 295     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 296     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 297     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 298     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 299     3  0.4406     0.5333 0.30 0.00 0.70 0.00
#> 300     1  0.2011     0.8878 0.92 0.00 0.08 0.00
#> 301     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 302     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 303     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 304     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 305     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 306     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 307     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 308     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 309     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 310     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 311     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 312     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 313     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 314     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 315     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 316     3  0.3400     0.7199 0.18 0.00 0.82 0.00
#> 317     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 318     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 319     1  0.4624     0.4692 0.66 0.00 0.34 0.00
#> 320     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 321     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 322     3  0.0707     0.9156 0.00 0.00 0.98 0.02
#> 323     3  0.2011     0.8710 0.00 0.00 0.92 0.08
#> 324     3  0.4134     0.5974 0.26 0.00 0.74 0.00
#> 325     3  0.2921     0.7761 0.14 0.00 0.86 0.00
#> 326     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 327     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 328     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 329     3  0.1211     0.9044 0.00 0.00 0.96 0.04
#> 330     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 331     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 332     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 333     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 334     3  0.0707     0.9157 0.00 0.00 0.98 0.02
#> 335     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 336     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 337     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 338     3  0.4406     0.5356 0.30 0.00 0.70 0.00
#> 339     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 340     4  0.3610     0.7051 0.00 0.20 0.00 0.80
#> 341     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 342     3  0.4948     0.2445 0.44 0.00 0.56 0.00
#> 343     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 344     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 345     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 346     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 347     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 348     1  0.1637     0.9124 0.94 0.00 0.06 0.00
#> 349     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 350     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 351     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 352     1  0.1211     0.9337 0.96 0.00 0.04 0.00
#> 353     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 354     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 355     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 356     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 357     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 358     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 359     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 360     4  0.2647     0.8192 0.12 0.00 0.00 0.88
#> 361     1  0.0707     0.9564 0.98 0.00 0.02 0.00
#> 362     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 363     4  0.4713     0.4681 0.36 0.00 0.00 0.64
#> 364     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 365     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 366     3  0.1211     0.9044 0.00 0.00 0.96 0.04
#> 367     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 368     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 369     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 370     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 371     4  0.2335     0.8638 0.06 0.00 0.02 0.92
#> 372     4  0.0000     0.9011 0.00 0.00 0.00 1.00
#> 373     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 374     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 375     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 376     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 377     3  0.0707     0.9116 0.02 0.00 0.98 0.00
#> 378     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 379     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 380     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 381     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 382     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 383     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 384     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 385     1  0.1211     0.9337 0.96 0.00 0.04 0.00
#> 386     4  0.4088     0.7860 0.14 0.00 0.04 0.82
#> 387     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 388     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 389     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 390     3  0.2921     0.7770 0.14 0.00 0.86 0.00
#> 391     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 392     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 393     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 394     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 395     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 396     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 397     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 398     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 399     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 400     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 401     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 402     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 403     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 404     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 405     1  0.0707     0.9564 0.98 0.00 0.02 0.00
#> 406     1  0.3801     0.6888 0.78 0.00 0.22 0.00
#> 407     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 408     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 409     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 410     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 411     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 412     2  0.0000     0.9948 0.00 1.00 0.00 0.00
#> 413     3  0.0707     0.9166 0.00 0.00 0.98 0.02
#> 414     2  0.4406     0.5684 0.00 0.70 0.00 0.30
#> 415     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 416     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 417     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 418     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 419     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 420     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 421     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 422     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 423     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 424     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 425     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 426     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 427     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 428     3  0.2921     0.7766 0.14 0.00 0.86 0.00
#> 429     3  0.0000     0.9265 0.00 0.00 1.00 0.00
#> 430     3  0.1211     0.8934 0.04 0.00 0.96 0.00
#> 431     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 432     1  0.0000     0.9763 1.00 0.00 0.00 0.00
#> 433     3  0.0000     0.9265 0.00 0.00 1.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-022-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-022-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-022-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-022-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-022-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-022-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-022-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-022-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-022-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-022-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-022-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-022-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-022-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-022-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-022-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-022-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-022-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      428              5.86e-43 2
#> ATC:skmeans      423              2.43e-47 3
#> ATC:skmeans      417              4.84e-88 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node0222

Parent node: Node022. Child nodes: Node01131-leaf , Node01132-leaf , Node01133-leaf , Node01211-leaf , Node01212-leaf , Node01221-leaf , Node01222-leaf , Node01223-leaf , Node01231-leaf , Node01232-leaf , Node01233-leaf , Node01234-leaf , Node02111 , Node02112 , Node02113-leaf , Node02121-leaf , Node02122-leaf , Node02123-leaf , Node02221-leaf , Node02222-leaf , Node03111-leaf , Node03112-leaf , Node03121-leaf , Node03122 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0222"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 7471 rows and 109 columns.
#>   Top rows (747) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0222-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0222-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.978       0.991          0.499 0.501   0.501
#> 3 3 0.829           0.840       0.926          0.315 0.804   0.623
#> 4 4 0.682           0.753       0.855          0.126 0.850   0.600

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.988 0.00 1.00
#> 2       1   0.000      0.994 1.00 0.00
#> 3       1   0.000      0.994 1.00 0.00
#> 4       1   0.000      0.994 1.00 0.00
#> 5       1   0.000      0.994 1.00 0.00
#> 6       1   0.000      0.994 1.00 0.00
#> 7       1   0.000      0.994 1.00 0.00
#> 8       2   0.000      0.988 0.00 1.00
#> 9       1   0.000      0.994 1.00 0.00
#> 10      2   0.402      0.907 0.08 0.92
#> 11      2   0.000      0.988 0.00 1.00
#> 12      2   0.000      0.988 0.00 1.00
#> 13      2   0.000      0.988 0.00 1.00
#> 14      2   0.000      0.988 0.00 1.00
#> 15      2   0.000      0.988 0.00 1.00
#> 16      2   0.000      0.988 0.00 1.00
#> 17      2   0.000      0.988 0.00 1.00
#> 18      2   0.000      0.988 0.00 1.00
#> 19      2   0.000      0.988 0.00 1.00
#> 20      2   0.000      0.988 0.00 1.00
#> 21      2   0.000      0.988 0.00 1.00
#> 22      2   0.000      0.988 0.00 1.00
#> 23      2   0.000      0.988 0.00 1.00
#> 24      2   0.000      0.988 0.00 1.00
#> 25      2   0.000      0.988 0.00 1.00
#> 26      2   0.000      0.988 0.00 1.00
#> 27      2   0.000      0.988 0.00 1.00
#> 28      2   0.000      0.988 0.00 1.00
#> 29      2   0.000      0.988 0.00 1.00
#> 30      2   0.000      0.988 0.00 1.00
#> 31      2   0.000      0.988 0.00 1.00
#> 32      1   0.000      0.994 1.00 0.00
#> 33      2   0.000      0.988 0.00 1.00
#> 34      2   0.000      0.988 0.00 1.00
#> 35      2   0.000      0.988 0.00 1.00
#> 36      2   0.000      0.988 0.00 1.00
#> 37      2   0.000      0.988 0.00 1.00
#> 38      1   0.943      0.426 0.64 0.36
#> 39      2   0.000      0.988 0.00 1.00
#> 40      2   0.000      0.988 0.00 1.00
#> 41      2   0.000      0.988 0.00 1.00
#> 42      1   0.000      0.994 1.00 0.00
#> 43      1   0.000      0.994 1.00 0.00
#> 44      1   0.000      0.994 1.00 0.00
#> 45      2   0.000      0.988 0.00 1.00
#> 46      2   0.000      0.988 0.00 1.00
#> 47      2   0.000      0.988 0.00 1.00
#> 48      2   0.000      0.988 0.00 1.00
#> 49      2   0.000      0.988 0.00 1.00
#> 50      2   0.000      0.988 0.00 1.00
#> 51      2   0.958      0.387 0.38 0.62
#> 52      2   0.000      0.988 0.00 1.00
#> 53      1   0.000      0.994 1.00 0.00
#> 54      1   0.000      0.994 1.00 0.00
#> 55      1   0.000      0.994 1.00 0.00
#> 56      2   0.000      0.988 0.00 1.00
#> 57      2   0.000      0.988 0.00 1.00
#> 58      2   0.000      0.988 0.00 1.00
#> 59      2   0.000      0.988 0.00 1.00
#> 60      2   0.529      0.861 0.12 0.88
#> 61      1   0.000      0.994 1.00 0.00
#> 62      1   0.000      0.994 1.00 0.00
#> 63      1   0.000      0.994 1.00 0.00
#> 64      1   0.000      0.994 1.00 0.00
#> 65      1   0.000      0.994 1.00 0.00
#> 66      1   0.000      0.994 1.00 0.00
#> 67      1   0.000      0.994 1.00 0.00
#> 68      2   0.000      0.988 0.00 1.00
#> 69      1   0.000      0.994 1.00 0.00
#> 70      1   0.000      0.994 1.00 0.00
#> 71      1   0.000      0.994 1.00 0.00
#> 72      1   0.000      0.994 1.00 0.00
#> 73      1   0.000      0.994 1.00 0.00
#> 74      1   0.000      0.994 1.00 0.00
#> 75      2   0.000      0.988 0.00 1.00
#> 76      1   0.000      0.994 1.00 0.00
#> 77      1   0.000      0.994 1.00 0.00
#> 78      1   0.000      0.994 1.00 0.00
#> 79      1   0.000      0.994 1.00 0.00
#> 80      1   0.000      0.994 1.00 0.00
#> 81      1   0.000      0.994 1.00 0.00
#> 82      1   0.000      0.994 1.00 0.00
#> 83      1   0.000      0.994 1.00 0.00
#> 84      1   0.000      0.994 1.00 0.00
#> 85      1   0.000      0.994 1.00 0.00
#> 86      1   0.000      0.994 1.00 0.00
#> 87      1   0.000      0.994 1.00 0.00
#> 88      2   0.000      0.988 0.00 1.00
#> 89      1   0.000      0.994 1.00 0.00
#> 90      1   0.000      0.994 1.00 0.00
#> 91      1   0.000      0.994 1.00 0.00
#> 92      1   0.000      0.994 1.00 0.00
#> 93      1   0.000      0.994 1.00 0.00
#> 94      1   0.000      0.994 1.00 0.00
#> 95      1   0.000      0.994 1.00 0.00
#> 96      1   0.000      0.994 1.00 0.00
#> 97      1   0.000      0.994 1.00 0.00
#> 98      1   0.000      0.994 1.00 0.00
#> 99      1   0.000      0.994 1.00 0.00
#> 100     1   0.000      0.994 1.00 0.00
#> 101     1   0.000      0.994 1.00 0.00
#> 102     2   0.000      0.988 0.00 1.00
#> 103     1   0.000      0.994 1.00 0.00
#> 104     1   0.000      0.994 1.00 0.00
#> 105     1   0.000      0.994 1.00 0.00
#> 106     1   0.000      0.994 1.00 0.00
#> 107     1   0.000      0.994 1.00 0.00
#> 108     1   0.000      0.994 1.00 0.00
#> 109     1   0.000      0.994 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       2  0.0892     0.9537 0.00 0.98 0.02
#> 2       1  0.0000     0.9048 1.00 0.00 0.00
#> 3       1  0.5706     0.5335 0.68 0.00 0.32
#> 4       1  0.0000     0.9048 1.00 0.00 0.00
#> 5       3  0.6126     0.3259 0.40 0.00 0.60
#> 6       1  0.0892     0.8946 0.98 0.00 0.02
#> 7       1  0.0000     0.9048 1.00 0.00 0.00
#> 8       2  0.0892     0.9537 0.00 0.98 0.02
#> 9       1  0.0000     0.9048 1.00 0.00 0.00
#> 10      3  0.2066     0.8185 0.00 0.06 0.94
#> 11      3  0.6309    -0.1441 0.00 0.50 0.50
#> 12      2  0.0892     0.9537 0.00 0.98 0.02
#> 13      2  0.0892     0.9537 0.00 0.98 0.02
#> 14      2  0.0892     0.9537 0.00 0.98 0.02
#> 15      2  0.0892     0.9537 0.00 0.98 0.02
#> 16      2  0.2414     0.9246 0.04 0.94 0.02
#> 17      2  0.6244     0.2494 0.00 0.56 0.44
#> 18      2  0.0892     0.9537 0.00 0.98 0.02
#> 19      2  0.0892     0.9537 0.00 0.98 0.02
#> 20      2  0.0892     0.9537 0.00 0.98 0.02
#> 21      2  0.0892     0.9537 0.00 0.98 0.02
#> 22      2  0.0000     0.9579 0.00 1.00 0.00
#> 23      2  0.0892     0.9537 0.00 0.98 0.02
#> 24      2  0.4551     0.8146 0.14 0.84 0.02
#> 25      2  0.0892     0.9537 0.00 0.98 0.02
#> 26      2  0.2947     0.9047 0.06 0.92 0.02
#> 27      2  0.0892     0.9537 0.00 0.98 0.02
#> 28      2  0.0000     0.9579 0.00 1.00 0.00
#> 29      2  0.0000     0.9579 0.00 1.00 0.00
#> 30      2  0.0000     0.9579 0.00 1.00 0.00
#> 31      2  0.0000     0.9579 0.00 1.00 0.00
#> 32      3  0.4555     0.7024 0.20 0.00 0.80
#> 33      2  0.0000     0.9579 0.00 1.00 0.00
#> 34      2  0.0000     0.9579 0.00 1.00 0.00
#> 35      2  0.0000     0.9579 0.00 1.00 0.00
#> 36      2  0.0000     0.9579 0.00 1.00 0.00
#> 37      2  0.0000     0.9579 0.00 1.00 0.00
#> 38      1  0.1529     0.8747 0.96 0.04 0.00
#> 39      2  0.0000     0.9579 0.00 1.00 0.00
#> 40      2  0.0000     0.9579 0.00 1.00 0.00
#> 41      2  0.0000     0.9579 0.00 1.00 0.00
#> 42      1  0.0000     0.9048 1.00 0.00 0.00
#> 43      1  0.1529     0.8835 0.96 0.00 0.04
#> 44      1  0.0000     0.9048 1.00 0.00 0.00
#> 45      2  0.0000     0.9579 0.00 1.00 0.00
#> 46      2  0.0000     0.9579 0.00 1.00 0.00
#> 47      2  0.0000     0.9579 0.00 1.00 0.00
#> 48      2  0.0000     0.9579 0.00 1.00 0.00
#> 49      2  0.0000     0.9579 0.00 1.00 0.00
#> 50      2  0.0000     0.9579 0.00 1.00 0.00
#> 51      1  0.7277     0.5208 0.66 0.28 0.06
#> 52      2  0.2066     0.9132 0.00 0.94 0.06
#> 53      3  0.0892     0.8728 0.02 0.00 0.98
#> 54      1  0.0000     0.9048 1.00 0.00 0.00
#> 55      1  0.1529     0.8835 0.96 0.00 0.04
#> 56      2  0.0000     0.9579 0.00 1.00 0.00
#> 57      2  0.0000     0.9579 0.00 1.00 0.00
#> 58      2  0.0000     0.9579 0.00 1.00 0.00
#> 59      2  0.0000     0.9579 0.00 1.00 0.00
#> 60      1  0.2537     0.8370 0.92 0.08 0.00
#> 61      1  0.0000     0.9048 1.00 0.00 0.00
#> 62      1  0.0892     0.8945 0.98 0.00 0.02
#> 63      1  0.0892     0.8945 0.98 0.00 0.02
#> 64      1  0.0000     0.9048 1.00 0.00 0.00
#> 65      1  0.0000     0.9048 1.00 0.00 0.00
#> 66      3  0.1529     0.8698 0.04 0.00 0.96
#> 67      1  0.5397     0.6438 0.72 0.00 0.28
#> 68      2  0.5016     0.6835 0.00 0.76 0.24
#> 69      3  0.0892     0.8728 0.02 0.00 0.98
#> 70      1  0.0000     0.9048 1.00 0.00 0.00
#> 71      3  0.2066     0.8756 0.06 0.00 0.94
#> 72      3  0.2066     0.8756 0.06 0.00 0.94
#> 73      1  0.0000     0.9048 1.00 0.00 0.00
#> 74      3  0.2959     0.8509 0.10 0.00 0.90
#> 75      2  0.0000     0.9579 0.00 1.00 0.00
#> 76      3  0.2066     0.8756 0.06 0.00 0.94
#> 77      3  0.2066     0.8756 0.06 0.00 0.94
#> 78      3  0.1529     0.8766 0.04 0.00 0.96
#> 79      3  0.1529     0.8766 0.04 0.00 0.96
#> 80      3  0.0000     0.8602 0.00 0.00 1.00
#> 81      3  0.2537     0.8662 0.08 0.00 0.92
#> 82      3  0.1529     0.8766 0.04 0.00 0.96
#> 83      3  0.0892     0.8728 0.02 0.00 0.98
#> 84      1  0.4002     0.7959 0.84 0.00 0.16
#> 85      1  0.6192     0.3200 0.58 0.00 0.42
#> 86      1  0.0000     0.9048 1.00 0.00 0.00
#> 87      1  0.0000     0.9048 1.00 0.00 0.00
#> 88      2  0.6244     0.2332 0.00 0.56 0.44
#> 89      1  0.3686     0.8023 0.86 0.00 0.14
#> 90      1  0.0000     0.9048 1.00 0.00 0.00
#> 91      3  0.6192     0.2766 0.42 0.00 0.58
#> 92      1  0.5397     0.6134 0.72 0.00 0.28
#> 93      3  0.0892     0.8728 0.02 0.00 0.98
#> 94      3  0.6302    -0.0181 0.48 0.00 0.52
#> 95      3  0.2537     0.8663 0.08 0.00 0.92
#> 96      3  0.0892     0.8728 0.02 0.00 0.98
#> 97      1  0.5397     0.6391 0.72 0.00 0.28
#> 98      3  0.2959     0.8519 0.10 0.00 0.90
#> 99      1  0.5560     0.5815 0.70 0.00 0.30
#> 100     1  0.5560     0.5752 0.70 0.00 0.30
#> 101     1  0.0000     0.9048 1.00 0.00 0.00
#> 102     2  0.2959     0.8858 0.00 0.90 0.10
#> 103     1  0.0000     0.9048 1.00 0.00 0.00
#> 104     1  0.0000     0.9048 1.00 0.00 0.00
#> 105     1  0.0000     0.9048 1.00 0.00 0.00
#> 106     1  0.0000     0.9048 1.00 0.00 0.00
#> 107     1  0.0000     0.9048 1.00 0.00 0.00
#> 108     1  0.3340     0.8326 0.88 0.00 0.12
#> 109     3  0.2066     0.8756 0.06 0.00 0.94

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       4  0.0000     0.8099 0.00 0.00 0.00 1.00
#> 2       1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 3       1  0.6808     0.4022 0.56 0.00 0.12 0.32
#> 4       1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 5       1  0.7806     0.0626 0.42 0.02 0.14 0.42
#> 6       1  0.2335     0.8372 0.92 0.06 0.00 0.02
#> 7       1  0.1211     0.8457 0.96 0.00 0.00 0.04
#> 8       4  0.1637     0.8022 0.00 0.06 0.00 0.94
#> 9       1  0.0707     0.8539 0.98 0.00 0.00 0.02
#> 10      4  0.5106     0.5395 0.00 0.04 0.24 0.72
#> 11      4  0.5077     0.6851 0.00 0.08 0.16 0.76
#> 12      4  0.3975     0.6321 0.00 0.24 0.00 0.76
#> 13      4  0.2345     0.8303 0.00 0.10 0.00 0.90
#> 14      4  0.2345     0.8303 0.00 0.10 0.00 0.90
#> 15      4  0.2345     0.8303 0.00 0.10 0.00 0.90
#> 16      4  0.1411     0.8169 0.02 0.02 0.00 0.96
#> 17      4  0.2345     0.7400 0.00 0.00 0.10 0.90
#> 18      4  0.2345     0.8303 0.00 0.10 0.00 0.90
#> 19      4  0.2345     0.8303 0.00 0.10 0.00 0.90
#> 20      4  0.2011     0.8300 0.00 0.08 0.00 0.92
#> 21      4  0.2647     0.8152 0.00 0.12 0.00 0.88
#> 22      4  0.4977     0.1001 0.00 0.46 0.00 0.54
#> 23      4  0.2345     0.8303 0.00 0.10 0.00 0.90
#> 24      4  0.1913     0.7792 0.04 0.02 0.00 0.94
#> 25      4  0.2011     0.8300 0.00 0.08 0.00 0.92
#> 26      4  0.1411     0.7933 0.02 0.02 0.00 0.96
#> 27      4  0.2345     0.8303 0.00 0.10 0.00 0.90
#> 28      4  0.4977     0.1054 0.00 0.46 0.00 0.54
#> 29      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 30      4  0.4977     0.0471 0.00 0.46 0.00 0.54
#> 31      2  0.4134     0.7483 0.00 0.74 0.00 0.26
#> 32      1  0.8778     0.0480 0.42 0.10 0.36 0.12
#> 33      2  0.3172     0.8822 0.00 0.84 0.00 0.16
#> 34      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 35      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 36      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 37      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 38      1  0.4949     0.6723 0.76 0.18 0.00 0.06
#> 39      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 40      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 41      2  0.3400     0.8434 0.00 0.82 0.00 0.18
#> 42      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 43      1  0.3247     0.8053 0.88 0.06 0.06 0.00
#> 44      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 45      2  0.3400     0.8744 0.00 0.82 0.00 0.18
#> 46      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 47      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 48      2  0.2647     0.8910 0.00 0.88 0.00 0.12
#> 49      2  0.2647     0.8910 0.00 0.88 0.00 0.12
#> 50      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 51      2  0.2830     0.6987 0.04 0.90 0.06 0.00
#> 52      2  0.1637     0.7385 0.00 0.94 0.06 0.00
#> 53      3  0.3037     0.8188 0.02 0.10 0.88 0.00
#> 54      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 55      1  0.4731     0.7351 0.78 0.16 0.06 0.00
#> 56      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 57      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 58      2  0.2647     0.8910 0.00 0.88 0.00 0.12
#> 59      2  0.2921     0.8996 0.00 0.86 0.00 0.14
#> 60      2  0.6831     0.1067 0.42 0.48 0.00 0.10
#> 61      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 62      1  0.1411     0.8493 0.96 0.02 0.02 0.00
#> 63      1  0.3611     0.7918 0.86 0.08 0.06 0.00
#> 64      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 65      1  0.0707     0.8556 0.98 0.02 0.00 0.00
#> 66      3  0.3335     0.8106 0.02 0.12 0.86 0.00
#> 67      1  0.6110     0.5835 0.66 0.10 0.24 0.00
#> 68      2  0.2335     0.7479 0.00 0.92 0.06 0.02
#> 69      3  0.2647     0.8120 0.00 0.12 0.88 0.00
#> 70      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 71      3  0.1637     0.8654 0.06 0.00 0.94 0.00
#> 72      3  0.1637     0.8654 0.06 0.00 0.94 0.00
#> 73      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 74      3  0.1637     0.8654 0.06 0.00 0.94 0.00
#> 75      2  0.4277     0.7249 0.00 0.72 0.00 0.28
#> 76      3  0.1637     0.8654 0.06 0.00 0.94 0.00
#> 77      3  0.1637     0.8654 0.06 0.00 0.94 0.00
#> 78      3  0.1211     0.8626 0.04 0.00 0.96 0.00
#> 79      3  0.0707     0.8560 0.02 0.00 0.98 0.00
#> 80      3  0.6537     0.2857 0.02 0.04 0.54 0.40
#> 81      3  0.2011     0.8559 0.08 0.00 0.92 0.00
#> 82      3  0.1637     0.8654 0.06 0.00 0.94 0.00
#> 83      3  0.1637     0.8334 0.00 0.06 0.94 0.00
#> 84      1  0.4949     0.6910 0.76 0.06 0.18 0.00
#> 85      3  0.6649     0.3285 0.34 0.10 0.56 0.00
#> 86      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 87      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 88      2  0.2335     0.7479 0.00 0.92 0.06 0.02
#> 89      1  0.3975     0.6636 0.76 0.00 0.24 0.00
#> 90      1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 91      3  0.4948     0.2060 0.44 0.00 0.56 0.00
#> 92      1  0.4624     0.4736 0.66 0.00 0.34 0.00
#> 93      3  0.0000     0.8460 0.00 0.00 1.00 0.00
#> 94      3  0.6976     0.4933 0.24 0.18 0.58 0.00
#> 95      3  0.2647     0.8281 0.12 0.00 0.88 0.00
#> 96      3  0.2345     0.8206 0.00 0.10 0.90 0.00
#> 97      1  0.4581     0.7471 0.80 0.08 0.12 0.00
#> 98      3  0.2706     0.8569 0.08 0.02 0.90 0.00
#> 99      1  0.4134     0.6253 0.74 0.00 0.26 0.00
#> 100     1  0.4790     0.3704 0.62 0.00 0.38 0.00
#> 101     1  0.2345     0.8099 0.90 0.00 0.10 0.00
#> 102     4  0.4610     0.7683 0.00 0.10 0.10 0.80
#> 103     1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 104     1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 105     1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 106     1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 107     1  0.0000     0.8616 1.00 0.00 0.00 0.00
#> 108     1  0.3725     0.7949 0.86 0.02 0.10 0.02
#> 109     3  0.1637     0.8654 0.06 0.00 0.94 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0222-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0222-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0222-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0222-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0222-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0222-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0222-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0222-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0222-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0222-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0222-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0222-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0222-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0222-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0222-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0222-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0222-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      107              4.90e-07 2
#> ATC:skmeans      102              1.37e-07 3
#> ATC:skmeans       96              1.70e-06 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node023

Parent node: Node02. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["023"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 8383 rows and 141 columns.
#>   Top rows (838) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-023-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-023-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.989          0.503 0.498   0.498
#> 3 3 0.947           0.919       0.968          0.307 0.749   0.539
#> 4 4 1.000           0.969       0.988          0.107 0.875   0.661

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       1   0.000      0.987 1.00 0.00
#> 2       1   0.000      0.987 1.00 0.00
#> 3       1   0.000      0.987 1.00 0.00
#> 4       1   0.000      0.987 1.00 0.00
#> 5       2   0.141      0.971 0.02 0.98
#> 6       2   0.327      0.932 0.06 0.94
#> 7       1   0.000      0.987 1.00 0.00
#> 8       1   0.000      0.987 1.00 0.00
#> 9       1   0.469      0.887 0.90 0.10
#> 10      1   0.000      0.987 1.00 0.00
#> 11      2   0.469      0.888 0.10 0.90
#> 12      2   0.000      0.990 0.00 1.00
#> 13      1   0.000      0.987 1.00 0.00
#> 14      1   0.000      0.987 1.00 0.00
#> 15      2   0.000      0.990 0.00 1.00
#> 16      2   0.000      0.990 0.00 1.00
#> 17      1   0.000      0.987 1.00 0.00
#> 18      2   0.000      0.990 0.00 1.00
#> 19      2   0.000      0.990 0.00 1.00
#> 20      1   0.000      0.987 1.00 0.00
#> 21      2   0.000      0.990 0.00 1.00
#> 22      2   0.000      0.990 0.00 1.00
#> 23      2   0.000      0.990 0.00 1.00
#> 24      2   0.000      0.990 0.00 1.00
#> 25      2   0.000      0.990 0.00 1.00
#> 26      1   0.000      0.987 1.00 0.00
#> 27      1   0.958      0.381 0.62 0.38
#> 28      2   0.000      0.990 0.00 1.00
#> 29      1   0.584      0.843 0.86 0.14
#> 30      2   0.000      0.990 0.00 1.00
#> 31      2   0.000      0.990 0.00 1.00
#> 32      2   0.000      0.990 0.00 1.00
#> 33      2   0.000      0.990 0.00 1.00
#> 34      2   0.000      0.990 0.00 1.00
#> 35      2   0.000      0.990 0.00 1.00
#> 36      2   0.000      0.990 0.00 1.00
#> 37      2   0.000      0.990 0.00 1.00
#> 38      1   0.000      0.987 1.00 0.00
#> 39      2   0.000      0.990 0.00 1.00
#> 40      2   0.000      0.990 0.00 1.00
#> 41      1   0.000      0.987 1.00 0.00
#> 42      2   0.000      0.990 0.00 1.00
#> 43      2   0.000      0.990 0.00 1.00
#> 44      2   0.000      0.990 0.00 1.00
#> 45      2   0.000      0.990 0.00 1.00
#> 46      2   0.000      0.990 0.00 1.00
#> 47      2   0.000      0.990 0.00 1.00
#> 48      1   0.000      0.987 1.00 0.00
#> 49      2   0.000      0.990 0.00 1.00
#> 50      1   0.000      0.987 1.00 0.00
#> 51      1   0.000      0.987 1.00 0.00
#> 52      1   0.000      0.987 1.00 0.00
#> 53      2   0.000      0.990 0.00 1.00
#> 54      2   0.000      0.990 0.00 1.00
#> 55      2   0.000      0.990 0.00 1.00
#> 56      1   0.000      0.987 1.00 0.00
#> 57      1   0.000      0.987 1.00 0.00
#> 58      1   0.000      0.987 1.00 0.00
#> 59      1   0.141      0.971 0.98 0.02
#> 60      2   0.000      0.990 0.00 1.00
#> 61      2   0.000      0.990 0.00 1.00
#> 62      1   0.000      0.987 1.00 0.00
#> 63      2   0.000      0.990 0.00 1.00
#> 64      2   0.000      0.990 0.00 1.00
#> 65      1   0.000      0.987 1.00 0.00
#> 66      2   0.000      0.990 0.00 1.00
#> 67      1   0.000      0.987 1.00 0.00
#> 68      1   0.141      0.971 0.98 0.02
#> 69      1   0.000      0.987 1.00 0.00
#> 70      1   0.000      0.987 1.00 0.00
#> 71      2   0.000      0.990 0.00 1.00
#> 72      2   0.000      0.990 0.00 1.00
#> 73      2   0.000      0.990 0.00 1.00
#> 74      2   0.000      0.990 0.00 1.00
#> 75      2   0.000      0.990 0.00 1.00
#> 76      1   0.000      0.987 1.00 0.00
#> 77      2   0.000      0.990 0.00 1.00
#> 78      1   0.141      0.971 0.98 0.02
#> 79      1   0.000      0.987 1.00 0.00
#> 80      2   0.000      0.990 0.00 1.00
#> 81      2   0.000      0.990 0.00 1.00
#> 82      1   0.000      0.987 1.00 0.00
#> 83      1   0.000      0.987 1.00 0.00
#> 84      1   0.000      0.987 1.00 0.00
#> 85      1   0.000      0.987 1.00 0.00
#> 86      1   0.000      0.987 1.00 0.00
#> 87      1   0.000      0.987 1.00 0.00
#> 88      1   0.000      0.987 1.00 0.00
#> 89      2   0.000      0.990 0.00 1.00
#> 90      2   0.327      0.932 0.06 0.94
#> 91      1   0.584      0.842 0.86 0.14
#> 92      2   0.000      0.990 0.00 1.00
#> 93      1   0.000      0.987 1.00 0.00
#> 94      1   0.000      0.987 1.00 0.00
#> 95      1   0.000      0.987 1.00 0.00
#> 96      1   0.000      0.987 1.00 0.00
#> 97      1   0.000      0.987 1.00 0.00
#> 98      1   0.000      0.987 1.00 0.00
#> 99      2   0.000      0.990 0.00 1.00
#> 100     2   0.000      0.990 0.00 1.00
#> 101     1   0.000      0.987 1.00 0.00
#> 102     2   0.000      0.990 0.00 1.00
#> 103     1   0.000      0.987 1.00 0.00
#> 104     2   0.000      0.990 0.00 1.00
#> 105     2   0.000      0.990 0.00 1.00
#> 106     1   0.000      0.987 1.00 0.00
#> 107     2   0.000      0.990 0.00 1.00
#> 108     2   0.000      0.990 0.00 1.00
#> 109     1   0.327      0.934 0.94 0.06
#> 110     1   0.000      0.987 1.00 0.00
#> 111     1   0.000      0.987 1.00 0.00
#> 112     1   0.000      0.987 1.00 0.00
#> 113     1   0.000      0.987 1.00 0.00
#> 114     2   0.000      0.990 0.00 1.00
#> 115     2   0.000      0.990 0.00 1.00
#> 116     1   0.000      0.987 1.00 0.00
#> 117     1   0.000      0.987 1.00 0.00
#> 118     1   0.000      0.987 1.00 0.00
#> 119     2   0.000      0.990 0.00 1.00
#> 120     2   0.000      0.990 0.00 1.00
#> 121     1   0.000      0.987 1.00 0.00
#> 122     1   0.000      0.987 1.00 0.00
#> 123     1   0.000      0.987 1.00 0.00
#> 124     1   0.000      0.987 1.00 0.00
#> 125     1   0.000      0.987 1.00 0.00
#> 126     2   0.000      0.990 0.00 1.00
#> 127     1   0.000      0.987 1.00 0.00
#> 128     2   0.000      0.990 0.00 1.00
#> 129     1   0.242      0.953 0.96 0.04
#> 130     1   0.000      0.987 1.00 0.00
#> 131     1   0.000      0.987 1.00 0.00
#> 132     2   0.000      0.990 0.00 1.00
#> 133     2   0.000      0.990 0.00 1.00
#> 134     1   0.000      0.987 1.00 0.00
#> 135     1   0.000      0.987 1.00 0.00
#> 136     2   0.000      0.990 0.00 1.00
#> 137     1   0.000      0.987 1.00 0.00
#> 138     1   0.000      0.987 1.00 0.00
#> 139     1   0.000      0.987 1.00 0.00
#> 140     2   0.990      0.212 0.44 0.56
#> 141     1   0.000      0.987 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       1  0.0000     0.9786 1.00 0.00 0.00
#> 2       1  0.1529     0.9463 0.96 0.00 0.04
#> 3       3  0.0000     0.9505 0.00 0.00 1.00
#> 4       1  0.1529     0.9463 0.96 0.00 0.04
#> 5       3  0.0000     0.9505 0.00 0.00 1.00
#> 6       3  0.0000     0.9505 0.00 0.00 1.00
#> 7       1  0.3686     0.8350 0.86 0.00 0.14
#> 8       3  0.0000     0.9505 0.00 0.00 1.00
#> 9       3  0.0000     0.9505 0.00 0.00 1.00
#> 10      1  0.5560     0.5735 0.70 0.00 0.30
#> 11      3  0.0000     0.9505 0.00 0.00 1.00
#> 12      3  0.0000     0.9505 0.00 0.00 1.00
#> 13      3  0.6045     0.3781 0.38 0.00 0.62
#> 14      1  0.2066     0.9274 0.94 0.00 0.06
#> 15      3  0.0000     0.9505 0.00 0.00 1.00
#> 16      3  0.0000     0.9505 0.00 0.00 1.00
#> 17      3  0.6192     0.2647 0.42 0.00 0.58
#> 18      3  0.0000     0.9505 0.00 0.00 1.00
#> 19      3  0.0000     0.9505 0.00 0.00 1.00
#> 20      1  0.0000     0.9786 1.00 0.00 0.00
#> 21      3  0.1529     0.9287 0.00 0.04 0.96
#> 22      3  0.1529     0.9287 0.00 0.04 0.96
#> 23      3  0.1529     0.9287 0.00 0.04 0.96
#> 24      3  0.1529     0.9287 0.00 0.04 0.96
#> 25      3  0.0000     0.9505 0.00 0.00 1.00
#> 26      1  0.0000     0.9786 1.00 0.00 0.00
#> 27      3  0.2537     0.8814 0.08 0.00 0.92
#> 28      3  0.1529     0.9287 0.00 0.04 0.96
#> 29      3  0.2066     0.9026 0.06 0.00 0.94
#> 30      3  0.1529     0.9287 0.00 0.04 0.96
#> 31      3  0.0000     0.9505 0.00 0.00 1.00
#> 32      3  0.0000     0.9505 0.00 0.00 1.00
#> 33      3  0.0000     0.9505 0.00 0.00 1.00
#> 34      3  0.0000     0.9505 0.00 0.00 1.00
#> 35      3  0.0000     0.9505 0.00 0.00 1.00
#> 36      3  0.0000     0.9505 0.00 0.00 1.00
#> 37      3  0.0000     0.9505 0.00 0.00 1.00
#> 38      1  0.0000     0.9786 1.00 0.00 0.00
#> 39      3  0.0000     0.9505 0.00 0.00 1.00
#> 40      3  0.0000     0.9505 0.00 0.00 1.00
#> 41      1  0.0000     0.9786 1.00 0.00 0.00
#> 42      3  0.0000     0.9505 0.00 0.00 1.00
#> 43      3  0.0000     0.9505 0.00 0.00 1.00
#> 44      3  0.0000     0.9505 0.00 0.00 1.00
#> 45      3  0.0000     0.9505 0.00 0.00 1.00
#> 46      2  0.0000     0.9554 0.00 1.00 0.00
#> 47      2  0.0000     0.9554 0.00 1.00 0.00
#> 48      1  0.0000     0.9786 1.00 0.00 0.00
#> 49      2  0.0000     0.9554 0.00 1.00 0.00
#> 50      1  0.0000     0.9786 1.00 0.00 0.00
#> 51      1  0.0000     0.9786 1.00 0.00 0.00
#> 52      1  0.0000     0.9786 1.00 0.00 0.00
#> 53      2  0.0000     0.9554 0.00 1.00 0.00
#> 54      2  0.0000     0.9554 0.00 1.00 0.00
#> 55      2  0.0000     0.9554 0.00 1.00 0.00
#> 56      1  0.0000     0.9786 1.00 0.00 0.00
#> 57      1  0.0000     0.9786 1.00 0.00 0.00
#> 58      1  0.0000     0.9786 1.00 0.00 0.00
#> 59      2  0.3340     0.8357 0.12 0.88 0.00
#> 60      3  0.1529     0.9287 0.00 0.04 0.96
#> 61      2  0.0000     0.9554 0.00 1.00 0.00
#> 62      1  0.0000     0.9786 1.00 0.00 0.00
#> 63      2  0.0000     0.9554 0.00 1.00 0.00
#> 64      2  0.2066     0.9008 0.00 0.94 0.06
#> 65      1  0.0000     0.9786 1.00 0.00 0.00
#> 66      2  0.0000     0.9554 0.00 1.00 0.00
#> 67      1  0.0000     0.9786 1.00 0.00 0.00
#> 68      1  0.1529     0.9449 0.96 0.04 0.00
#> 69      1  0.0892     0.9627 0.98 0.02 0.00
#> 70      1  0.4555     0.7460 0.80 0.20 0.00
#> 71      2  0.0000     0.9554 0.00 1.00 0.00
#> 72      3  0.1529     0.9287 0.00 0.04 0.96
#> 73      2  0.0000     0.9554 0.00 1.00 0.00
#> 74      3  0.0000     0.9505 0.00 0.00 1.00
#> 75      2  0.0000     0.9554 0.00 1.00 0.00
#> 76      1  0.0000     0.9786 1.00 0.00 0.00
#> 77      2  0.0000     0.9554 0.00 1.00 0.00
#> 78      2  0.0000     0.9554 0.00 1.00 0.00
#> 79      1  0.0000     0.9786 1.00 0.00 0.00
#> 80      2  0.0000     0.9554 0.00 1.00 0.00
#> 81      2  0.0000     0.9554 0.00 1.00 0.00
#> 82      1  0.0000     0.9786 1.00 0.00 0.00
#> 83      1  0.0000     0.9786 1.00 0.00 0.00
#> 84      1  0.0000     0.9786 1.00 0.00 0.00
#> 85      1  0.0000     0.9786 1.00 0.00 0.00
#> 86      1  0.0000     0.9786 1.00 0.00 0.00
#> 87      1  0.0000     0.9786 1.00 0.00 0.00
#> 88      1  0.0000     0.9786 1.00 0.00 0.00
#> 89      2  0.0000     0.9554 0.00 1.00 0.00
#> 90      2  0.4796     0.7045 0.00 0.78 0.22
#> 91      2  0.0000     0.9554 0.00 1.00 0.00
#> 92      2  0.0000     0.9554 0.00 1.00 0.00
#> 93      1  0.0000     0.9786 1.00 0.00 0.00
#> 94      1  0.5706     0.5190 0.68 0.32 0.00
#> 95      1  0.0000     0.9786 1.00 0.00 0.00
#> 96      1  0.1529     0.9450 0.96 0.00 0.04
#> 97      1  0.0000     0.9786 1.00 0.00 0.00
#> 98      1  0.0000     0.9786 1.00 0.00 0.00
#> 99      2  0.0000     0.9554 0.00 1.00 0.00
#> 100     2  0.0000     0.9554 0.00 1.00 0.00
#> 101     1  0.0000     0.9786 1.00 0.00 0.00
#> 102     2  0.0000     0.9554 0.00 1.00 0.00
#> 103     2  0.5216     0.6452 0.26 0.74 0.00
#> 104     2  0.0000     0.9554 0.00 1.00 0.00
#> 105     2  0.0000     0.9554 0.00 1.00 0.00
#> 106     1  0.0000     0.9786 1.00 0.00 0.00
#> 107     3  0.0000     0.9505 0.00 0.00 1.00
#> 108     2  0.0000     0.9554 0.00 1.00 0.00
#> 109     2  0.0000     0.9554 0.00 1.00 0.00
#> 110     1  0.0000     0.9786 1.00 0.00 0.00
#> 111     1  0.0000     0.9786 1.00 0.00 0.00
#> 112     1  0.0000     0.9786 1.00 0.00 0.00
#> 113     1  0.0000     0.9786 1.00 0.00 0.00
#> 114     2  0.6302     0.0630 0.00 0.52 0.48
#> 115     2  0.0000     0.9554 0.00 1.00 0.00
#> 116     1  0.0000     0.9786 1.00 0.00 0.00
#> 117     1  0.0000     0.9786 1.00 0.00 0.00
#> 118     1  0.0000     0.9786 1.00 0.00 0.00
#> 119     2  0.0000     0.9554 0.00 1.00 0.00
#> 120     2  0.0000     0.9554 0.00 1.00 0.00
#> 121     1  0.0000     0.9786 1.00 0.00 0.00
#> 122     2  0.6280     0.1497 0.46 0.54 0.00
#> 123     1  0.0000     0.9786 1.00 0.00 0.00
#> 124     1  0.0000     0.9786 1.00 0.00 0.00
#> 125     1  0.0000     0.9786 1.00 0.00 0.00
#> 126     2  0.0000     0.9554 0.00 1.00 0.00
#> 127     1  0.0000     0.9786 1.00 0.00 0.00
#> 128     2  0.0000     0.9554 0.00 1.00 0.00
#> 129     2  0.0000     0.9554 0.00 1.00 0.00
#> 130     1  0.0892     0.9625 0.98 0.02 0.00
#> 131     1  0.0000     0.9786 1.00 0.00 0.00
#> 132     3  0.6302     0.0766 0.00 0.48 0.52
#> 133     2  0.0000     0.9554 0.00 1.00 0.00
#> 134     1  0.0000     0.9786 1.00 0.00 0.00
#> 135     1  0.0000     0.9786 1.00 0.00 0.00
#> 136     2  0.0000     0.9554 0.00 1.00 0.00
#> 137     1  0.0000     0.9786 1.00 0.00 0.00
#> 138     1  0.0000     0.9786 1.00 0.00 0.00
#> 139     1  0.0000     0.9786 1.00 0.00 0.00
#> 140     2  0.0892     0.9368 0.02 0.98 0.00
#> 141     1  0.0000     0.9786 1.00 0.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 2       4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 3       4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 4       4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 5       4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 6       4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 7       4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 8       4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 9       4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 10      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 11      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 12      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 13      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 14      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 15      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 16      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 17      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 18      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 19      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 20      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 21      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 22      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 23      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 24      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 25      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 26      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 27      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 28      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 29      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 30      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 31      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 32      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 33      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 34      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 35      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 36      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 37      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 38      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 39      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 40      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 41      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 42      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 43      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 44      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 45      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 46      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 47      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 48      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 49      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 50      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 51      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 52      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 53      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 54      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 55      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 56      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 57      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 58      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 59      2  0.3172     0.7852 0.16 0.84 0.00 0.00
#> 60      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 61      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 62      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 63      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 64      3  0.0707     0.9589 0.00 0.02 0.98 0.00
#> 65      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 66      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 67      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 68      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 69      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 70      1  0.1637     0.9221 0.94 0.06 0.00 0.00
#> 71      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 72      3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 73      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 74      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 75      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 76      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 77      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 78      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 79      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 80      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 81      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 82      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 83      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 84      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 85      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 86      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 87      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 88      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 89      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 90      4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 91      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 92      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 93      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 94      1  0.1211     0.9427 0.96 0.04 0.00 0.00
#> 95      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 96      1  0.1637     0.9228 0.94 0.00 0.06 0.00
#> 97      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 98      1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 99      2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 100     2  0.0707     0.9735 0.00 0.98 0.02 0.00
#> 101     4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 102     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 103     1  0.4994     0.0885 0.52 0.48 0.00 0.00
#> 104     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 105     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 106     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 107     4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 108     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 109     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 110     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 111     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 112     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 113     4  0.0707     0.9750 0.02 0.00 0.00 0.98
#> 114     3  0.6605     0.0930 0.00 0.44 0.48 0.08
#> 115     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 116     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 117     1  0.0707     0.9636 0.98 0.00 0.00 0.02
#> 118     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 119     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 120     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 121     4  0.0000     0.9988 0.00 0.00 0.00 1.00
#> 122     1  0.4134     0.6507 0.74 0.26 0.00 0.00
#> 123     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 124     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 125     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 126     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 127     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 128     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 129     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 130     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 131     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 132     3  0.0000     0.9797 0.00 0.00 1.00 0.00
#> 133     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 134     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 135     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 136     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 137     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 138     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 139     1  0.0000     0.9812 1.00 0.00 0.00 0.00
#> 140     2  0.0000     0.9937 0.00 1.00 0.00 0.00
#> 141     1  0.0000     0.9812 1.00 0.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-023-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-023-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-023-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-023-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-023-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-023-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-023-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-023-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-023-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-023-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-023-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-023-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-023-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-023-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-023-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-023-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-023-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      139              5.26e-03 2
#> ATC:skmeans      136              2.51e-14 3
#> ATC:skmeans      139              5.84e-31 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node03

Parent node: Node0. Child nodes: Node011 , Node012 , Node013 , Node014 , Node021 , Node022 , Node023 , Node031 , Node032 , Node033 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["03"]

A summary of res and all the functions that can be applied to it:

res
#> A 'DownSamplingConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 10389 rows and 500 columns, randomly sampled from 648 columns.
#>   Top rows (964) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'DownSamplingConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-03-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-03-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.966       0.986          0.482 0.517   0.517
#> 3 3 1.000           0.955       0.972          0.232 0.846   0.715
#> 4 4 0.973           0.943       0.973          0.228 0.781   0.512

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

get_classes(res, k = 2)
#>     class     p
#> 1       2 0.000
#> 2       2 0.000
#> 3       2 0.000
#> 4       1 0.000
#> 5       2 0.000
#> 6       2 0.000
#> 7       2 0.000
#> 8       2 0.000
#> 9       2 0.000
#> 10      1 0.000
#> 11      2 0.000
#> 12      2 0.000
#> 13      2 0.000
#> 14      2 0.000
#> 15      1 0.000
#> 16      1 0.000
#> 17      1 0.000
#> 18      1 0.000
#> 19      1 0.000
#> 20      1 1.000
#> 21      1 0.000
#> 22      1 0.000
#> 23      2 0.000
#> 24      1 0.000
#> 25      2 0.000
#> 26      2 0.000
#> 27      1 0.000
#> 28      2 0.000
#> 29      2 0.751
#> 30      1 1.000
#> 31      1 0.000
#> 32      2 0.502
#> 33      2 0.253
#> 34      2 0.000
#> 35      1 0.000
#> 36      2 0.000
#> 37      2 0.000
#> 38      2 0.253
#> 39      2 0.000
#> 40      1 0.249
#> 41      1 0.000
#> 42      1 1.000
#> 43      2 1.000
#> 44      1 0.000
#> 45      2 0.751
#> 46      2 0.502
#> 47      2 1.000
#> 48      1 0.747
#> 49      1 0.000
#> 50      1 0.249
#> 51      1 0.000
#> 52      2 1.000
#> 53      1 0.000
#> 54      1 0.000
#> 55      1 0.000
#> 56      1 0.000
#> 57      1 0.000
#> 58      1 0.000
#> 59      1 0.000
#> 60      1 0.000
#> 61      1 0.498
#> 62      1 0.000
#> 63      2 1.000
#> 64      1 0.000
#> 65      2 1.000
#> 66      1 0.000
#> 67      1 0.000
#> 68      2 0.000
#> 69      1 0.000
#> 70      1 0.000
#> 71      1 0.000
#> 72      2 0.751
#> 73      1 0.000
#> 74      1 0.000
#> 75      1 0.000
#> 76      1 0.000
#> 77      1 0.000
#> 78      1 0.000
#> 79      1 0.000
#> 80      1 0.000
#> 81      1 0.000
#> 82      1 0.000
#> 83      2 0.502
#> 84      1 1.000
#> 85      2 0.253
#> 86      1 0.000
#> 87      1 0.000
#> 88      1 0.000
#> 89      1 0.000
#> 90      1 0.000
#> 91      2 0.751
#> 92      1 0.000
#> 93      1 1.000
#> 94      1 0.000
#> 95      1 0.000
#> 96      1 0.000
#> 97      1 0.000
#> 98      1 0.000
#> 99      1 0.000
#> 100     1 0.000
#> 101     1 0.000
#> 102     1 1.000
#> 103     1 0.000
#> 104     1 0.000
#> 105     1 0.000
#> 106     1 1.000
#> 107     1 0.000
#> 108     1 0.000
#> 109     1 0.000
#> 110     1 0.000
#> 111     1 0.000
#> 112     1 0.000
#> 113     1 0.000
#> 114     1 0.000
#> 115     1 0.000
#> 116     1 0.000
#> 117     1 0.000
#> 118     1 0.000
#> 119     1 0.000
#> 120     1 0.000
#> 121     1 0.498
#> 122     1 0.000
#> 123     1 0.000
#> 124     1 1.000
#> 125     1 0.000
#> 126     1 1.000
#> 127     1 0.000
#> 128     1 1.000
#> 129     1 0.000
#> 130     1 0.000
#> 131     1 1.000
#> 132     1 0.000
#> 133     1 0.000
#> 134     1 0.000
#> 135     2 0.502
#> 136     1 1.000
#> 137     1 0.000
#> 138     1 0.000
#> 139     1 0.000
#> 140     1 0.000
#> 141     1 0.000
#> 142     1 0.498
#> 143     1 0.000
#> 144     1 0.000
#> 145     1 0.000
#> 146     1 0.000
#> 147     1 0.000
#> 148     1 0.000
#> 149     1 0.000
#> 150     1 0.000
#> 151     1 0.000
#> 152     1 0.249
#> 153     1 0.000
#> 154     1 0.000
#> 155     1 0.000
#> 156     1 0.000
#> 157     1 0.000
#> 158     1 0.000
#> 159     1 0.000
#> 160     1 0.000
#> 161     1 0.000
#> 162     1 0.000
#> 163     1 0.000
#> 164     1 0.000
#> 165     1 1.000
#> 166     1 0.000
#> 167     1 0.000
#> 168     1 0.000
#> 169     1 0.000
#> 170     1 0.000
#> 171     1 0.000
#> 172     1 0.000
#> 173     1 1.000
#> 174     1 0.502
#> 175     1 0.751
#> 176     1 0.000
#> 177     1 0.000
#> 178     1 0.000
#> 179     1 0.000
#> 180     1 0.000
#> 181     1 0.000
#> 182     1 0.000
#> 183     1 0.000
#> 184     1 0.000
#> 185     1 0.000
#> 186     1 0.000
#> 187     1 0.000
#> 188     1 0.000
#> 189     1 0.000
#> 190     1 1.000
#> 191     1 0.000
#> 192     1 0.000
#> 193     1 0.249
#> 194     1 0.000
#> 195     1 0.000
#> 196     1 0.000
#> 197     1 0.000
#> 198     1 0.000
#> 199     1 0.000
#> 200     1 0.000
#> 201     1 0.000
#> 202     1 0.000
#> 203     1 0.000
#> 204     1 0.000
#> 205     1 0.000
#> 206     1 0.000
#> 207     1 0.000
#> 208     1 0.000
#> 209     1 0.000
#> 210     1 0.000
#> 211     1 0.000
#> 212     2 0.000
#> 213     1 1.000
#> 214     1 0.000
#> 215     1 1.000
#> 216     1 0.000
#> 217     1 0.000
#> 218     1 0.000
#> 219     1 0.000
#> 220     1 0.000
#> 221     1 0.000
#> 222     1 0.000
#> 223     1 0.000
#> 224     1 0.751
#> 225     1 0.000
#> 226     1 0.000
#> 227     1 0.000
#> 228     1 0.000
#> 229     1 0.000
#> 230     1 0.000
#> 231     1 0.000
#> 232     1 0.000
#> 233     1 0.000
#> 234     1 0.000
#> 235     1 0.000
#> 236     1 0.000
#> 237     1 0.000
#> 238     1 0.000
#> 239     1 0.000
#> 240     1 0.000
#> 241     1 0.000
#> 242     1 0.000
#> 243     1 0.000
#> 244     1 0.000
#> 245     1 0.000
#> 246     1 0.000
#> 247     1 0.000
#> 248     1 0.000
#> 249     1 0.000
#> 250     1 0.000
#> 251     1 0.000
#> 252     1 0.000
#> 253     1 0.000
#> 254     1 0.000
#> 255     1 0.000
#> 256     1 0.000
#> 257     1 0.000
#> 258     1 0.000
#> 259     1 0.000
#> 260     1 0.000
#> 261     1 0.000
#> 262     1 0.000
#> 263     1 0.000
#> 264     1 0.000
#> 265     1 0.000
#> 266     1 0.000
#> 267     1 0.000
#> 268     1 0.000
#> 269     1 0.000
#> 270     1 0.000
#> 271     1 0.000
#> 272     1 0.000
#> 273     1 0.000
#> 274     1 0.000
#> 275     1 0.000
#> 276     1 0.000
#> 277     1 0.000
#> 278     1 0.000
#> 279     1 0.000
#> 280     1 0.000
#> 281     1 0.000
#> 282     1 0.000
#> 283     1 0.000
#> 284     1 0.000
#> 285     1 0.000
#> 286     1 0.000
#> 287     1 0.000
#> 288     1 0.751
#> 289     2 0.000
#> 290     2 0.000
#> 291     1 0.000
#> 292     2 0.000
#> 293     1 0.000
#> 294     1 0.000
#> 295     1 0.502
#> 296     1 1.000
#> 297     1 0.000
#> 298     1 0.000
#> 299     1 0.000
#> 300     2 0.000
#> 301     1 0.000
#> 302     1 0.000
#> 303     1 0.000
#> 304     1 0.000
#> 305     1 0.000
#> 306     1 1.000
#> 307     1 0.000
#> 308     1 0.000
#> 309     1 0.000
#> 310     1 0.000
#> 311     1 0.000
#> 312     1 0.000
#> 313     1 0.000
#> 314     1 0.000
#> 315     1 0.000
#> 316     1 0.000
#> 317     1 0.000
#> 318     1 0.000
#> 319     1 0.000
#> 320     1 0.000
#> 321     1 0.000
#> 322     1 0.000
#> 323     1 0.000
#> 324     1 0.000
#> 325     1 0.000
#> 326     1 0.000
#> 327     1 0.000
#> 328     1 0.000
#> 329     1 0.000
#> 330     1 0.000
#> 331     1 0.000
#> 332     1 0.000
#> 333     1 0.000
#> 334     1 0.000
#> 335     1 0.000
#> 336     1 0.000
#> 337     1 0.000
#> 338     1 0.000
#> 339     1 0.249
#> 340     1 0.000
#> 341     1 0.000
#> 342     1 0.000
#> 343     1 0.000
#> 344     1 0.000
#> 345     1 0.000
#> 346     1 0.000
#> 347     1 0.000
#> 348     1 0.000
#> 349     1 0.000
#> 350     1 0.000
#> 351     1 0.000
#> 352     1 0.000
#> 353     1 0.000
#> 354     2 0.751
#> 355     2 1.000
#> 356     1 0.000
#> 357     1 0.000
#> 358     1 1.000
#> 359     1 0.000
#> 360     1 0.000
#> 361     1 0.000
#> 362     1 0.000
#> 363     1 0.000
#> 364     1 0.000
#> 365     1 0.000
#> 366     1 0.000
#> 367     1 0.000
#> 368     1 0.000
#> 369     1 0.000
#> 370     1 0.000
#> 371     1 0.000
#> 372     1 0.000
#> 373     2 1.000
#> 374     1 1.000
#> 375     1 0.000
#> 376     1 0.000
#> 377     1 0.000
#> 378     1 0.000
#> 379     1 0.000
#> 380     1 0.000
#> 381     1 0.000
#> 382     1 0.000
#> 383     1 0.000
#> 384     1 0.000
#> 385     1 0.000
#> 386     1 0.000
#> 387     1 0.000
#> 388     1 0.000
#> 389     1 0.000
#> 390     1 0.000
#> 391     2 0.000
#> 392     2 0.000
#> 393     2 0.000
#> 394     2 0.000
#> 395     2 0.000
#> 396     2 0.000
#> 397     2 1.000
#> 398     2 0.000
#> 399     2 0.000
#> 400     1 0.000
#> 401     1 0.498
#> 402     2 0.000
#> 403     1 0.000
#> 404     1 0.751
#> 405     1 0.000
#> 406     2 0.000
#> 407     2 0.000
#> 408     1 0.000
#> 409     1 0.000
#> 410     1 0.000
#> 411     2 1.000
#> 412     2 1.000
#> 413     2 0.000
#> 414     2 0.000
#> 415     1 0.000
#> 416     1 0.000
#> 417     2 0.000
#> 418     1 0.000
#> 419     2 0.000
#> 420     1 0.000
#> 421     1 0.000
#> 422     1 0.000
#> 423     1 0.000
#> 424     1 0.249
#> 425     1 0.000
#> 426     2 0.249
#> 427     2 0.000
#> 428     1 0.000
#> 429     2 0.000
#> 430     1 0.000
#> 431     1 0.000
#> 432     1 0.249
#> 433     2 0.000
#> 434     1 0.000
#> 435     1 0.000
#> 436     2 0.000
#> 437     1 0.000
#> 438     1 0.000
#> 439     1 0.000
#> 440     2 0.000
#> 441     2 0.000
#> 442     1 0.000
#> 443     1 0.249
#> 444     2 0.000
#> 445     1 1.000
#> 446     2 0.000
#> 447     1 0.000
#> 448     1 0.000
#> 449     2 0.000
#> 450     1 0.000
#> 451     2 0.000
#> 452     2 0.000
#> 453     2 0.000
#> 454     2 0.000
#> 455     2 0.000
#> 456     2 0.000
#> 457     1 0.000
#> 458     2 0.000
#> 459     2 0.000
#> 460     2 0.000
#> 461     1 0.000
#> 462     1 0.000
#> 463     1 0.000
#> 464     1 0.000
#> 465     1 0.000
#> 466     1 0.000
#> 467     1 0.249
#> 468     1 0.000
#> 469     1 0.000
#> 470     1 0.000
#> 471     1 0.000
#> 472     2 0.000
#> 473     2 0.000
#> 474     2 0.000
#> 475     1 0.000
#> 476     1 0.000
#> 477     1 0.000
#> 478     1 0.000
#> 479     1 0.000
#> 480     1 0.000
#> 481     2 0.000
#> 482     2 0.000
#> 483     2 0.000
#> 484     1 0.751
#> 485     2 0.000
#> 486     1 1.000
#> 487     2 0.000
#> 488     2 0.000
#> 489     2 0.000
#> 490     1 1.000
#> 491     2 0.000
#> 492     1 0.751
#> 493     2 0.000
#> 494     2 0.000
#> 495     1 0.000
#> 496     2 0.000
#> 497     2 0.000
#> 498     2 0.000
#> 499     2 0.000
#> 500     2 0.000
#> 501     2 0.000
#> 502     2 0.000
#> 503     2 0.253
#> 504     1 0.000
#> 505     2 0.000
#> 506     1 0.000
#> 507     2 0.000
#> 508     2 0.000
#> 509     1 0.000
#> 510     1 0.000
#> 511     1 0.000
#> 512     2 0.000
#> 513     1 0.000
#> 514     1 0.000
#> 515     1 0.000
#> 516     1 1.000
#> 517     1 0.000
#> 518     2 0.000
#> 519     1 0.000
#> 520     1 0.498
#> 521     2 0.000
#> 522     1 0.000
#> 523     2 0.000
#> 524     1 0.502
#> 525     1 0.000
#> 526     2 0.000
#> 527     2 0.000
#> 528     1 1.000
#> 529     1 0.000
#> 530     1 0.000
#> 531     1 0.000
#> 532     2 0.000
#> 533     2 0.000
#> 534     2 0.000
#> 535     2 0.000
#> 536     2 1.000
#> 537     1 0.000
#> 538     1 0.000
#> 539     1 0.000
#> 540     2 0.000
#> 541     2 1.000
#> 542     2 0.000
#> 543     2 0.000
#> 544     1 0.000
#> 545     2 0.000
#> 546     2 0.000
#> 547     1 0.000
#> 548     2 0.000
#> 549     2 0.000
#> 550     1 0.000
#> 551     2 0.000
#> 552     2 0.000
#> 553     2 0.000
#> 554     2 0.000
#> 555     1 1.000
#> 556     2 0.000
#> 557     1 0.000
#> 558     2 0.000
#> 559     2 0.000
#> 560     2 0.000
#> 561     2 0.000
#> 562     2 1.000
#> 563     2 1.000
#> 564     2 0.000
#> 565     2 0.000
#> 566     1 0.000
#> 567     1 0.000
#> 568     2 0.000
#> 569     1 1.000
#> 570     2 0.000
#> 571     2 0.000
#> 572     2 0.000
#> 573     2 0.000
#> 574     2 0.000
#> 575     2 0.000
#> 576     2 0.000
#> 577     2 0.000
#> 578     2 0.000
#> 579     1 0.000
#> 580     2 0.000
#> 581     2 0.000
#> 582     2 0.000
#> 583     2 0.000
#> 584     2 0.000
#> 585     2 0.000
#> 586     2 0.000
#> 587     2 0.000
#> 588     2 0.000
#> 589     2 0.000
#> 590     2 0.000
#> 591     2 0.000
#> 592     2 0.000
#> 593     2 0.000
#> 594     2 0.000
#> 595     2 0.000
#> 596     2 0.000
#> 597     2 0.000
#> 598     2 0.000
#> 599     2 0.000
#> 600     2 0.000
#> 601     2 0.000
#> 602     2 0.000
#> 603     2 0.000
#> 604     2 0.000
#> 605     2 0.000
#> 606     2 0.000
#> 607     2 0.000
#> 608     2 0.000
#> 609     2 0.000
#> 610     2 0.000
#> 611     2 0.000
#> 612     2 0.000
#> 613     2 0.000
#> 614     2 0.000
#> 615     2 0.000
#> 616     2 0.000
#> 617     2 0.000
#> 618     2 0.000
#> 619     2 0.000
#> 620     2 0.000
#> 621     2 0.000
#> 622     2 0.000
#> 623     2 0.000
#> 624     2 0.000
#> 625     2 0.000
#> 626     2 0.000
#> 627     2 0.000
#> 628     2 0.000
#> 629     2 0.000
#> 630     2 0.000
#> 631     2 0.000
#> 632     2 0.000
#> 633     2 0.000
#> 634     2 0.000
#> 635     2 0.000
#> 636     2 0.000
#> 637     2 0.000
#> 638     2 0.000
#> 639     2 0.000
#> 640     2 0.000
#> 641     2 0.000
#> 642     2 0.000
#> 643     2 0.000
#> 644     2 0.000
#> 645     2 0.000
#> 646     2 0.000
#> 647     2 0.000
#> 648     2 0.000

show/hide code output

get_classes(res, k = 3)
#>     class     p
#> 1       2 0.000
#> 2       2 0.000
#> 3       2 0.000
#> 4       1 0.747
#> 5       2 0.000
#> 6       2 0.000
#> 7       2 0.000
#> 8       2 0.000
#> 9       2 0.000
#> 10      1 0.000
#> 11      2 0.000
#> 12      2 0.000
#> 13      2 0.000
#> 14      2 0.000
#> 15      1 0.000
#> 16      1 0.000
#> 17      1 0.000
#> 18      1 0.000
#> 19      1 0.000
#> 20      2 1.000
#> 21      1 0.000
#> 22      1 0.498
#> 23      2 0.000
#> 24      1 0.000
#> 25      2 0.000
#> 26      2 0.000
#> 27      1 0.000
#> 28      2 0.000
#> 29      2 0.751
#> 30      2 0.751
#> 31      1 0.000
#> 32      2 0.249
#> 33      2 0.000
#> 34      2 0.000
#> 35      1 0.000
#> 36      2 0.000
#> 37      2 0.000
#> 38      2 0.000
#> 39      2 0.000
#> 40      1 0.000
#> 41      1 0.000
#> 42      1 0.000
#> 43      2 1.000
#> 44      1 0.000
#> 45      2 1.000
#> 46      2 1.000
#> 47      2 0.751
#> 48      1 0.249
#> 49      1 0.000
#> 50      2 1.000
#> 51      1 0.000
#> 52      2 0.000
#> 53      1 0.000
#> 54      1 0.000
#> 55      1 0.000
#> 56      1 0.000
#> 57      1 0.000
#> 58      1 0.000
#> 59      1 0.000
#> 60      1 0.000
#> 61      2 1.000
#> 62      1 0.751
#> 63      2 1.000
#> 64      1 0.000
#> 65      1 1.000
#> 66      1 1.000
#> 67      1 0.000
#> 68      2 0.000
#> 69      1 0.000
#> 70      1 0.000
#> 71      1 0.000
#> 72      2 1.000
#> 73      1 0.000
#> 74      1 0.000
#> 75      1 0.000
#> 76      1 0.000
#> 77      1 0.000
#> 78      1 0.000
#> 79      1 0.000
#> 80      1 0.000
#> 81      1 0.000
#> 82      1 0.000
#> 83      2 0.498
#> 84      1 0.000
#> 85      2 0.000
#> 86      1 0.000
#> 87      1 0.000
#> 88      1 0.000
#> 89      1 1.000
#> 90      1 0.000
#> 91      2 1.000
#> 92      1 0.000
#> 93      1 0.000
#> 94      1 0.000
#> 95      1 0.000
#> 96      1 0.000
#> 97      1 0.000
#> 98      1 0.000
#> 99      1 0.000
#> 100     1 0.000
#> 101     1 0.000
#> 102     1 0.000
#> 103     1 0.000
#> 104     1 0.000
#> 105     1 0.000
#> 106     1 0.000
#> 107     1 0.000
#> 108     1 0.498
#> 109     1 0.000
#> 110     1 0.000
#> 111     1 0.000
#> 112     1 0.000
#> 113     1 0.000
#> 114     1 0.000
#> 115     1 0.000
#> 116     1 0.000
#> 117     1 0.000
#> 118     1 0.000
#> 119     1 0.000
#> 120     1 0.000
#> 121     1 0.000
#> 122     1 0.000
#> 123     1 0.000
#> 124     1 0.000
#> 125     1 0.000
#> 126     1 0.000
#> 127     1 0.249
#> 128     1 0.000
#> 129     1 0.000
#> 130     1 0.000
#> 131     1 1.000
#> 132     1 0.000
#> 133     1 0.000
#> 134     1 0.000
#> 135     2 1.000
#> 136     1 0.000
#> 137     1 0.000
#> 138     1 0.000
#> 139     1 0.000
#> 140     1 0.000
#> 141     1 0.000
#> 142     1 0.000
#> 143     1 0.000
#> 144     1 0.000
#> 145     1 0.000
#> 146     1 0.000
#> 147     1 0.000
#> 148     1 0.000
#> 149     1 0.000
#> 150     1 0.000
#> 151     1 0.000
#> 152     1 0.000
#> 153     1 0.000
#> 154     1 0.000
#> 155     1 0.000
#> 156     1 0.000
#> 157     1 0.000
#> 158     1 0.000
#> 159     1 0.000
#> 160     1 0.000
#> 161     1 0.000
#> 162     1 0.000
#> 163     1 0.000
#> 164     1 0.000
#> 165     1 0.000
#> 166     1 0.000
#> 167     1 0.000
#> 168     1 0.000
#> 169     1 0.000
#> 170     1 0.000
#> 171     1 0.000
#> 172     1 0.000
#> 173     1 1.000
#> 174     1 0.000
#> 175     1 0.000
#> 176     1 0.000
#> 177     1 0.000
#> 178     1 0.000
#> 179     1 0.000
#> 180     1 0.000
#> 181     1 0.000
#> 182     1 0.000
#> 183     1 0.000
#> 184     1 0.000
#> 185     1 0.000
#> 186     1 0.000
#> 187     1 0.000
#> 188     1 0.000
#> 189     1 0.000
#> 190     1 0.000
#> 191     1 0.000
#> 192     1 0.000
#> 193     1 0.000
#> 194     1 0.000
#> 195     1 0.000
#> 196     1 0.000
#> 197     1 0.000
#> 198     1 0.000
#> 199     1 0.000
#> 200     1 0.000
#> 201     1 0.000
#> 202     1 0.000
#> 203     1 0.000
#> 204     1 0.000
#> 205     1 0.000
#> 206     1 0.000
#> 207     1 0.000
#> 208     1 0.000
#> 209     1 0.000
#> 210     1 0.000
#> 211     1 0.000
#> 212     2 0.502
#> 213     1 0.000
#> 214     1 0.000
#> 215     1 0.249
#> 216     1 0.000
#> 217     1 0.000
#> 218     1 0.000
#> 219     1 0.000
#> 220     1 0.000
#> 221     1 0.000
#> 222     1 0.000
#> 223     1 0.000
#> 224     1 0.000
#> 225     1 0.000
#> 226     1 0.000
#> 227     1 0.000
#> 228     1 0.000
#> 229     1 0.000
#> 230     1 0.000
#> 231     1 0.000
#> 232     1 0.000
#> 233     1 0.000
#> 234     1 0.000
#> 235     1 0.000
#> 236     1 0.000
#> 237     1 0.000
#> 238     1 0.000
#> 239     1 0.000
#> 240     1 0.000
#> 241     1 0.000
#> 242     1 0.000
#> 243     1 0.000
#> 244     1 0.000
#> 245     1 0.000
#> 246     1 0.000
#> 247     1 0.000
#> 248     1 0.000
#> 249     1 0.000
#> 250     1 0.000
#> 251     1 0.000
#> 252     1 0.000
#> 253     1 0.000
#> 254     1 0.000
#> 255     1 0.000
#> 256     1 0.000
#> 257     1 0.000
#> 258     1 0.000
#> 259     1 0.000
#> 260     1 0.000
#> 261     1 0.000
#> 262     1 0.000
#> 263     1 0.000
#> 264     1 0.000
#> 265     1 0.000
#> 266     1 0.000
#> 267     1 0.000
#> 268     1 0.000
#> 269     1 0.000
#> 270     1 0.000
#> 271     1 0.000
#> 272     1 0.000
#> 273     1 0.000
#> 274     1 0.000
#> 275     1 0.000
#> 276     1 0.000
#> 277     1 0.000
#> 278     1 0.000
#> 279     1 0.000
#> 280     1 0.000
#> 281     1 0.000
#> 282     1 0.000
#> 283     1 0.000
#> 284     1 0.502
#> 285     1 0.000
#> 286     1 1.000
#> 287     1 0.000
#> 288     1 0.000
#> 289     2 0.000
#> 290     2 1.000
#> 291     1 0.000
#> 292     2 0.249
#> 293     1 0.000
#> 294     1 0.000
#> 295     1 0.000
#> 296     1 0.000
#> 297     1 0.000
#> 298     1 0.000
#> 299     1 0.000
#> 300     2 1.000
#> 301     1 0.000
#> 302     1 0.000
#> 303     1 0.000
#> 304     1 0.000
#> 305     1 0.000
#> 306     1 1.000
#> 307     1 0.000
#> 308     1 0.000
#> 309     1 0.000
#> 310     1 0.000
#> 311     1 0.000
#> 312     1 0.000
#> 313     1 0.000
#> 314     1 0.000
#> 315     1 0.000
#> 316     1 0.000
#> 317     1 0.000
#> 318     1 0.000
#> 319     1 0.000
#> 320     1 0.000
#> 321     1 0.000
#> 322     1 0.000
#> 323     1 0.000
#> 324     1 0.000
#> 325     1 0.000
#> 326     1 0.000
#> 327     1 0.000
#> 328     1 0.000
#> 329     1 0.000
#> 330     1 0.000
#> 331     1 0.000
#> 332     1 0.000
#> 333     1 0.000
#> 334     1 0.000
#> 335     1 0.000
#> 336     1 0.000
#> 337     1 0.000
#> 338     1 0.000
#> 339     1 0.000
#> 340     1 0.000
#> 341     1 0.000
#> 342     1 0.000
#> 343     1 0.000
#> 344     1 0.000
#> 345     1 0.000
#> 346     1 0.000
#> 347     1 0.000
#> 348     1 0.000
#> 349     1 0.000
#> 350     1 0.000
#> 351     1 0.000
#> 352     1 0.000
#> 353     1 0.000
#> 354     2 1.000
#> 355     2 0.249
#> 356     1 0.000
#> 357     1 0.000
#> 358     1 1.000
#> 359     1 0.000
#> 360     1 0.000
#> 361     1 0.000
#> 362     1 0.000
#> 363     1 0.249
#> 364     1 0.000
#> 365     1 0.000
#> 366     1 0.000
#> 367     1 0.000
#> 368     1 0.000
#> 369     1 0.000
#> 370     1 0.000
#> 371     1 0.000
#> 372     1 0.000
#> 373     2 1.000
#> 374     1 0.000
#> 375     1 0.000
#> 376     1 0.000
#> 377     1 1.000
#> 378     1 0.000
#> 379     1 0.000
#> 380     1 0.000
#> 381     1 0.000
#> 382     1 0.000
#> 383     1 0.000
#> 384     1 0.000
#> 385     1 0.000
#> 386     1 0.000
#> 387     1 0.000
#> 388     1 0.000
#> 389     1 0.000
#> 390     1 0.000
#> 391     2 0.000
#> 392     2 0.502
#> 393     2 0.000
#> 394     2 0.000
#> 395     2 0.253
#> 396     2 0.000
#> 397     1 1.000
#> 398     2 0.000
#> 399     2 0.000
#> 400     1 0.000
#> 401     1 0.253
#> 402     2 0.751
#> 403     1 0.000
#> 404     1 1.000
#> 405     1 0.000
#> 406     2 0.000
#> 407     2 0.000
#> 408     1 0.751
#> 409     1 0.000
#> 410     1 0.000
#> 411     1 1.000
#> 412     2 1.000
#> 413     2 0.000
#> 414     2 0.000
#> 415     1 0.000
#> 416     1 0.000
#> 417     2 0.000
#> 418     1 0.000
#> 419     2 0.000
#> 420     1 0.000
#> 421     1 0.000
#> 422     1 0.000
#> 423     1 0.000
#> 424     1 0.000
#> 425     1 0.000
#> 426     2 0.751
#> 427     2 0.000
#> 428     1 0.249
#> 429     2 0.000
#> 430     1 0.000
#> 431     1 0.000
#> 432     3 1.000
#> 433     2 0.000
#> 434     1 0.000
#> 435     1 0.000
#> 436     3 0.000
#> 437     3 0.000
#> 438     3 0.000
#> 439     3 0.000
#> 440     3 0.000
#> 441     3 0.000
#> 442     3 0.000
#> 443     3 0.000
#> 444     3 0.000
#> 445     3 0.000
#> 446     3 0.000
#> 447     3 0.000
#> 448     3 0.000
#> 449     3 0.000
#> 450     3 0.000
#> 451     3 0.000
#> 452     3 0.000
#> 453     3 0.000
#> 454     3 0.000
#> 455     3 0.000
#> 456     3 0.000
#> 457     3 0.000
#> 458     3 0.000
#> 459     2 0.000
#> 460     3 0.000
#> 461     1 1.000
#> 462     3 0.751
#> 463     1 0.000
#> 464     3 1.000
#> 465     1 0.751
#> 466     1 1.000
#> 467     3 1.000
#> 468     3 0.000
#> 469     1 1.000
#> 470     3 0.000
#> 471     1 1.000
#> 472     2 0.000
#> 473     2 0.000
#> 474     3 0.249
#> 475     3 1.000
#> 476     1 0.502
#> 477     1 0.000
#> 478     3 0.751
#> 479     3 0.000
#> 480     3 0.000
#> 481     3 0.000
#> 482     3 0.000
#> 483     3 0.000
#> 484     3 0.000
#> 485     3 0.000
#> 486     3 0.000
#> 487     3 0.000
#> 488     3 0.000
#> 489     3 0.000
#> 490     3 0.000
#> 491     3 0.000
#> 492     3 0.000
#> 493     3 0.000
#> 494     3 0.000
#> 495     3 0.000
#> 496     3 0.000
#> 497     3 0.000
#> 498     3 0.000
#> 499     3 0.000
#> 500     3 0.000
#> 501     2 0.000
#> 502     2 0.000
#> 503     2 0.000
#> 504     1 0.000
#> 505     2 0.000
#> 506     1 0.000
#> 507     2 0.000
#> 508     2 0.000
#> 509     1 0.000
#> 510     1 0.000
#> 511     1 0.000
#> 512     2 0.000
#> 513     1 0.000
#> 514     1 0.000
#> 515     1 0.000
#> 516     2 1.000
#> 517     1 0.000
#> 518     2 0.000
#> 519     1 0.000
#> 520     1 0.747
#> 521     2 0.000
#> 522     1 0.000
#> 523     2 0.000
#> 524     1 0.249
#> 525     1 0.000
#> 526     2 0.000
#> 527     2 0.000
#> 528     2 0.000
#> 529     1 0.000
#> 530     3 0.000
#> 531     1 0.000
#> 532     2 0.000
#> 533     2 0.000
#> 534     2 0.000
#> 535     2 0.000
#> 536     2 0.000
#> 537     1 0.000
#> 538     1 0.000
#> 539     1 0.000
#> 540     2 0.000
#> 541     1 0.498
#> 542     3 0.000
#> 543     2 0.000
#> 544     1 0.000
#> 545     2 0.000
#> 546     2 0.000
#> 547     1 0.000
#> 548     2 0.000
#> 549     2 0.000
#> 550     3 1.000
#> 551     2 0.751
#> 552     2 0.000
#> 553     2 0.000
#> 554     3 0.000
#> 555     1 1.000
#> 556     2 0.000
#> 557     1 0.000
#> 558     2 0.000
#> 559     2 0.000
#> 560     2 0.000
#> 561     2 0.000
#> 562     2 0.000
#> 563     2 0.000
#> 564     3 0.000
#> 565     2 0.000
#> 566     1 0.000
#> 567     1 0.000
#> 568     2 0.000
#> 569     1 0.000
#> 570     2 0.000
#> 571     2 0.000
#> 572     2 0.000
#> 573     3 0.000
#> 574     2 0.000
#> 575     2 0.000
#> 576     2 0.000
#> 577     2 0.000
#> 578     2 0.000
#> 579     1 0.000
#> 580     2 0.000
#> 581     2 0.000
#> 582     2 0.000
#> 583     2 0.000
#> 584     2 0.000
#> 585     2 0.000
#> 586     2 0.000
#> 587     2 0.000
#> 588     2 0.000
#> 589     2 0.000
#> 590     2 0.000
#> 591     2 0.000
#> 592     2 0.000
#> 593     2 0.000
#> 594     2 0.000
#> 595     2 0.000
#> 596     2 0.000
#> 597     2 0.000
#> 598     2 0.000
#> 599     2 0.000
#> 600     2 0.000
#> 601     2 0.000
#> 602     2 0.000
#> 603     2 0.000
#> 604     2 0.000
#> 605     2 0.000
#> 606     2 0.000
#> 607     2 0.000
#> 608     2 0.000
#> 609     2 0.000
#> 610     2 0.000
#> 611     2 0.000
#> 612     2 0.000
#> 613     2 0.000
#> 614     2 0.000
#> 615     2 0.000
#> 616     2 0.000
#> 617     2 0.000
#> 618     2 0.000
#> 619     2 0.000
#> 620     2 0.000
#> 621     2 0.000
#> 622     2 0.000
#> 623     2 0.000
#> 624     2 0.000
#> 625     2 0.000
#> 626     2 0.000
#> 627     2 0.000
#> 628     2 0.000
#> 629     2 0.000
#> 630     2 0.000
#> 631     2 0.000
#> 632     2 0.000
#> 633     2 0.000
#> 634     2 0.000
#> 635     2 0.000
#> 636     2 0.000
#> 637     2 0.000
#> 638     2 0.000
#> 639     2 0.000
#> 640     2 0.000
#> 641     2 0.000
#> 642     2 0.000
#> 643     2 0.000
#> 644     2 0.000
#> 645     2 0.000
#> 646     2 0.000
#> 647     2 0.000
#> 648     2 0.000

show/hide code output

get_classes(res, k = 4)
#>     class     p
#> 1       2 0.000
#> 2       2 0.000
#> 3       2 0.000
#> 4       4 0.000
#> 5       2 0.000
#> 6       2 0.000
#> 7       2 0.000
#> 8       2 0.000
#> 9       2 0.000
#> 10      1 1.000
#> 11      2 0.000
#> 12      4 1.000
#> 13      2 0.000
#> 14      2 0.000
#> 15      1 0.000
#> 16      4 1.000
#> 17      4 1.000
#> 18      4 1.000
#> 19      1 1.000
#> 20      4 1.000
#> 21      1 1.000
#> 22      4 1.000
#> 23      2 0.000
#> 24      4 1.000
#> 25      4 1.000
#> 26      2 0.000
#> 27      4 0.000
#> 28      4 0.751
#> 29      4 0.000
#> 30      4 1.000
#> 31      4 1.000
#> 32      4 0.751
#> 33      2 1.000
#> 34      2 0.000
#> 35      4 0.751
#> 36      2 0.249
#> 37      2 0.000
#> 38      4 0.253
#> 39      2 0.000
#> 40      4 1.000
#> 41      4 1.000
#> 42      4 1.000
#> 43      4 1.000
#> 44      1 1.000
#> 45      4 0.000
#> 46      4 0.000
#> 47      4 0.751
#> 48      4 1.000
#> 49      4 1.000
#> 50      4 0.751
#> 51      1 1.000
#> 52      4 1.000
#> 53      4 1.000
#> 54      4 1.000
#> 55      4 1.000
#> 56      1 1.000
#> 57      1 0.747
#> 58      1 1.000
#> 59      1 0.000
#> 60      4 1.000
#> 61      4 0.751
#> 62      4 0.502
#> 63      4 0.000
#> 64      4 1.000
#> 65      4 0.000
#> 66      4 0.000
#> 67      1 0.000
#> 68      4 1.000
#> 69      1 0.747
#> 70      1 0.000
#> 71      1 1.000
#> 72      4 0.000
#> 73      1 0.000
#> 74      1 0.000
#> 75      1 0.000
#> 76      1 0.000
#> 77      1 0.000
#> 78      1 0.249
#> 79      1 0.000
#> 80      1 1.000
#> 81      1 0.000
#> 82      1 0.000
#> 83      4 0.000
#> 84      4 1.000
#> 85      4 0.253
#> 86      1 1.000
#> 87      4 1.000
#> 88      1 0.000
#> 89      4 0.751
#> 90      1 1.000
#> 91      4 0.000
#> 92      1 0.000
#> 93      1 1.000
#> 94      1 1.000
#> 95      1 0.000
#> 96      1 0.498
#> 97      1 0.000
#> 98      1 1.000
#> 99      1 0.000
#> 100     1 0.000
#> 101     1 1.000
#> 102     4 1.000
#> 103     1 0.000
#> 104     1 1.000
#> 105     1 0.000
#> 106     1 1.000
#> 107     4 1.000
#> 108     1 0.000
#> 109     1 0.000
#> 110     4 1.000
#> 111     4 1.000
#> 112     1 0.000
#> 113     1 0.000
#> 114     1 0.000
#> 115     1 0.000
#> 116     1 1.000
#> 117     4 1.000
#> 118     1 0.498
#> 119     1 0.000
#> 120     1 0.000
#> 121     4 1.000
#> 122     4 1.000
#> 123     1 0.000
#> 124     4 1.000
#> 125     4 1.000
#> 126     4 1.000
#> 127     4 0.751
#> 128     4 1.000
#> 129     4 1.000
#> 130     4 1.000
#> 131     4 0.000
#> 132     1 0.000
#> 133     4 0.751
#> 134     4 0.747
#> 135     4 0.000
#> 136     4 0.253
#> 137     4 1.000
#> 138     4 1.000
#> 139     4 0.747
#> 140     1 0.498
#> 141     1 0.000
#> 142     1 0.000
#> 143     1 0.000
#> 144     1 0.000
#> 145     1 0.000
#> 146     1 0.000
#> 147     1 0.000
#> 148     1 0.000
#> 149     1 0.000
#> 150     1 0.000
#> 151     1 0.000
#> 152     1 1.000
#> 153     4 1.000
#> 154     4 1.000
#> 155     1 0.000
#> 156     1 0.000
#> 157     1 0.000
#> 158     1 1.000
#> 159     4 1.000
#> 160     4 1.000
#> 161     1 0.000
#> 162     4 1.000
#> 163     4 0.747
#> 164     1 0.747
#> 165     1 0.000
#> 166     4 1.000
#> 167     1 0.000
#> 168     4 0.000
#> 169     4 1.000
#> 170     1 0.000
#> 171     4 1.000
#> 172     1 1.000
#> 173     4 0.000
#> 174     4 1.000
#> 175     4 1.000
#> 176     4 1.000
#> 177     4 1.000
#> 178     4 1.000
#> 179     1 0.751
#> 180     4 1.000
#> 181     4 0.498
#> 182     4 1.000
#> 183     4 1.000
#> 184     1 0.747
#> 185     4 1.000
#> 186     1 0.000
#> 187     1 0.000
#> 188     1 0.000
#> 189     1 0.000
#> 190     1 1.000
#> 191     4 1.000
#> 192     1 1.000
#> 193     1 0.249
#> 194     4 1.000
#> 195     4 1.000
#> 196     4 1.000
#> 197     1 0.000
#> 198     1 0.000
#> 199     1 0.000
#> 200     1 0.249
#> 201     1 0.000
#> 202     1 0.000
#> 203     1 0.000
#> 204     1 0.000
#> 205     1 0.000
#> 206     1 0.000
#> 207     1 0.000
#> 208     1 0.000
#> 209     4 0.249
#> 210     4 0.000
#> 211     4 0.498
#> 212     4 1.000
#> 213     4 0.000
#> 214     4 0.751
#> 215     4 0.000
#> 216     4 0.751
#> 217     4 1.000
#> 218     4 0.000
#> 219     4 1.000
#> 220     4 0.000
#> 221     4 1.000
#> 222     4 1.000
#> 223     4 1.000
#> 224     4 1.000
#> 225     4 0.249
#> 226     1 0.249
#> 227     4 1.000
#> 228     4 1.000
#> 229     1 1.000
#> 230     1 0.000
#> 231     1 0.000
#> 232     1 0.000
#> 233     1 1.000
#> 234     4 1.000
#> 235     1 0.000
#> 236     1 0.000
#> 237     1 0.000
#> 238     4 1.000
#> 239     1 0.000
#> 240     1 1.000
#> 241     4 1.000
#> 242     1 0.000
#> 243     1 0.000
#> 244     1 0.000
#> 245     1 0.000
#> 246     1 0.000
#> 247     1 0.000
#> 248     1 0.000
#> 249     4 1.000
#> 250     1 0.000
#> 251     1 0.000
#> 252     1 0.000
#> 253     4 1.000
#> 254     4 1.000
#> 255     1 0.000
#> 256     1 0.498
#> 257     4 1.000
#> 258     1 0.747
#> 259     4 1.000
#> 260     4 1.000
#> 261     1 0.000
#> 262     1 0.498
#> 263     1 1.000
#> 264     1 0.000
#> 265     1 0.000
#> 266     1 0.000
#> 267     1 0.000
#> 268     4 1.000
#> 269     1 0.000
#> 270     1 0.747
#> 271     4 1.000
#> 272     4 0.747
#> 273     4 1.000
#> 274     4 1.000
#> 275     4 1.000
#> 276     1 1.000
#> 277     1 0.000
#> 278     1 0.000
#> 279     1 0.000
#> 280     1 0.000
#> 281     1 0.000
#> 282     1 0.000
#> 283     1 0.000
#> 284     4 0.000
#> 285     4 1.000
#> 286     4 0.000
#> 287     4 0.747
#> 288     4 1.000
#> 289     2 1.000
#> 290     4 0.000
#> 291     4 0.000
#> 292     4 1.000
#> 293     4 0.747
#> 294     1 0.000
#> 295     4 0.000
#> 296     4 1.000
#> 297     4 0.498
#> 298     1 0.000
#> 299     4 1.000
#> 300     4 0.000
#> 301     4 0.747
#> 302     4 0.000
#> 303     4 1.000
#> 304     4 0.000
#> 305     4 0.000
#> 306     4 0.000
#> 307     4 0.000
#> 308     4 1.000
#> 309     4 1.000
#> 310     4 0.747
#> 311     4 1.000
#> 312     4 0.502
#> 313     4 1.000
#> 314     4 0.751
#> 315     1 1.000
#> 316     4 0.751
#> 317     4 0.253
#> 318     4 1.000
#> 319     4 1.000
#> 320     4 1.000
#> 321     1 0.000
#> 322     1 1.000
#> 323     4 0.000
#> 324     4 1.000
#> 325     4 1.000
#> 326     1 0.000
#> 327     4 1.000
#> 328     4 0.000
#> 329     4 0.000
#> 330     4 1.000
#> 331     4 0.000
#> 332     1 0.000
#> 333     4 1.000
#> 334     4 1.000
#> 335     4 1.000
#> 336     4 0.000
#> 337     1 1.000
#> 338     1 0.000
#> 339     4 1.000
#> 340     1 0.000
#> 341     1 0.000
#> 342     1 0.000
#> 343     1 1.000
#> 344     1 1.000
#> 345     4 1.000
#> 346     1 0.000
#> 347     4 1.000
#> 348     4 1.000
#> 349     1 0.000
#> 350     1 1.000
#> 351     1 0.000
#> 352     4 1.000
#> 353     4 1.000
#> 354     4 0.000
#> 355     4 0.000
#> 356     4 0.000
#> 357     4 1.000
#> 358     4 0.000
#> 359     4 0.498
#> 360     1 0.498
#> 361     1 1.000
#> 362     4 0.498
#> 363     4 0.000
#> 364     1 0.000
#> 365     4 0.747
#> 366     4 1.000
#> 367     1 0.000
#> 368     1 0.000
#> 369     1 0.000
#> 370     4 0.747
#> 371     4 1.000
#> 372     4 0.747
#> 373     4 0.000
#> 374     4 1.000
#> 375     4 1.000
#> 376     1 1.000
#> 377     4 0.000
#> 378     4 0.747
#> 379     1 0.000
#> 380     1 1.000
#> 381     4 1.000
#> 382     1 0.000
#> 383     1 0.000
#> 384     4 1.000
#> 385     1 0.000
#> 386     1 1.000
#> 387     4 1.000
#> 388     4 0.747
#> 389     4 1.000
#> 390     4 1.000
#> 391     2 1.000
#> 392     4 1.000
#> 393     2 1.000
#> 394     2 0.000
#> 395     4 1.000
#> 396     2 0.751
#> 397     4 0.000
#> 398     2 0.000
#> 399     2 0.502
#> 400     4 0.000
#> 401     4 0.000
#> 402     4 1.000
#> 403     4 0.000
#> 404     4 0.000
#> 405     4 0.000
#> 406     2 0.000
#> 407     2 1.000
#> 408     4 0.000
#> 409     1 1.000
#> 410     4 1.000
#> 411     4 0.000
#> 412     4 0.000
#> 413     2 0.000
#> 414     2 0.000
#> 415     4 0.751
#> 416     1 0.000
#> 417     2 0.000
#> 418     1 0.000
#> 419     4 1.000
#> 420     1 0.000
#> 421     1 0.498
#> 422     1 1.000
#> 423     4 1.000
#> 424     1 0.000
#> 425     1 0.000
#> 426     4 1.000
#> 427     2 0.000
#> 428     4 0.000
#> 429     2 0.000
#> 430     4 1.000
#> 431     4 1.000
#> 432     3 1.000
#> 433     2 0.000
#> 434     4 1.000
#> 435     4 0.000
#> 436     3 0.000
#> 437     3 0.000
#> 438     3 0.000
#> 439     3 0.000
#> 440     3 0.000
#> 441     3 0.000
#> 442     3 0.000
#> 443     3 0.000
#> 444     3 0.000
#> 445     3 0.000
#> 446     3 0.000
#> 447     3 0.000
#> 448     3 0.000
#> 449     3 0.000
#> 450     3 0.000
#> 451     3 0.000
#> 452     3 0.000
#> 453     3 0.000
#> 454     3 0.000
#> 455     3 0.000
#> 456     3 0.000
#> 457     3 0.000
#> 458     3 0.000
#> 459     2 0.000
#> 460     3 0.000
#> 461     4 0.000
#> 462     3 0.000
#> 463     1 1.000
#> 464     3 0.000
#> 465     4 0.000
#> 466     4 0.000
#> 467     3 0.000
#> 468     3 0.000
#> 469     1 1.000
#> 470     3 0.000
#> 471     1 0.747
#> 472     2 0.000
#> 473     2 0.000
#> 474     2 0.000
#> 475     3 0.000
#> 476     1 1.000
#> 477     1 0.000
#> 478     3 1.000
#> 479     3 0.000
#> 480     3 0.000
#> 481     3 0.000
#> 482     3 0.000
#> 483     3 0.000
#> 484     3 0.000
#> 485     3 0.000
#> 486     3 0.000
#> 487     3 0.000
#> 488     3 0.000
#> 489     3 0.000
#> 490     3 0.000
#> 491     3 0.000
#> 492     3 0.000
#> 493     3 0.000
#> 494     3 0.000
#> 495     3 0.000
#> 496     3 0.000
#> 497     3 0.000
#> 498     3 0.000
#> 499     3 0.000
#> 500     3 0.000
#> 501     2 0.000
#> 502     2 0.000
#> 503     4 0.747
#> 504     1 1.000
#> 505     2 0.000
#> 506     4 0.000
#> 507     2 0.000
#> 508     2 0.000
#> 509     4 1.000
#> 510     1 0.751
#> 511     4 1.000
#> 512     2 1.000
#> 513     1 0.000
#> 514     1 0.000
#> 515     4 1.000
#> 516     4 1.000
#> 517     4 1.000
#> 518     2 0.000
#> 519     4 1.000
#> 520     4 1.000
#> 521     2 0.000
#> 522     4 1.000
#> 523     2 0.000
#> 524     4 0.249
#> 525     4 1.000
#> 526     2 0.000
#> 527     2 0.000
#> 528     4 0.751
#> 529     1 0.000
#> 530     3 0.000
#> 531     1 0.000
#> 532     2 0.000
#> 533     2 0.000
#> 534     2 0.000
#> 535     2 0.000
#> 536     2 1.000
#> 537     1 1.000
#> 538     4 1.000
#> 539     1 0.000
#> 540     2 0.000
#> 541     4 0.000
#> 542     3 0.000
#> 543     2 0.000
#> 544     1 0.000
#> 545     2 0.000
#> 546     2 0.000
#> 547     4 1.000
#> 548     2 0.000
#> 549     2 0.000
#> 550     3 0.000
#> 551     4 1.000
#> 552     2 0.000
#> 553     2 0.000
#> 554     3 0.000
#> 555     4 0.751
#> 556     2 0.000
#> 557     1 0.000
#> 558     2 0.000
#> 559     2 0.000
#> 560     2 0.000
#> 561     2 0.000
#> 562     2 1.000
#> 563     4 1.000
#> 564     3 0.000
#> 565     2 0.000
#> 566     1 0.000
#> 567     1 0.000
#> 568     2 0.000
#> 569     4 1.000
#> 570     2 0.000
#> 571     2 0.000
#> 572     2 0.000
#> 573     3 0.000
#> 574     2 0.000
#> 575     2 0.000
#> 576     2 0.000
#> 577     2 0.000
#> 578     2 0.000
#> 579     1 0.498
#> 580     2 0.000
#> 581     2 0.000
#> 582     2 0.000
#> 583     2 0.000
#> 584     2 0.000
#> 585     2 0.000
#> 586     2 0.000
#> 587     2 0.000
#> 588     2 0.000
#> 589     2 0.000
#> 590     2 0.000
#> 591     2 0.000
#> 592     2 0.000
#> 593     2 0.000
#> 594     2 0.000
#> 595     2 0.000
#> 596     2 0.000
#> 597     2 0.000
#> 598     2 0.000
#> 599     2 0.000
#> 600     2 0.000
#> 601     2 0.000
#> 602     2 0.000
#> 603     2 0.000
#> 604     2 0.000
#> 605     2 0.000
#> 606     2 0.000
#> 607     2 0.000
#> 608     2 0.000
#> 609     2 0.000
#> 610     2 0.000
#> 611     2 0.000
#> 612     2 0.000
#> 613     2 0.000
#> 614     2 0.000
#> 615     2 0.000
#> 616     2 0.000
#> 617     2 0.000
#> 618     2 0.000
#> 619     2 0.000
#> 620     2 0.000
#> 621     2 0.000
#> 622     2 0.000
#> 623     2 0.000
#> 624     2 0.000
#> 625     2 0.000
#> 626     2 0.000
#> 627     2 0.000
#> 628     2 0.000
#> 629     2 0.000
#> 630     2 0.000
#> 631     2 0.000
#> 632     2 0.000
#> 633     2 0.000
#> 634     2 0.000
#> 635     2 0.000
#> 636     2 0.000
#> 637     2 0.000
#> 638     2 0.000
#> 639     2 0.000
#> 640     2 0.000
#> 641     2 0.000
#> 642     2 0.000
#> 643     2 0.000
#> 644     2 0.000
#> 645     2 0.000
#> 646     2 0.000
#> 647     2 0.000
#> 648     2 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-03-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-03-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-03-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-03-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-03-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-03-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-03-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-03-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-03-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-03-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-03-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-03-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-03-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-03-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-03-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-03-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-03-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      568              2.02e-54 2
#> ATC:skmeans      577             1.13e-156 3
#> ATC:skmeans      381              1.15e-98 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node031

Parent node: Node03. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["031"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 9434 rows and 402 columns.
#>   Top rows (943) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-031-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-031-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.974           0.956       0.982          0.486 0.514   0.514
#> 3 3 0.996           0.957       0.983          0.367 0.723   0.508
#> 4 4 0.943           0.916       0.966          0.109 0.843   0.583

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       1   0.000     0.9851 1.00 0.00
#> 2       2   0.000     0.9758 0.00 1.00
#> 3       2   0.000     0.9758 0.00 1.00
#> 4       2   0.855     0.6191 0.28 0.72
#> 5       1   0.000     0.9851 1.00 0.00
#> 6       1   0.000     0.9851 1.00 0.00
#> 7       2   0.000     0.9758 0.00 1.00
#> 8       2   0.000     0.9758 0.00 1.00
#> 9       1   0.000     0.9851 1.00 0.00
#> 10      1   0.000     0.9851 1.00 0.00
#> 11      1   0.000     0.9851 1.00 0.00
#> 12      1   0.000     0.9851 1.00 0.00
#> 13      1   0.000     0.9851 1.00 0.00
#> 14      1   0.000     0.9851 1.00 0.00
#> 15      1   0.000     0.9851 1.00 0.00
#> 16      1   0.000     0.9851 1.00 0.00
#> 17      2   0.722     0.7536 0.20 0.80
#> 18      1   0.000     0.9851 1.00 0.00
#> 19      1   0.000     0.9851 1.00 0.00
#> 20      2   0.000     0.9758 0.00 1.00
#> 21      1   0.141     0.9665 0.98 0.02
#> 22      1   0.000     0.9851 1.00 0.00
#> 23      2   0.529     0.8584 0.12 0.88
#> 24      1   0.000     0.9851 1.00 0.00
#> 25      2   0.000     0.9758 0.00 1.00
#> 26      1   0.469     0.8822 0.90 0.10
#> 27      2   0.000     0.9758 0.00 1.00
#> 28      1   0.000     0.9851 1.00 0.00
#> 29      1   0.000     0.9851 1.00 0.00
#> 30      1   0.000     0.9851 1.00 0.00
#> 31      1   0.000     0.9851 1.00 0.00
#> 32      1   0.000     0.9851 1.00 0.00
#> 33      2   0.000     0.9758 0.00 1.00
#> 34      2   0.000     0.9758 0.00 1.00
#> 35      2   0.000     0.9758 0.00 1.00
#> 36      1   0.000     0.9851 1.00 0.00
#> 37      2   0.000     0.9758 0.00 1.00
#> 38      2   0.000     0.9758 0.00 1.00
#> 39      2   0.000     0.9758 0.00 1.00
#> 40      2   0.000     0.9758 0.00 1.00
#> 41      2   0.000     0.9758 0.00 1.00
#> 42      1   0.000     0.9851 1.00 0.00
#> 43      2   0.000     0.9758 0.00 1.00
#> 44      2   0.000     0.9758 0.00 1.00
#> 45      2   0.000     0.9758 0.00 1.00
#> 46      2   0.000     0.9758 0.00 1.00
#> 47      1   0.000     0.9851 1.00 0.00
#> 48      2   0.760     0.7232 0.22 0.78
#> 49      1   0.000     0.9851 1.00 0.00
#> 50      2   0.000     0.9758 0.00 1.00
#> 51      1   0.000     0.9851 1.00 0.00
#> 52      2   0.000     0.9758 0.00 1.00
#> 53      2   0.000     0.9758 0.00 1.00
#> 54      2   0.000     0.9758 0.00 1.00
#> 55      2   0.584     0.8342 0.14 0.86
#> 56      2   0.000     0.9758 0.00 1.00
#> 57      1   0.855     0.6094 0.72 0.28
#> 58      2   0.000     0.9758 0.00 1.00
#> 59      2   0.000     0.9758 0.00 1.00
#> 60      2   0.000     0.9758 0.00 1.00
#> 61      2   0.000     0.9758 0.00 1.00
#> 62      2   0.000     0.9758 0.00 1.00
#> 63      1   0.327     0.9266 0.94 0.06
#> 64      2   0.000     0.9758 0.00 1.00
#> 65      1   0.242     0.9473 0.96 0.04
#> 66      2   0.000     0.9758 0.00 1.00
#> 67      2   0.000     0.9758 0.00 1.00
#> 68      1   0.000     0.9851 1.00 0.00
#> 69      2   0.000     0.9758 0.00 1.00
#> 70      2   0.000     0.9758 0.00 1.00
#> 71      1   0.000     0.9851 1.00 0.00
#> 72      1   0.000     0.9851 1.00 0.00
#> 73      2   0.000     0.9758 0.00 1.00
#> 74      2   0.000     0.9758 0.00 1.00
#> 75      2   0.000     0.9758 0.00 1.00
#> 76      2   0.000     0.9758 0.00 1.00
#> 77      2   0.000     0.9758 0.00 1.00
#> 78      1   0.000     0.9851 1.00 0.00
#> 79      2   0.000     0.9758 0.00 1.00
#> 80      2   0.000     0.9758 0.00 1.00
#> 81      2   0.000     0.9758 0.00 1.00
#> 82      1   0.000     0.9851 1.00 0.00
#> 83      1   0.000     0.9851 1.00 0.00
#> 84      2   0.000     0.9758 0.00 1.00
#> 85      1   0.000     0.9851 1.00 0.00
#> 86      1   0.000     0.9851 1.00 0.00
#> 87      1   0.000     0.9851 1.00 0.00
#> 88      1   0.000     0.9851 1.00 0.00
#> 89      2   0.584     0.8347 0.14 0.86
#> 90      1   0.000     0.9851 1.00 0.00
#> 91      1   0.000     0.9851 1.00 0.00
#> 92      1   0.000     0.9851 1.00 0.00
#> 93      2   0.141     0.9589 0.02 0.98
#> 94      1   0.000     0.9851 1.00 0.00
#> 95      1   0.000     0.9851 1.00 0.00
#> 96      1   0.000     0.9851 1.00 0.00
#> 97      1   0.000     0.9851 1.00 0.00
#> 98      1   0.000     0.9851 1.00 0.00
#> 99      1   0.000     0.9851 1.00 0.00
#> 100     1   0.000     0.9851 1.00 0.00
#> 101     2   0.000     0.9758 0.00 1.00
#> 102     2   0.000     0.9758 0.00 1.00
#> 103     2   0.000     0.9758 0.00 1.00
#> 104     2   0.000     0.9758 0.00 1.00
#> 105     2   0.000     0.9758 0.00 1.00
#> 106     2   0.000     0.9758 0.00 1.00
#> 107     2   0.000     0.9758 0.00 1.00
#> 108     2   0.000     0.9758 0.00 1.00
#> 109     2   0.000     0.9758 0.00 1.00
#> 110     2   0.000     0.9758 0.00 1.00
#> 111     2   0.000     0.9758 0.00 1.00
#> 112     1   0.000     0.9851 1.00 0.00
#> 113     1   0.000     0.9851 1.00 0.00
#> 114     1   0.000     0.9851 1.00 0.00
#> 115     2   0.000     0.9758 0.00 1.00
#> 116     2   0.000     0.9758 0.00 1.00
#> 117     2   0.000     0.9758 0.00 1.00
#> 118     1   0.999     0.0588 0.52 0.48
#> 119     1   0.000     0.9851 1.00 0.00
#> 120     1   0.000     0.9851 1.00 0.00
#> 121     2   0.000     0.9758 0.00 1.00
#> 122     1   0.000     0.9851 1.00 0.00
#> 123     1   0.000     0.9851 1.00 0.00
#> 124     1   0.000     0.9851 1.00 0.00
#> 125     2   0.000     0.9758 0.00 1.00
#> 126     1   0.000     0.9851 1.00 0.00
#> 127     1   0.000     0.9851 1.00 0.00
#> 128     1   0.000     0.9851 1.00 0.00
#> 129     1   0.000     0.9851 1.00 0.00
#> 130     2   0.000     0.9758 0.00 1.00
#> 131     1   0.000     0.9851 1.00 0.00
#> 132     1   0.000     0.9851 1.00 0.00
#> 133     1   0.000     0.9851 1.00 0.00
#> 134     1   0.000     0.9851 1.00 0.00
#> 135     1   0.000     0.9851 1.00 0.00
#> 136     1   0.000     0.9851 1.00 0.00
#> 137     1   0.000     0.9851 1.00 0.00
#> 138     1   0.000     0.9851 1.00 0.00
#> 139     1   0.000     0.9851 1.00 0.00
#> 140     1   0.000     0.9851 1.00 0.00
#> 141     1   0.000     0.9851 1.00 0.00
#> 142     1   0.000     0.9851 1.00 0.00
#> 143     1   0.000     0.9851 1.00 0.00
#> 144     2   0.469     0.8807 0.10 0.90
#> 145     1   0.000     0.9851 1.00 0.00
#> 146     2   0.000     0.9758 0.00 1.00
#> 147     2   0.000     0.9758 0.00 1.00
#> 148     2   0.000     0.9758 0.00 1.00
#> 149     2   0.000     0.9758 0.00 1.00
#> 150     2   0.000     0.9758 0.00 1.00
#> 151     1   0.000     0.9851 1.00 0.00
#> 152     2   0.990     0.2295 0.44 0.56
#> 153     2   0.000     0.9758 0.00 1.00
#> 154     1   0.000     0.9851 1.00 0.00
#> 155     1   0.000     0.9851 1.00 0.00
#> 156     1   0.000     0.9851 1.00 0.00
#> 157     2   0.000     0.9758 0.00 1.00
#> 158     2   0.000     0.9758 0.00 1.00
#> 159     2   0.000     0.9758 0.00 1.00
#> 160     1   0.904     0.5275 0.68 0.32
#> 161     2   0.000     0.9758 0.00 1.00
#> 162     2   0.000     0.9758 0.00 1.00
#> 163     2   0.000     0.9758 0.00 1.00
#> 164     2   0.000     0.9758 0.00 1.00
#> 165     2   0.000     0.9758 0.00 1.00
#> 166     2   0.000     0.9758 0.00 1.00
#> 167     2   0.000     0.9758 0.00 1.00
#> 168     2   0.000     0.9758 0.00 1.00
#> 169     1   0.000     0.9851 1.00 0.00
#> 170     1   0.000     0.9851 1.00 0.00
#> 171     1   0.000     0.9851 1.00 0.00
#> 172     1   0.000     0.9851 1.00 0.00
#> 173     1   0.000     0.9851 1.00 0.00
#> 174     1   0.000     0.9851 1.00 0.00
#> 175     1   0.000     0.9851 1.00 0.00
#> 176     1   0.000     0.9851 1.00 0.00
#> 177     1   0.000     0.9851 1.00 0.00
#> 178     1   0.000     0.9851 1.00 0.00
#> 179     1   0.000     0.9851 1.00 0.00
#> 180     1   0.000     0.9851 1.00 0.00
#> 181     1   0.000     0.9851 1.00 0.00
#> 182     1   0.000     0.9851 1.00 0.00
#> 183     1   0.000     0.9851 1.00 0.00
#> 184     1   0.000     0.9851 1.00 0.00
#> 185     1   0.000     0.9851 1.00 0.00
#> 186     1   0.000     0.9851 1.00 0.00
#> 187     1   0.000     0.9851 1.00 0.00
#> 188     1   0.000     0.9851 1.00 0.00
#> 189     2   0.000     0.9758 0.00 1.00
#> 190     2   0.000     0.9758 0.00 1.00
#> 191     2   0.000     0.9758 0.00 1.00
#> 192     1   0.000     0.9851 1.00 0.00
#> 193     1   0.000     0.9851 1.00 0.00
#> 194     2   0.000     0.9758 0.00 1.00
#> 195     2   0.000     0.9758 0.00 1.00
#> 196     2   0.000     0.9758 0.00 1.00
#> 197     1   0.000     0.9851 1.00 0.00
#> 198     2   0.000     0.9758 0.00 1.00
#> 199     1   0.000     0.9851 1.00 0.00
#> 200     1   0.000     0.9851 1.00 0.00
#> 201     2   0.000     0.9758 0.00 1.00
#> 202     2   0.000     0.9758 0.00 1.00
#> 203     2   0.000     0.9758 0.00 1.00
#> 204     2   0.327     0.9220 0.06 0.94
#> 205     2   0.000     0.9758 0.00 1.00
#> 206     2   0.000     0.9758 0.00 1.00
#> 207     2   0.000     0.9758 0.00 1.00
#> 208     1   0.000     0.9851 1.00 0.00
#> 209     2   0.000     0.9758 0.00 1.00
#> 210     2   0.000     0.9758 0.00 1.00
#> 211     2   0.000     0.9758 0.00 1.00
#> 212     1   0.000     0.9851 1.00 0.00
#> 213     1   0.000     0.9851 1.00 0.00
#> 214     2   0.000     0.9758 0.00 1.00
#> 215     1   0.795     0.6830 0.76 0.24
#> 216     1   0.000     0.9851 1.00 0.00
#> 217     2   0.990     0.2311 0.44 0.56
#> 218     1   0.000     0.9851 1.00 0.00
#> 219     1   0.000     0.9851 1.00 0.00
#> 220     2   0.000     0.9758 0.00 1.00
#> 221     1   0.141     0.9665 0.98 0.02
#> 222     1   0.000     0.9851 1.00 0.00
#> 223     2   0.000     0.9758 0.00 1.00
#> 224     2   0.000     0.9758 0.00 1.00
#> 225     2   0.000     0.9758 0.00 1.00
#> 226     2   0.000     0.9758 0.00 1.00
#> 227     1   0.000     0.9851 1.00 0.00
#> 228     2   0.000     0.9758 0.00 1.00
#> 229     1   0.634     0.8061 0.84 0.16
#> 230     1   0.000     0.9851 1.00 0.00
#> 231     1   0.000     0.9851 1.00 0.00
#> 232     1   0.000     0.9851 1.00 0.00
#> 233     1   0.000     0.9851 1.00 0.00
#> 234     1   0.000     0.9851 1.00 0.00
#> 235     1   0.000     0.9851 1.00 0.00
#> 236     1   0.000     0.9851 1.00 0.00
#> 237     2   0.000     0.9758 0.00 1.00
#> 238     1   0.000     0.9851 1.00 0.00
#> 239     2   0.000     0.9758 0.00 1.00
#> 240     2   0.000     0.9758 0.00 1.00
#> 241     2   1.000     0.0111 0.50 0.50
#> 242     2   0.000     0.9758 0.00 1.00
#> 243     1   0.000     0.9851 1.00 0.00
#> 244     1   0.000     0.9851 1.00 0.00
#> 245     1   0.000     0.9851 1.00 0.00
#> 246     1   0.000     0.9851 1.00 0.00
#> 247     1   0.000     0.9851 1.00 0.00
#> 248     1   0.000     0.9851 1.00 0.00
#> 249     1   0.000     0.9851 1.00 0.00
#> 250     2   0.958     0.4014 0.38 0.62
#> 251     1   0.000     0.9851 1.00 0.00
#> 252     2   0.242     0.9414 0.04 0.96
#> 253     1   0.000     0.9851 1.00 0.00
#> 254     2   0.000     0.9758 0.00 1.00
#> 255     1   0.000     0.9851 1.00 0.00
#> 256     1   0.000     0.9851 1.00 0.00
#> 257     1   0.000     0.9851 1.00 0.00
#> 258     1   0.000     0.9851 1.00 0.00
#> 259     1   0.000     0.9851 1.00 0.00
#> 260     1   0.000     0.9851 1.00 0.00
#> 261     1   0.000     0.9851 1.00 0.00
#> 262     1   0.000     0.9851 1.00 0.00
#> 263     1   0.000     0.9851 1.00 0.00
#> 264     1   0.000     0.9851 1.00 0.00
#> 265     1   0.000     0.9851 1.00 0.00
#> 266     1   0.634     0.8060 0.84 0.16
#> 267     1   0.000     0.9851 1.00 0.00
#> 268     1   0.000     0.9851 1.00 0.00
#> 269     1   0.000     0.9851 1.00 0.00
#> 270     1   0.000     0.9851 1.00 0.00
#> 271     1   0.000     0.9851 1.00 0.00
#> 272     1   0.000     0.9851 1.00 0.00
#> 273     1   0.000     0.9851 1.00 0.00
#> 274     1   0.000     0.9851 1.00 0.00
#> 275     1   0.000     0.9851 1.00 0.00
#> 276     2   0.000     0.9758 0.00 1.00
#> 277     1   0.402     0.9052 0.92 0.08
#> 278     1   0.000     0.9851 1.00 0.00
#> 279     1   0.000     0.9851 1.00 0.00
#> 280     1   0.000     0.9851 1.00 0.00
#> 281     2   0.000     0.9758 0.00 1.00
#> 282     1   0.000     0.9851 1.00 0.00
#> 283     1   0.000     0.9851 1.00 0.00
#> 284     1   0.000     0.9851 1.00 0.00
#> 285     1   0.000     0.9851 1.00 0.00
#> 286     1   0.000     0.9851 1.00 0.00
#> 287     2   0.680     0.7823 0.18 0.82
#> 288     1   0.000     0.9851 1.00 0.00
#> 289     1   0.000     0.9851 1.00 0.00
#> 290     1   0.000     0.9851 1.00 0.00
#> 291     1   0.000     0.9851 1.00 0.00
#> 292     2   0.000     0.9758 0.00 1.00
#> 293     2   0.000     0.9758 0.00 1.00
#> 294     2   0.680     0.7819 0.18 0.82
#> 295     2   0.000     0.9758 0.00 1.00
#> 296     2   0.000     0.9758 0.00 1.00
#> 297     2   0.000     0.9758 0.00 1.00
#> 298     2   0.000     0.9758 0.00 1.00
#> 299     2   0.000     0.9758 0.00 1.00
#> 300     1   0.000     0.9851 1.00 0.00
#> 301     2   0.000     0.9758 0.00 1.00
#> 302     1   0.000     0.9851 1.00 0.00
#> 303     1   0.000     0.9851 1.00 0.00
#> 304     2   0.000     0.9758 0.00 1.00
#> 305     2   0.000     0.9758 0.00 1.00
#> 306     2   0.000     0.9758 0.00 1.00
#> 307     1   0.000     0.9851 1.00 0.00
#> 308     1   0.000     0.9851 1.00 0.00
#> 309     1   0.000     0.9851 1.00 0.00
#> 310     1   0.000     0.9851 1.00 0.00
#> 311     1   0.000     0.9851 1.00 0.00
#> 312     1   0.000     0.9851 1.00 0.00
#> 313     2   0.141     0.9589 0.02 0.98
#> 314     1   0.943     0.4330 0.64 0.36
#> 315     1   0.000     0.9851 1.00 0.00
#> 316     1   0.000     0.9851 1.00 0.00
#> 317     2   0.242     0.9411 0.04 0.96
#> 318     1   0.000     0.9851 1.00 0.00
#> 319     2   0.000     0.9758 0.00 1.00
#> 320     2   0.000     0.9758 0.00 1.00
#> 321     2   0.000     0.9758 0.00 1.00
#> 322     2   0.000     0.9758 0.00 1.00
#> 323     1   0.000     0.9851 1.00 0.00
#> 324     1   0.000     0.9851 1.00 0.00
#> 325     1   0.000     0.9851 1.00 0.00
#> 326     1   0.141     0.9666 0.98 0.02
#> 327     1   0.000     0.9851 1.00 0.00
#> 328     2   0.000     0.9758 0.00 1.00
#> 329     1   0.000     0.9851 1.00 0.00
#> 330     1   0.000     0.9851 1.00 0.00
#> 331     2   0.000     0.9758 0.00 1.00
#> 332     1   0.000     0.9851 1.00 0.00
#> 333     1   0.000     0.9851 1.00 0.00
#> 334     2   0.000     0.9758 0.00 1.00
#> 335     2   0.000     0.9758 0.00 1.00
#> 336     1   0.000     0.9851 1.00 0.00
#> 337     2   0.000     0.9758 0.00 1.00
#> 338     2   0.000     0.9758 0.00 1.00
#> 339     1   0.000     0.9851 1.00 0.00
#> 340     1   0.000     0.9851 1.00 0.00
#> 341     1   0.000     0.9851 1.00 0.00
#> 342     1   0.000     0.9851 1.00 0.00
#> 343     1   0.000     0.9851 1.00 0.00
#> 344     1   0.000     0.9851 1.00 0.00
#> 345     1   0.000     0.9851 1.00 0.00
#> 346     1   0.000     0.9851 1.00 0.00
#> 347     1   0.000     0.9851 1.00 0.00
#> 348     1   0.000     0.9851 1.00 0.00
#> 349     1   0.000     0.9851 1.00 0.00
#> 350     1   0.000     0.9851 1.00 0.00
#> 351     1   0.000     0.9851 1.00 0.00
#> 352     1   0.000     0.9851 1.00 0.00
#> 353     1   0.000     0.9851 1.00 0.00
#> 354     2   0.000     0.9758 0.00 1.00
#> 355     2   0.000     0.9758 0.00 1.00
#> 356     2   0.000     0.9758 0.00 1.00
#> 357     2   0.242     0.9413 0.04 0.96
#> 358     2   0.958     0.4020 0.38 0.62
#> 359     1   0.000     0.9851 1.00 0.00
#> 360     1   0.958     0.3810 0.62 0.38
#> 361     2   0.000     0.9758 0.00 1.00
#> 362     1   0.000     0.9851 1.00 0.00
#> 363     1   0.000     0.9851 1.00 0.00
#> 364     1   0.000     0.9851 1.00 0.00
#> 365     1   0.634     0.8053 0.84 0.16
#> 366     1   0.000     0.9851 1.00 0.00
#> 367     1   0.000     0.9851 1.00 0.00
#> 368     1   0.000     0.9851 1.00 0.00
#> 369     1   0.000     0.9851 1.00 0.00
#> 370     1   0.000     0.9851 1.00 0.00
#> 371     1   0.000     0.9851 1.00 0.00
#> 372     1   0.000     0.9851 1.00 0.00
#> 373     1   0.000     0.9851 1.00 0.00
#> 374     2   0.000     0.9758 0.00 1.00
#> 375     1   0.000     0.9851 1.00 0.00
#> 376     1   0.000     0.9851 1.00 0.00
#> 377     1   0.680     0.7779 0.82 0.18
#> 378     1   0.141     0.9666 0.98 0.02
#> 379     1   0.000     0.9851 1.00 0.00
#> 380     2   0.000     0.9758 0.00 1.00
#> 381     2   0.000     0.9758 0.00 1.00
#> 382     1   0.000     0.9851 1.00 0.00
#> 383     1   0.000     0.9851 1.00 0.00
#> 384     1   0.000     0.9851 1.00 0.00
#> 385     1   0.000     0.9851 1.00 0.00
#> 386     1   0.000     0.9851 1.00 0.00
#> 387     1   0.000     0.9851 1.00 0.00
#> 388     1   0.000     0.9851 1.00 0.00
#> 389     2   0.000     0.9758 0.00 1.00
#> 390     2   0.000     0.9758 0.00 1.00
#> 391     2   0.000     0.9758 0.00 1.00
#> 392     1   0.000     0.9851 1.00 0.00
#> 393     2   0.000     0.9758 0.00 1.00
#> 394     1   0.000     0.9851 1.00 0.00
#> 395     2   0.000     0.9758 0.00 1.00
#> 396     2   0.000     0.9758 0.00 1.00
#> 397     2   0.000     0.9758 0.00 1.00
#> 398     2   0.000     0.9758 0.00 1.00
#> 399     2   0.000     0.9758 0.00 1.00
#> 400     2   0.000     0.9758 0.00 1.00
#> 401     1   0.904     0.5266 0.68 0.32
#> 402     2   0.000     0.9758 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       3  0.0000   0.970324 0.00 0.00 1.00
#> 2       2  0.0000   0.990731 0.00 1.00 0.00
#> 3       2  0.0000   0.990731 0.00 1.00 0.00
#> 4       1  0.5706   0.535731 0.68 0.32 0.00
#> 5       1  0.0000   0.983275 1.00 0.00 0.00
#> 6       1  0.0000   0.983275 1.00 0.00 0.00
#> 7       2  0.0000   0.990731 0.00 1.00 0.00
#> 8       2  0.0000   0.990731 0.00 1.00 0.00
#> 9       3  0.0000   0.970324 0.00 0.00 1.00
#> 10      1  0.0000   0.983275 1.00 0.00 0.00
#> 11      1  0.0000   0.983275 1.00 0.00 0.00
#> 12      3  0.0000   0.970324 0.00 0.00 1.00
#> 13      3  0.0000   0.970324 0.00 0.00 1.00
#> 14      3  0.0000   0.970324 0.00 0.00 1.00
#> 15      3  0.0000   0.970324 0.00 0.00 1.00
#> 16      3  0.0000   0.970324 0.00 0.00 1.00
#> 17      3  0.0000   0.970324 0.00 0.00 1.00
#> 18      3  0.0000   0.970324 0.00 0.00 1.00
#> 19      3  0.0000   0.970324 0.00 0.00 1.00
#> 20      3  0.0000   0.970324 0.00 0.00 1.00
#> 21      3  0.0000   0.970324 0.00 0.00 1.00
#> 22      3  0.0000   0.970324 0.00 0.00 1.00
#> 23      3  0.0000   0.970324 0.00 0.00 1.00
#> 24      3  0.0000   0.970324 0.00 0.00 1.00
#> 25      3  0.5706   0.537475 0.00 0.32 0.68
#> 26      3  0.0000   0.970324 0.00 0.00 1.00
#> 27      2  0.0000   0.990731 0.00 1.00 0.00
#> 28      3  0.0000   0.970324 0.00 0.00 1.00
#> 29      3  0.0000   0.970324 0.00 0.00 1.00
#> 30      3  0.0000   0.970324 0.00 0.00 1.00
#> 31      3  0.0000   0.970324 0.00 0.00 1.00
#> 32      3  0.0000   0.970324 0.00 0.00 1.00
#> 33      2  0.0000   0.990731 0.00 1.00 0.00
#> 34      3  0.0000   0.970324 0.00 0.00 1.00
#> 35      2  0.0000   0.990731 0.00 1.00 0.00
#> 36      3  0.0000   0.970324 0.00 0.00 1.00
#> 37      2  0.0000   0.990731 0.00 1.00 0.00
#> 38      2  0.0000   0.990731 0.00 1.00 0.00
#> 39      2  0.0000   0.990731 0.00 1.00 0.00
#> 40      2  0.0000   0.990731 0.00 1.00 0.00
#> 41      2  0.0000   0.990731 0.00 1.00 0.00
#> 42      3  0.0000   0.970324 0.00 0.00 1.00
#> 43      2  0.0000   0.990731 0.00 1.00 0.00
#> 44      3  0.0000   0.970324 0.00 0.00 1.00
#> 45      2  0.0000   0.990731 0.00 1.00 0.00
#> 46      2  0.0000   0.990731 0.00 1.00 0.00
#> 47      3  0.0000   0.970324 0.00 0.00 1.00
#> 48      3  0.0000   0.970324 0.00 0.00 1.00
#> 49      3  0.0000   0.970324 0.00 0.00 1.00
#> 50      2  0.0000   0.990731 0.00 1.00 0.00
#> 51      3  0.0000   0.970324 0.00 0.00 1.00
#> 52      3  0.6045   0.397457 0.00 0.38 0.62
#> 53      2  0.0000   0.990731 0.00 1.00 0.00
#> 54      2  0.0000   0.990731 0.00 1.00 0.00
#> 55      3  0.0000   0.970324 0.00 0.00 1.00
#> 56      2  0.0000   0.990731 0.00 1.00 0.00
#> 57      3  0.0000   0.970324 0.00 0.00 1.00
#> 58      2  0.0000   0.990731 0.00 1.00 0.00
#> 59      3  0.0000   0.970324 0.00 0.00 1.00
#> 60      2  0.0000   0.990731 0.00 1.00 0.00
#> 61      2  0.0000   0.990731 0.00 1.00 0.00
#> 62      3  0.0000   0.970324 0.00 0.00 1.00
#> 63      3  0.0000   0.970324 0.00 0.00 1.00
#> 64      2  0.0000   0.990731 0.00 1.00 0.00
#> 65      3  0.0000   0.970324 0.00 0.00 1.00
#> 66      2  0.0000   0.990731 0.00 1.00 0.00
#> 67      2  0.0000   0.990731 0.00 1.00 0.00
#> 68      3  0.0000   0.970324 0.00 0.00 1.00
#> 69      2  0.0000   0.990731 0.00 1.00 0.00
#> 70      3  0.0000   0.970324 0.00 0.00 1.00
#> 71      3  0.0000   0.970324 0.00 0.00 1.00
#> 72      3  0.0000   0.970324 0.00 0.00 1.00
#> 73      2  0.0000   0.990731 0.00 1.00 0.00
#> 74      2  0.0000   0.990731 0.00 1.00 0.00
#> 75      2  0.0000   0.990731 0.00 1.00 0.00
#> 76      2  0.0000   0.990731 0.00 1.00 0.00
#> 77      2  0.0000   0.990731 0.00 1.00 0.00
#> 78      3  0.0000   0.970324 0.00 0.00 1.00
#> 79      3  0.3686   0.827502 0.00 0.14 0.86
#> 80      2  0.4796   0.712150 0.00 0.78 0.22
#> 81      2  0.0000   0.990731 0.00 1.00 0.00
#> 82      3  0.0000   0.970324 0.00 0.00 1.00
#> 83      3  0.0000   0.970324 0.00 0.00 1.00
#> 84      2  0.0000   0.990731 0.00 1.00 0.00
#> 85      3  0.0000   0.970324 0.00 0.00 1.00
#> 86      3  0.0000   0.970324 0.00 0.00 1.00
#> 87      3  0.0000   0.970324 0.00 0.00 1.00
#> 88      3  0.0000   0.970324 0.00 0.00 1.00
#> 89      3  0.0000   0.970324 0.00 0.00 1.00
#> 90      3  0.0000   0.970324 0.00 0.00 1.00
#> 91      3  0.0000   0.970324 0.00 0.00 1.00
#> 92      3  0.0000   0.970324 0.00 0.00 1.00
#> 93      3  0.6126   0.347891 0.00 0.40 0.60
#> 94      3  0.0000   0.970324 0.00 0.00 1.00
#> 95      3  0.0000   0.970324 0.00 0.00 1.00
#> 96      3  0.0000   0.970324 0.00 0.00 1.00
#> 97      3  0.0000   0.970324 0.00 0.00 1.00
#> 98      3  0.1529   0.936747 0.04 0.00 0.96
#> 99      3  0.0000   0.970324 0.00 0.00 1.00
#> 100     3  0.0000   0.970324 0.00 0.00 1.00
#> 101     2  0.0000   0.990731 0.00 1.00 0.00
#> 102     2  0.0000   0.990731 0.00 1.00 0.00
#> 103     2  0.0000   0.990731 0.00 1.00 0.00
#> 104     2  0.0000   0.990731 0.00 1.00 0.00
#> 105     2  0.0000   0.990731 0.00 1.00 0.00
#> 106     2  0.0000   0.990731 0.00 1.00 0.00
#> 107     2  0.0000   0.990731 0.00 1.00 0.00
#> 108     2  0.0000   0.990731 0.00 1.00 0.00
#> 109     2  0.0000   0.990731 0.00 1.00 0.00
#> 110     2  0.0000   0.990731 0.00 1.00 0.00
#> 111     2  0.0000   0.990731 0.00 1.00 0.00
#> 112     3  0.0000   0.970324 0.00 0.00 1.00
#> 113     3  0.0000   0.970324 0.00 0.00 1.00
#> 114     3  0.0000   0.970324 0.00 0.00 1.00
#> 115     2  0.0000   0.990731 0.00 1.00 0.00
#> 116     2  0.0892   0.970787 0.00 0.98 0.02
#> 117     2  0.0000   0.990731 0.00 1.00 0.00
#> 118     3  0.0000   0.970324 0.00 0.00 1.00
#> 119     3  0.0000   0.970324 0.00 0.00 1.00
#> 120     3  0.0000   0.970324 0.00 0.00 1.00
#> 121     2  0.0000   0.990731 0.00 1.00 0.00
#> 122     3  0.0000   0.970324 0.00 0.00 1.00
#> 123     3  0.0000   0.970324 0.00 0.00 1.00
#> 124     3  0.0000   0.970324 0.00 0.00 1.00
#> 125     2  0.0000   0.990731 0.00 1.00 0.00
#> 126     3  0.0000   0.970324 0.00 0.00 1.00
#> 127     1  0.6192   0.266280 0.58 0.00 0.42
#> 128     3  0.2537   0.898223 0.08 0.00 0.92
#> 129     3  0.0000   0.970324 0.00 0.00 1.00
#> 130     3  0.5216   0.652394 0.00 0.26 0.74
#> 131     3  0.0000   0.970324 0.00 0.00 1.00
#> 132     3  0.0000   0.970324 0.00 0.00 1.00
#> 133     3  0.0000   0.970324 0.00 0.00 1.00
#> 134     3  0.0000   0.970324 0.00 0.00 1.00
#> 135     3  0.0000   0.970324 0.00 0.00 1.00
#> 136     3  0.0000   0.970324 0.00 0.00 1.00
#> 137     3  0.0000   0.970324 0.00 0.00 1.00
#> 138     3  0.0000   0.970324 0.00 0.00 1.00
#> 139     1  0.0000   0.983275 1.00 0.00 0.00
#> 140     1  0.3686   0.830851 0.86 0.00 0.14
#> 141     3  0.0000   0.970324 0.00 0.00 1.00
#> 142     3  0.0000   0.970324 0.00 0.00 1.00
#> 143     3  0.0000   0.970324 0.00 0.00 1.00
#> 144     3  0.0000   0.970324 0.00 0.00 1.00
#> 145     3  0.0000   0.970324 0.00 0.00 1.00
#> 146     2  0.0000   0.990731 0.00 1.00 0.00
#> 147     2  0.0000   0.990731 0.00 1.00 0.00
#> 148     2  0.0000   0.990731 0.00 1.00 0.00
#> 149     2  0.0000   0.990731 0.00 1.00 0.00
#> 150     2  0.0000   0.990731 0.00 1.00 0.00
#> 151     3  0.0000   0.970324 0.00 0.00 1.00
#> 152     3  0.0000   0.970324 0.00 0.00 1.00
#> 153     3  0.0000   0.970324 0.00 0.00 1.00
#> 154     3  0.0000   0.970324 0.00 0.00 1.00
#> 155     3  0.0000   0.970324 0.00 0.00 1.00
#> 156     3  0.1529   0.936747 0.04 0.00 0.96
#> 157     2  0.0000   0.990731 0.00 1.00 0.00
#> 158     2  0.0000   0.990731 0.00 1.00 0.00
#> 159     2  0.0000   0.990731 0.00 1.00 0.00
#> 160     3  0.0000   0.970324 0.00 0.00 1.00
#> 161     2  0.0000   0.990731 0.00 1.00 0.00
#> 162     2  0.0000   0.990731 0.00 1.00 0.00
#> 163     2  0.0000   0.990731 0.00 1.00 0.00
#> 164     2  0.0000   0.990731 0.00 1.00 0.00
#> 165     2  0.0000   0.990731 0.00 1.00 0.00
#> 166     2  0.0000   0.990731 0.00 1.00 0.00
#> 167     2  0.0000   0.990731 0.00 1.00 0.00
#> 168     2  0.0000   0.990731 0.00 1.00 0.00
#> 169     3  0.2537   0.897786 0.08 0.00 0.92
#> 170     1  0.0000   0.983275 1.00 0.00 0.00
#> 171     1  0.0000   0.983275 1.00 0.00 0.00
#> 172     1  0.0000   0.983275 1.00 0.00 0.00
#> 173     1  0.0000   0.983275 1.00 0.00 0.00
#> 174     1  0.0000   0.983275 1.00 0.00 0.00
#> 175     1  0.5560   0.568672 0.70 0.00 0.30
#> 176     3  0.4555   0.745640 0.20 0.00 0.80
#> 177     1  0.0000   0.983275 1.00 0.00 0.00
#> 178     1  0.4002   0.804073 0.84 0.00 0.16
#> 179     1  0.0000   0.983275 1.00 0.00 0.00
#> 180     1  0.0892   0.964805 0.98 0.00 0.02
#> 181     1  0.0000   0.983275 1.00 0.00 0.00
#> 182     1  0.0000   0.983275 1.00 0.00 0.00
#> 183     1  0.0000   0.983275 1.00 0.00 0.00
#> 184     3  0.2959   0.875908 0.10 0.00 0.90
#> 185     1  0.0000   0.983275 1.00 0.00 0.00
#> 186     1  0.0000   0.983275 1.00 0.00 0.00
#> 187     1  0.0000   0.983275 1.00 0.00 0.00
#> 188     1  0.0000   0.983275 1.00 0.00 0.00
#> 189     2  0.0000   0.990731 0.00 1.00 0.00
#> 190     2  0.0000   0.990731 0.00 1.00 0.00
#> 191     2  0.0000   0.990731 0.00 1.00 0.00
#> 192     1  0.0000   0.983275 1.00 0.00 0.00
#> 193     1  0.0000   0.983275 1.00 0.00 0.00
#> 194     2  0.2537   0.903878 0.08 0.92 0.00
#> 195     2  0.0000   0.990731 0.00 1.00 0.00
#> 196     2  0.0000   0.990731 0.00 1.00 0.00
#> 197     1  0.2537   0.902787 0.92 0.00 0.08
#> 198     2  0.0000   0.990731 0.00 1.00 0.00
#> 199     1  0.0000   0.983275 1.00 0.00 0.00
#> 200     1  0.0000   0.983275 1.00 0.00 0.00
#> 201     2  0.0000   0.990731 0.00 1.00 0.00
#> 202     2  0.0000   0.990731 0.00 1.00 0.00
#> 203     2  0.0000   0.990731 0.00 1.00 0.00
#> 204     1  0.0892   0.964451 0.98 0.02 0.00
#> 205     2  0.0000   0.990731 0.00 1.00 0.00
#> 206     2  0.0000   0.990731 0.00 1.00 0.00
#> 207     2  0.0000   0.990731 0.00 1.00 0.00
#> 208     1  0.0000   0.983275 1.00 0.00 0.00
#> 209     2  0.0000   0.990731 0.00 1.00 0.00
#> 210     2  0.0000   0.990731 0.00 1.00 0.00
#> 211     2  0.0000   0.990731 0.00 1.00 0.00
#> 212     1  0.0000   0.983275 1.00 0.00 0.00
#> 213     1  0.0000   0.983275 1.00 0.00 0.00
#> 214     2  0.0000   0.990731 0.00 1.00 0.00
#> 215     1  0.1529   0.945241 0.96 0.04 0.00
#> 216     1  0.0000   0.983275 1.00 0.00 0.00
#> 217     1  0.0000   0.983275 1.00 0.00 0.00
#> 218     1  0.0000   0.983275 1.00 0.00 0.00
#> 219     1  0.0000   0.983275 1.00 0.00 0.00
#> 220     2  0.0000   0.990731 0.00 1.00 0.00
#> 221     1  0.0000   0.983275 1.00 0.00 0.00
#> 222     1  0.0000   0.983275 1.00 0.00 0.00
#> 223     2  0.0000   0.990731 0.00 1.00 0.00
#> 224     2  0.0000   0.990731 0.00 1.00 0.00
#> 225     2  0.0000   0.990731 0.00 1.00 0.00
#> 226     2  0.0000   0.990731 0.00 1.00 0.00
#> 227     1  0.0000   0.983275 1.00 0.00 0.00
#> 228     2  0.0000   0.990731 0.00 1.00 0.00
#> 229     1  0.0000   0.983275 1.00 0.00 0.00
#> 230     1  0.0000   0.983275 1.00 0.00 0.00
#> 231     1  0.0000   0.983275 1.00 0.00 0.00
#> 232     1  0.0000   0.983275 1.00 0.00 0.00
#> 233     1  0.0000   0.983275 1.00 0.00 0.00
#> 234     1  0.0000   0.983275 1.00 0.00 0.00
#> 235     1  0.0000   0.983275 1.00 0.00 0.00
#> 236     1  0.0000   0.983275 1.00 0.00 0.00
#> 237     2  0.0000   0.990731 0.00 1.00 0.00
#> 238     1  0.0000   0.983275 1.00 0.00 0.00
#> 239     2  0.0000   0.990731 0.00 1.00 0.00
#> 240     2  0.0000   0.990731 0.00 1.00 0.00
#> 241     3  0.4555   0.749699 0.00 0.20 0.80
#> 242     2  0.0000   0.990731 0.00 1.00 0.00
#> 243     1  0.0000   0.983275 1.00 0.00 0.00
#> 244     1  0.0000   0.983275 1.00 0.00 0.00
#> 245     1  0.0000   0.983275 1.00 0.00 0.00
#> 246     1  0.0000   0.983275 1.00 0.00 0.00
#> 247     1  0.0000   0.983275 1.00 0.00 0.00
#> 248     1  0.0000   0.983275 1.00 0.00 0.00
#> 249     1  0.0000   0.983275 1.00 0.00 0.00
#> 250     2  0.7464   0.246777 0.04 0.56 0.40
#> 251     1  0.0000   0.983275 1.00 0.00 0.00
#> 252     1  0.0000   0.983275 1.00 0.00 0.00
#> 253     3  0.6280   0.153099 0.46 0.00 0.54
#> 254     2  0.0000   0.990731 0.00 1.00 0.00
#> 255     3  0.1529   0.936768 0.04 0.00 0.96
#> 256     3  0.0000   0.970324 0.00 0.00 1.00
#> 257     3  0.0000   0.970324 0.00 0.00 1.00
#> 258     3  0.0000   0.970324 0.00 0.00 1.00
#> 259     1  0.0000   0.983275 1.00 0.00 0.00
#> 260     1  0.0000   0.983275 1.00 0.00 0.00
#> 261     1  0.0000   0.983275 1.00 0.00 0.00
#> 262     1  0.0000   0.983275 1.00 0.00 0.00
#> 263     3  0.0892   0.953633 0.02 0.00 0.98
#> 264     1  0.0000   0.983275 1.00 0.00 0.00
#> 265     1  0.0000   0.983275 1.00 0.00 0.00
#> 266     1  0.0000   0.983275 1.00 0.00 0.00
#> 267     1  0.0000   0.983275 1.00 0.00 0.00
#> 268     1  0.0000   0.983275 1.00 0.00 0.00
#> 269     1  0.0000   0.983275 1.00 0.00 0.00
#> 270     3  0.0000   0.970324 0.00 0.00 1.00
#> 271     1  0.0000   0.983275 1.00 0.00 0.00
#> 272     1  0.0000   0.983275 1.00 0.00 0.00
#> 273     1  0.0000   0.983275 1.00 0.00 0.00
#> 274     1  0.0000   0.983275 1.00 0.00 0.00
#> 275     1  0.0000   0.983275 1.00 0.00 0.00
#> 276     2  0.0000   0.990731 0.00 1.00 0.00
#> 277     1  0.7138   0.677857 0.72 0.12 0.16
#> 278     1  0.0000   0.983275 1.00 0.00 0.00
#> 279     1  0.0000   0.983275 1.00 0.00 0.00
#> 280     1  0.0000   0.983275 1.00 0.00 0.00
#> 281     2  0.0000   0.990731 0.00 1.00 0.00
#> 282     1  0.0000   0.983275 1.00 0.00 0.00
#> 283     1  0.0000   0.983275 1.00 0.00 0.00
#> 284     1  0.0000   0.983275 1.00 0.00 0.00
#> 285     1  0.0000   0.983275 1.00 0.00 0.00
#> 286     1  0.0000   0.983275 1.00 0.00 0.00
#> 287     3  0.3340   0.852654 0.00 0.12 0.88
#> 288     1  0.0000   0.983275 1.00 0.00 0.00
#> 289     1  0.0000   0.983275 1.00 0.00 0.00
#> 290     1  0.0000   0.983275 1.00 0.00 0.00
#> 291     1  0.0000   0.983275 1.00 0.00 0.00
#> 292     2  0.0000   0.990731 0.00 1.00 0.00
#> 293     2  0.0000   0.990731 0.00 1.00 0.00
#> 294     1  0.0892   0.964451 0.98 0.02 0.00
#> 295     2  0.0000   0.990731 0.00 1.00 0.00
#> 296     2  0.0000   0.990731 0.00 1.00 0.00
#> 297     2  0.0000   0.990731 0.00 1.00 0.00
#> 298     1  0.0000   0.983275 1.00 0.00 0.00
#> 299     1  0.5560   0.576687 0.70 0.30 0.00
#> 300     1  0.0000   0.983275 1.00 0.00 0.00
#> 301     2  0.0000   0.990731 0.00 1.00 0.00
#> 302     1  0.0000   0.983275 1.00 0.00 0.00
#> 303     1  0.0000   0.983275 1.00 0.00 0.00
#> 304     2  0.0000   0.990731 0.00 1.00 0.00
#> 305     2  0.0000   0.990731 0.00 1.00 0.00
#> 306     2  0.0000   0.990731 0.00 1.00 0.00
#> 307     1  0.0000   0.983275 1.00 0.00 0.00
#> 308     1  0.0000   0.983275 1.00 0.00 0.00
#> 309     1  0.0000   0.983275 1.00 0.00 0.00
#> 310     1  0.0000   0.983275 1.00 0.00 0.00
#> 311     1  0.0000   0.983275 1.00 0.00 0.00
#> 312     1  0.0000   0.983275 1.00 0.00 0.00
#> 313     1  0.0000   0.983275 1.00 0.00 0.00
#> 314     1  0.0000   0.983275 1.00 0.00 0.00
#> 315     1  0.0000   0.983275 1.00 0.00 0.00
#> 316     1  0.0000   0.983275 1.00 0.00 0.00
#> 317     1  0.0000   0.983275 1.00 0.00 0.00
#> 318     1  0.0000   0.983275 1.00 0.00 0.00
#> 319     1  0.2066   0.924520 0.94 0.06 0.00
#> 320     2  0.0000   0.990731 0.00 1.00 0.00
#> 321     2  0.0000   0.990731 0.00 1.00 0.00
#> 322     2  0.0000   0.990731 0.00 1.00 0.00
#> 323     1  0.0000   0.983275 1.00 0.00 0.00
#> 324     1  0.0000   0.983275 1.00 0.00 0.00
#> 325     1  0.0000   0.983275 1.00 0.00 0.00
#> 326     1  0.0000   0.983275 1.00 0.00 0.00
#> 327     1  0.0000   0.983275 1.00 0.00 0.00
#> 328     2  0.1529   0.948482 0.04 0.96 0.00
#> 329     1  0.0000   0.983275 1.00 0.00 0.00
#> 330     1  0.0000   0.983275 1.00 0.00 0.00
#> 331     2  0.0000   0.990731 0.00 1.00 0.00
#> 332     1  0.0000   0.983275 1.00 0.00 0.00
#> 333     1  0.0000   0.983275 1.00 0.00 0.00
#> 334     2  0.0000   0.990731 0.00 1.00 0.00
#> 335     2  0.0000   0.990731 0.00 1.00 0.00
#> 336     1  0.0000   0.983275 1.00 0.00 0.00
#> 337     2  0.0000   0.990731 0.00 1.00 0.00
#> 338     1  0.0000   0.983275 1.00 0.00 0.00
#> 339     1  0.0000   0.983275 1.00 0.00 0.00
#> 340     1  0.0000   0.983275 1.00 0.00 0.00
#> 341     1  0.0000   0.983275 1.00 0.00 0.00
#> 342     1  0.0000   0.983275 1.00 0.00 0.00
#> 343     1  0.0000   0.983275 1.00 0.00 0.00
#> 344     1  0.0000   0.983275 1.00 0.00 0.00
#> 345     1  0.0000   0.983275 1.00 0.00 0.00
#> 346     1  0.0000   0.983275 1.00 0.00 0.00
#> 347     1  0.0000   0.983275 1.00 0.00 0.00
#> 348     1  0.0000   0.983275 1.00 0.00 0.00
#> 349     1  0.0000   0.983275 1.00 0.00 0.00
#> 350     1  0.0000   0.983275 1.00 0.00 0.00
#> 351     1  0.0000   0.983275 1.00 0.00 0.00
#> 352     1  0.0000   0.983275 1.00 0.00 0.00
#> 353     1  0.0000   0.983275 1.00 0.00 0.00
#> 354     2  0.0000   0.990731 0.00 1.00 0.00
#> 355     2  0.0000   0.990731 0.00 1.00 0.00
#> 356     2  0.0000   0.990731 0.00 1.00 0.00
#> 357     1  0.0000   0.983275 1.00 0.00 0.00
#> 358     1  0.0000   0.983275 1.00 0.00 0.00
#> 359     3  0.0000   0.970324 0.00 0.00 1.00
#> 360     3  0.0000   0.970324 0.00 0.00 1.00
#> 361     2  0.0000   0.990731 0.00 1.00 0.00
#> 362     1  0.0000   0.983275 1.00 0.00 0.00
#> 363     3  0.0000   0.970324 0.00 0.00 1.00
#> 364     3  0.6309   0.000536 0.50 0.00 0.50
#> 365     1  0.0000   0.983275 1.00 0.00 0.00
#> 366     1  0.0000   0.983275 1.00 0.00 0.00
#> 367     1  0.0000   0.983275 1.00 0.00 0.00
#> 368     1  0.0000   0.983275 1.00 0.00 0.00
#> 369     1  0.0000   0.983275 1.00 0.00 0.00
#> 370     1  0.0000   0.983275 1.00 0.00 0.00
#> 371     3  0.0000   0.970324 0.00 0.00 1.00
#> 372     3  0.0000   0.970324 0.00 0.00 1.00
#> 373     1  0.0000   0.983275 1.00 0.00 0.00
#> 374     2  0.5948   0.432250 0.36 0.64 0.00
#> 375     1  0.0000   0.983275 1.00 0.00 0.00
#> 376     1  0.0000   0.983275 1.00 0.00 0.00
#> 377     3  0.0000   0.970324 0.00 0.00 1.00
#> 378     1  0.0000   0.983275 1.00 0.00 0.00
#> 379     1  0.0000   0.983275 1.00 0.00 0.00
#> 380     2  0.0000   0.990731 0.00 1.00 0.00
#> 381     2  0.0000   0.990731 0.00 1.00 0.00
#> 382     1  0.0000   0.983275 1.00 0.00 0.00
#> 383     3  0.0000   0.970324 0.00 0.00 1.00
#> 384     3  0.0000   0.970324 0.00 0.00 1.00
#> 385     3  0.0000   0.970324 0.00 0.00 1.00
#> 386     3  0.0000   0.970324 0.00 0.00 1.00
#> 387     1  0.0000   0.983275 1.00 0.00 0.00
#> 388     3  0.0000   0.970324 0.00 0.00 1.00
#> 389     2  0.0000   0.990731 0.00 1.00 0.00
#> 390     2  0.0000   0.990731 0.00 1.00 0.00
#> 391     2  0.0000   0.990731 0.00 1.00 0.00
#> 392     1  0.0000   0.983275 1.00 0.00 0.00
#> 393     2  0.0000   0.990731 0.00 1.00 0.00
#> 394     1  0.0000   0.983275 1.00 0.00 0.00
#> 395     2  0.0000   0.990731 0.00 1.00 0.00
#> 396     1  0.5706   0.536958 0.68 0.32 0.00
#> 397     2  0.0000   0.990731 0.00 1.00 0.00
#> 398     2  0.0000   0.990731 0.00 1.00 0.00
#> 399     2  0.0000   0.990731 0.00 1.00 0.00
#> 400     2  0.0000   0.990731 0.00 1.00 0.00
#> 401     1  0.0000   0.983275 1.00 0.00 0.00
#> 402     2  0.0000   0.990731 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       3  0.4277     0.6090 0.28 0.00 0.72 0.00
#> 2       2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 3       2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 4       4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 5       4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 6       1  0.5355     0.3621 0.62 0.00 0.02 0.36
#> 7       2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 8       4  0.3610     0.7095 0.00 0.20 0.00 0.80
#> 9       3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 10      1  0.0707     0.9349 0.98 0.00 0.00 0.02
#> 11      1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 12      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 13      3  0.0707     0.9427 0.02 0.00 0.98 0.00
#> 14      3  0.0707     0.9438 0.02 0.00 0.98 0.00
#> 15      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 16      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 17      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 18      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 19      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 20      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 21      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 22      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 23      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 24      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 25      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 26      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 27      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 28      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 29      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 30      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 31      1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 32      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 33      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 34      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 35      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 36      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 37      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 38      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 39      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 40      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 41      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 42      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 43      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 44      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 45      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 46      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 47      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 48      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 49      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 50      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 51      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 52      3  0.2647     0.8295 0.00 0.12 0.88 0.00
#> 53      2  0.1211     0.9549 0.00 0.96 0.04 0.00
#> 54      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 55      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 56      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 57      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 58      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 59      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 60      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 61      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 62      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 63      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 64      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 65      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 66      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 67      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 68      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 69      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 70      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 71      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 72      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 73      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 74      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 75      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 76      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 77      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 78      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 79      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 80      3  0.2345     0.8526 0.00 0.10 0.90 0.00
#> 81      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 82      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 83      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 84      2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 85      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 86      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 87      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 88      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 89      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 90      1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 91      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 92      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 93      2  0.4894     0.7470 0.12 0.78 0.10 0.00
#> 94      3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 95      1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 96      1  0.4790     0.3695 0.62 0.00 0.38 0.00
#> 97      1  0.0707     0.9334 0.98 0.00 0.02 0.00
#> 98      1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 99      3  0.0707     0.9436 0.02 0.00 0.98 0.00
#> 100     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 101     2  0.0707     0.9742 0.02 0.98 0.00 0.00
#> 102     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 103     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 104     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 105     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 106     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 107     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 108     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 109     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 110     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 111     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 112     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 113     1  0.2345     0.8524 0.90 0.00 0.10 0.00
#> 114     3  0.4406     0.5800 0.30 0.00 0.70 0.00
#> 115     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 116     2  0.1211     0.9551 0.00 0.96 0.04 0.00
#> 117     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 118     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 119     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 120     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 121     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 122     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 123     1  0.0707     0.9334 0.98 0.00 0.02 0.00
#> 124     1  0.3801     0.7007 0.78 0.00 0.22 0.00
#> 125     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 126     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 127     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 128     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 129     1  0.0707     0.9341 0.98 0.00 0.02 0.00
#> 130     3  0.4522     0.5290 0.00 0.32 0.68 0.00
#> 131     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 132     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 133     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 134     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 135     3  0.4994     0.0945 0.48 0.00 0.52 0.00
#> 136     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 137     3  0.1211     0.9239 0.04 0.00 0.96 0.00
#> 138     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 139     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 140     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 141     3  0.4790     0.4022 0.38 0.00 0.62 0.00
#> 142     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 143     1  0.0707     0.9334 0.98 0.00 0.02 0.00
#> 144     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 145     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 146     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 147     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 148     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 149     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 150     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 151     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 152     3  0.0707     0.9424 0.00 0.02 0.98 0.00
#> 153     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 154     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 155     3  0.4134     0.6501 0.26 0.00 0.74 0.00
#> 156     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 157     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 158     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 159     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 160     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 161     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 162     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 163     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 164     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 165     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 166     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 167     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 168     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 169     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 170     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 171     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 172     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 173     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 174     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 175     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 176     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 177     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 178     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 179     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 180     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 181     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 182     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 183     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 184     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 185     4  0.4134     0.6596 0.26 0.00 0.00 0.74
#> 186     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 187     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 188     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 189     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 190     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 191     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 192     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 193     4  0.0707     0.9067 0.02 0.00 0.00 0.98
#> 194     4  0.3610     0.7098 0.00 0.20 0.00 0.80
#> 195     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 196     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 197     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 198     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 199     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 200     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 201     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 202     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 203     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 204     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 205     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 206     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 207     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 208     4  0.0707     0.9067 0.02 0.00 0.00 0.98
#> 209     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 210     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 211     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 212     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 213     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 214     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 215     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 216     1  0.0707     0.9350 0.98 0.00 0.00 0.02
#> 217     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 218     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 219     1  0.2011     0.8824 0.92 0.00 0.00 0.08
#> 220     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 221     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 222     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 223     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 224     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 225     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 226     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 227     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 228     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 229     4  0.3172     0.7897 0.16 0.00 0.00 0.84
#> 230     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 231     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 232     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 233     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 234     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 235     1  0.3172     0.7854 0.84 0.00 0.00 0.16
#> 236     1  0.3172     0.7822 0.84 0.00 0.00 0.16
#> 237     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 238     4  0.3801     0.7150 0.22 0.00 0.00 0.78
#> 239     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 240     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 241     1  0.3525     0.8093 0.86 0.10 0.04 0.00
#> 242     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 243     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 244     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 245     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 246     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 247     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 248     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 249     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 250     1  0.4406     0.5513 0.70 0.30 0.00 0.00
#> 251     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 252     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 253     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 254     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 255     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 256     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 257     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 258     1  0.2011     0.8758 0.92 0.00 0.08 0.00
#> 259     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 260     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 261     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 262     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 263     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 264     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 265     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 266     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 267     4  0.0707     0.9067 0.02 0.00 0.00 0.98
#> 268     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 269     1  0.2345     0.8577 0.90 0.00 0.00 0.10
#> 270     1  0.1211     0.9153 0.96 0.00 0.04 0.00
#> 271     4  0.0707     0.9067 0.02 0.00 0.00 0.98
#> 272     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 273     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 274     4  0.4522     0.5634 0.32 0.00 0.00 0.68
#> 275     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 276     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 277     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 278     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 279     4  0.0707     0.9067 0.02 0.00 0.00 0.98
#> 280     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 281     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 282     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 283     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 284     1  0.2647     0.8335 0.88 0.00 0.00 0.12
#> 285     1  0.0707     0.9350 0.98 0.00 0.00 0.02
#> 286     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 287     3  0.7653     0.2870 0.30 0.24 0.46 0.00
#> 288     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 289     1  0.1637     0.8992 0.94 0.00 0.00 0.06
#> 290     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 291     1  0.2921     0.8090 0.86 0.00 0.00 0.14
#> 292     2  0.0707     0.9781 0.00 0.98 0.00 0.02
#> 293     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 294     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 295     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 296     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 297     2  0.1211     0.9584 0.00 0.96 0.00 0.04
#> 298     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 299     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 300     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 301     2  0.2011     0.9146 0.00 0.92 0.00 0.08
#> 302     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 303     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 304     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 305     2  0.0707     0.9781 0.00 0.98 0.00 0.02
#> 306     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 307     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 308     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 309     4  0.4855     0.3886 0.40 0.00 0.00 0.60
#> 310     4  0.4855     0.3919 0.40 0.00 0.00 0.60
#> 311     4  0.4994     0.1441 0.48 0.00 0.00 0.52
#> 312     4  0.1637     0.8806 0.06 0.00 0.00 0.94
#> 313     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 314     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 315     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 316     1  0.1637     0.8995 0.94 0.00 0.00 0.06
#> 317     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 318     4  0.0707     0.9067 0.02 0.00 0.00 0.98
#> 319     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 320     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 321     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 322     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 323     4  0.1211     0.8949 0.04 0.00 0.00 0.96
#> 324     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 325     4  0.1637     0.8807 0.06 0.00 0.00 0.94
#> 326     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 327     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 328     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 329     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 330     4  0.4907     0.3364 0.42 0.00 0.00 0.58
#> 331     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 332     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 333     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 334     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 335     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 336     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 337     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 338     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 339     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 340     4  0.4855     0.3874 0.40 0.00 0.00 0.60
#> 341     4  0.4406     0.5963 0.30 0.00 0.00 0.70
#> 342     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 343     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 344     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 345     1  0.4134     0.6188 0.74 0.00 0.00 0.26
#> 346     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 347     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 348     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 349     1  0.4948     0.1487 0.56 0.00 0.00 0.44
#> 350     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 351     4  0.0707     0.9067 0.02 0.00 0.00 0.98
#> 352     1  0.4948     0.1487 0.56 0.00 0.00 0.44
#> 353     1  0.4948     0.1542 0.56 0.00 0.00 0.44
#> 354     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 355     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 356     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 357     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 358     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 359     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 360     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 361     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 362     4  0.4855     0.3887 0.40 0.00 0.00 0.60
#> 363     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 364     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 365     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 366     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 367     4  0.4522     0.5617 0.32 0.00 0.00 0.68
#> 368     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 369     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 370     1  0.4907     0.2165 0.58 0.00 0.00 0.42
#> 371     1  0.2921     0.8066 0.86 0.00 0.14 0.00
#> 372     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 373     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 374     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 375     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 376     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 377     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 378     4  0.4977     0.1980 0.46 0.00 0.00 0.54
#> 379     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 380     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 381     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 382     1  0.4713     0.3971 0.64 0.00 0.00 0.36
#> 383     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 384     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 385     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 386     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 387     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 388     3  0.0000     0.9623 0.00 0.00 1.00 0.00
#> 389     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 390     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 391     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 392     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 393     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 394     1  0.0000     0.9505 1.00 0.00 0.00 0.00
#> 395     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 396     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 397     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 398     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 399     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 400     2  0.0000     0.9960 0.00 1.00 0.00 0.00
#> 401     4  0.0000     0.9150 0.00 0.00 0.00 1.00
#> 402     2  0.0000     0.9960 0.00 1.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-031-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-031-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-031-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-031-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-031-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-031-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-031-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-031-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-031-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-031-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-031-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-031-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-031-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-031-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-031-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-031-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-031-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      394                0.0985 2
#> ATC:skmeans      395                0.1796 3
#> ATC:skmeans      385                0.3778 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node0311

Parent node: Node031. Child nodes: Node01131-leaf , Node01132-leaf , Node01133-leaf , Node01211-leaf , Node01212-leaf , Node01221-leaf , Node01222-leaf , Node01223-leaf , Node01231-leaf , Node01232-leaf , Node01233-leaf , Node01234-leaf , Node02111 , Node02112 , Node02113-leaf , Node02121-leaf , Node02122-leaf , Node02123-leaf , Node02221-leaf , Node02222-leaf , Node03111-leaf , Node03112-leaf , Node03121-leaf , Node03122 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0311"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 8477 rows and 153 columns.
#>   Top rows (848) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0311-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0311-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.973           0.964       0.985          0.492 0.508   0.508
#> 3 3 0.957           0.937       0.976          0.315 0.783   0.596
#> 4 4 0.731           0.724       0.866          0.103 0.931   0.808

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.981 0.00 1.00
#> 2       2   0.000      0.981 0.00 1.00
#> 3       2   0.000      0.981 0.00 1.00
#> 4       1   0.000      0.987 1.00 0.00
#> 5       1   0.000      0.987 1.00 0.00
#> 6       1   0.000      0.987 1.00 0.00
#> 7       1   0.000      0.987 1.00 0.00
#> 8       1   0.000      0.987 1.00 0.00
#> 9       1   0.000      0.987 1.00 0.00
#> 10      1   0.000      0.987 1.00 0.00
#> 11      1   0.000      0.987 1.00 0.00
#> 12      1   0.000      0.987 1.00 0.00
#> 13      1   0.000      0.987 1.00 0.00
#> 14      1   0.000      0.987 1.00 0.00
#> 15      1   0.000      0.987 1.00 0.00
#> 16      1   0.000      0.987 1.00 0.00
#> 17      1   0.000      0.987 1.00 0.00
#> 18      1   0.000      0.987 1.00 0.00
#> 19      1   0.000      0.987 1.00 0.00
#> 20      1   0.000      0.987 1.00 0.00
#> 21      1   0.141      0.970 0.98 0.02
#> 22      1   0.000      0.987 1.00 0.00
#> 23      1   0.000      0.987 1.00 0.00
#> 24      1   0.000      0.987 1.00 0.00
#> 25      1   0.000      0.987 1.00 0.00
#> 26      1   0.000      0.987 1.00 0.00
#> 27      2   0.000      0.981 0.00 1.00
#> 28      1   0.000      0.987 1.00 0.00
#> 29      1   0.000      0.987 1.00 0.00
#> 30      1   0.000      0.987 1.00 0.00
#> 31      1   0.141      0.970 0.98 0.02
#> 32      1   0.141      0.970 0.98 0.02
#> 33      1   0.000      0.987 1.00 0.00
#> 34      1   0.000      0.987 1.00 0.00
#> 35      1   0.000      0.987 1.00 0.00
#> 36      1   0.000      0.987 1.00 0.00
#> 37      1   0.000      0.987 1.00 0.00
#> 38      1   0.000      0.987 1.00 0.00
#> 39      1   0.000      0.987 1.00 0.00
#> 40      2   0.000      0.981 0.00 1.00
#> 41      1   0.000      0.987 1.00 0.00
#> 42      1   0.000      0.987 1.00 0.00
#> 43      1   0.000      0.987 1.00 0.00
#> 44      1   0.000      0.987 1.00 0.00
#> 45      1   0.000      0.987 1.00 0.00
#> 46      1   0.000      0.987 1.00 0.00
#> 47      1   0.000      0.987 1.00 0.00
#> 48      1   0.000      0.987 1.00 0.00
#> 49      1   0.000      0.987 1.00 0.00
#> 50      1   0.000      0.987 1.00 0.00
#> 51      1   0.000      0.987 1.00 0.00
#> 52      1   0.000      0.987 1.00 0.00
#> 53      1   0.000      0.987 1.00 0.00
#> 54      1   0.000      0.987 1.00 0.00
#> 55      1   0.000      0.987 1.00 0.00
#> 56      2   0.760      0.723 0.22 0.78
#> 57      1   0.000      0.987 1.00 0.00
#> 58      1   0.242      0.951 0.96 0.04
#> 59      1   0.000      0.987 1.00 0.00
#> 60      2   0.584      0.836 0.14 0.86
#> 61      1   0.000      0.987 1.00 0.00
#> 62      1   0.000      0.987 1.00 0.00
#> 63      1   0.760      0.721 0.78 0.22
#> 64      1   0.000      0.987 1.00 0.00
#> 65      1   0.000      0.987 1.00 0.00
#> 66      2   0.000      0.981 0.00 1.00
#> 67      2   0.000      0.981 0.00 1.00
#> 68      2   0.000      0.981 0.00 1.00
#> 69      1   0.000      0.987 1.00 0.00
#> 70      1   0.000      0.987 1.00 0.00
#> 71      1   0.584      0.833 0.86 0.14
#> 72      1   0.000      0.987 1.00 0.00
#> 73      1   0.000      0.987 1.00 0.00
#> 74      1   0.000      0.987 1.00 0.00
#> 75      1   0.000      0.987 1.00 0.00
#> 76      1   0.000      0.987 1.00 0.00
#> 77      1   0.000      0.987 1.00 0.00
#> 78      2   0.242      0.946 0.04 0.96
#> 79      1   0.000      0.987 1.00 0.00
#> 80      2   0.242      0.946 0.04 0.96
#> 81      1   0.000      0.987 1.00 0.00
#> 82      1   0.000      0.987 1.00 0.00
#> 83      2   0.000      0.981 0.00 1.00
#> 84      1   0.000      0.987 1.00 0.00
#> 85      1   0.000      0.987 1.00 0.00
#> 86      2   0.995      0.137 0.46 0.54
#> 87      1   0.000      0.987 1.00 0.00
#> 88      1   0.634      0.809 0.84 0.16
#> 89      2   0.000      0.981 0.00 1.00
#> 90      2   0.000      0.981 0.00 1.00
#> 91      2   0.000      0.981 0.00 1.00
#> 92      2   0.000      0.981 0.00 1.00
#> 93      2   0.000      0.981 0.00 1.00
#> 94      2   0.000      0.981 0.00 1.00
#> 95      2   0.000      0.981 0.00 1.00
#> 96      2   0.000      0.981 0.00 1.00
#> 97      2   0.000      0.981 0.00 1.00
#> 98      2   0.000      0.981 0.00 1.00
#> 99      2   0.000      0.981 0.00 1.00
#> 100     2   0.000      0.981 0.00 1.00
#> 101     2   0.000      0.981 0.00 1.00
#> 102     2   0.000      0.981 0.00 1.00
#> 103     2   0.000      0.981 0.00 1.00
#> 104     2   0.000      0.981 0.00 1.00
#> 105     2   0.000      0.981 0.00 1.00
#> 106     2   0.000      0.981 0.00 1.00
#> 107     2   0.000      0.981 0.00 1.00
#> 108     2   0.000      0.981 0.00 1.00
#> 109     2   0.000      0.981 0.00 1.00
#> 110     2   0.000      0.981 0.00 1.00
#> 111     2   0.000      0.981 0.00 1.00
#> 112     2   0.000      0.981 0.00 1.00
#> 113     2   0.000      0.981 0.00 1.00
#> 114     2   0.000      0.981 0.00 1.00
#> 115     1   0.000      0.987 1.00 0.00
#> 116     2   0.000      0.981 0.00 1.00
#> 117     2   0.000      0.981 0.00 1.00
#> 118     2   0.000      0.981 0.00 1.00
#> 119     2   0.000      0.981 0.00 1.00
#> 120     2   0.000      0.981 0.00 1.00
#> 121     2   0.000      0.981 0.00 1.00
#> 122     2   0.000      0.981 0.00 1.00
#> 123     1   0.141      0.970 0.98 0.02
#> 124     2   0.584      0.835 0.14 0.86
#> 125     2   0.000      0.981 0.00 1.00
#> 126     1   0.981      0.279 0.58 0.42
#> 127     2   0.000      0.981 0.00 1.00
#> 128     1   0.141      0.970 0.98 0.02
#> 129     2   0.000      0.981 0.00 1.00
#> 130     2   0.000      0.981 0.00 1.00
#> 131     2   0.000      0.981 0.00 1.00
#> 132     2   0.000      0.981 0.00 1.00
#> 133     1   0.242      0.950 0.96 0.04
#> 134     2   0.000      0.981 0.00 1.00
#> 135     2   0.000      0.981 0.00 1.00
#> 136     2   0.000      0.981 0.00 1.00
#> 137     2   0.000      0.981 0.00 1.00
#> 138     1   0.000      0.987 1.00 0.00
#> 139     2   0.000      0.981 0.00 1.00
#> 140     1   0.000      0.987 1.00 0.00
#> 141     1   0.000      0.987 1.00 0.00
#> 142     2   0.000      0.981 0.00 1.00
#> 143     1   0.000      0.987 1.00 0.00
#> 144     2   0.000      0.981 0.00 1.00
#> 145     1   0.000      0.987 1.00 0.00
#> 146     1   0.000      0.987 1.00 0.00
#> 147     1   0.000      0.987 1.00 0.00
#> 148     1   0.000      0.987 1.00 0.00
#> 149     2   0.584      0.836 0.14 0.86
#> 150     2   0.000      0.981 0.00 1.00
#> 151     1   0.000      0.987 1.00 0.00
#> 152     2   0.000      0.981 0.00 1.00
#> 153     2   0.000      0.981 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       2  0.0000    0.96602 0.00 1.00 0.00
#> 2       2  0.0000    0.96602 0.00 1.00 0.00
#> 3       2  0.2959    0.86581 0.00 0.90 0.10
#> 4       1  0.0000    0.98588 1.00 0.00 0.00
#> 5       1  0.1529    0.94997 0.96 0.00 0.04
#> 6       1  0.0000    0.98588 1.00 0.00 0.00
#> 7       3  0.0000    0.95726 0.00 0.00 1.00
#> 8       3  0.0000    0.95726 0.00 0.00 1.00
#> 9       3  0.0000    0.95726 0.00 0.00 1.00
#> 10      1  0.0000    0.98588 1.00 0.00 0.00
#> 11      3  0.0000    0.95726 0.00 0.00 1.00
#> 12      1  0.2959    0.88388 0.90 0.00 0.10
#> 13      3  0.0000    0.95726 0.00 0.00 1.00
#> 14      1  0.0000    0.98588 1.00 0.00 0.00
#> 15      1  0.0000    0.98588 1.00 0.00 0.00
#> 16      1  0.0000    0.98588 1.00 0.00 0.00
#> 17      1  0.0000    0.98588 1.00 0.00 0.00
#> 18      3  0.0000    0.95726 0.00 0.00 1.00
#> 19      3  0.0000    0.95726 0.00 0.00 1.00
#> 20      1  0.0000    0.98588 1.00 0.00 0.00
#> 21      3  0.0000    0.95726 0.00 0.00 1.00
#> 22      1  0.0000    0.98588 1.00 0.00 0.00
#> 23      1  0.0000    0.98588 1.00 0.00 0.00
#> 24      1  0.0000    0.98588 1.00 0.00 0.00
#> 25      1  0.0000    0.98588 1.00 0.00 0.00
#> 26      1  0.0000    0.98588 1.00 0.00 0.00
#> 27      2  0.0000    0.96602 0.00 1.00 0.00
#> 28      1  0.0000    0.98588 1.00 0.00 0.00
#> 29      1  0.0000    0.98588 1.00 0.00 0.00
#> 30      1  0.0000    0.98588 1.00 0.00 0.00
#> 31      1  0.1529    0.94797 0.96 0.04 0.00
#> 32      1  0.0000    0.98588 1.00 0.00 0.00
#> 33      1  0.0000    0.98588 1.00 0.00 0.00
#> 34      1  0.0000    0.98588 1.00 0.00 0.00
#> 35      1  0.0000    0.98588 1.00 0.00 0.00
#> 36      1  0.0000    0.98588 1.00 0.00 0.00
#> 37      1  0.0000    0.98588 1.00 0.00 0.00
#> 38      1  0.0000    0.98588 1.00 0.00 0.00
#> 39      1  0.0000    0.98588 1.00 0.00 0.00
#> 40      2  0.0000    0.96602 0.00 1.00 0.00
#> 41      1  0.0000    0.98588 1.00 0.00 0.00
#> 42      1  0.0000    0.98588 1.00 0.00 0.00
#> 43      3  0.3686    0.82511 0.14 0.00 0.86
#> 44      1  0.0000    0.98588 1.00 0.00 0.00
#> 45      1  0.0000    0.98588 1.00 0.00 0.00
#> 46      1  0.0000    0.98588 1.00 0.00 0.00
#> 47      1  0.0000    0.98588 1.00 0.00 0.00
#> 48      1  0.0000    0.98588 1.00 0.00 0.00
#> 49      1  0.0000    0.98588 1.00 0.00 0.00
#> 50      1  0.0000    0.98588 1.00 0.00 0.00
#> 51      1  0.0000    0.98588 1.00 0.00 0.00
#> 52      3  0.0000    0.95726 0.00 0.00 1.00
#> 53      1  0.0000    0.98588 1.00 0.00 0.00
#> 54      3  0.0000    0.95726 0.00 0.00 1.00
#> 55      3  0.0892    0.94029 0.02 0.00 0.98
#> 56      3  0.0000    0.95726 0.00 0.00 1.00
#> 57      1  0.0000    0.98588 1.00 0.00 0.00
#> 58      1  0.0000    0.98588 1.00 0.00 0.00
#> 59      3  0.0000    0.95726 0.00 0.00 1.00
#> 60      3  0.0000    0.95726 0.00 0.00 1.00
#> 61      1  0.0000    0.98588 1.00 0.00 0.00
#> 62      1  0.0000    0.98588 1.00 0.00 0.00
#> 63      1  0.6244    0.19222 0.56 0.44 0.00
#> 64      1  0.0000    0.98588 1.00 0.00 0.00
#> 65      1  0.0000    0.98588 1.00 0.00 0.00
#> 66      3  0.0000    0.95726 0.00 0.00 1.00
#> 67      2  0.0000    0.96602 0.00 1.00 0.00
#> 68      3  0.0000    0.95726 0.00 0.00 1.00
#> 69      1  0.0000    0.98588 1.00 0.00 0.00
#> 70      1  0.0000    0.98588 1.00 0.00 0.00
#> 71      3  0.0000    0.95726 0.00 0.00 1.00
#> 72      1  0.0000    0.98588 1.00 0.00 0.00
#> 73      1  0.1529    0.94980 0.96 0.00 0.04
#> 74      1  0.0000    0.98588 1.00 0.00 0.00
#> 75      1  0.0000    0.98588 1.00 0.00 0.00
#> 76      1  0.0000    0.98588 1.00 0.00 0.00
#> 77      1  0.0000    0.98588 1.00 0.00 0.00
#> 78      2  0.2959    0.85806 0.10 0.90 0.00
#> 79      1  0.0000    0.98588 1.00 0.00 0.00
#> 80      3  0.6192    0.25972 0.00 0.42 0.58
#> 81      3  0.0000    0.95726 0.00 0.00 1.00
#> 82      1  0.0000    0.98588 1.00 0.00 0.00
#> 83      2  0.0000    0.96602 0.00 1.00 0.00
#> 84      1  0.0000    0.98588 1.00 0.00 0.00
#> 85      1  0.0000    0.98588 1.00 0.00 0.00
#> 86      2  0.6309    0.00391 0.50 0.50 0.00
#> 87      1  0.0000    0.98588 1.00 0.00 0.00
#> 88      1  0.1529    0.94689 0.96 0.04 0.00
#> 89      3  0.0000    0.95726 0.00 0.00 1.00
#> 90      2  0.0000    0.96602 0.00 1.00 0.00
#> 91      2  0.0000    0.96602 0.00 1.00 0.00
#> 92      2  0.0000    0.96602 0.00 1.00 0.00
#> 93      2  0.0000    0.96602 0.00 1.00 0.00
#> 94      2  0.0000    0.96602 0.00 1.00 0.00
#> 95      2  0.0000    0.96602 0.00 1.00 0.00
#> 96      2  0.0000    0.96602 0.00 1.00 0.00
#> 97      2  0.0000    0.96602 0.00 1.00 0.00
#> 98      2  0.0000    0.96602 0.00 1.00 0.00
#> 99      2  0.0000    0.96602 0.00 1.00 0.00
#> 100     2  0.0000    0.96602 0.00 1.00 0.00
#> 101     2  0.0000    0.96602 0.00 1.00 0.00
#> 102     2  0.0000    0.96602 0.00 1.00 0.00
#> 103     2  0.0000    0.96602 0.00 1.00 0.00
#> 104     2  0.0000    0.96602 0.00 1.00 0.00
#> 105     2  0.0000    0.96602 0.00 1.00 0.00
#> 106     2  0.0000    0.96602 0.00 1.00 0.00
#> 107     3  0.0000    0.95726 0.00 0.00 1.00
#> 108     2  0.0000    0.96602 0.00 1.00 0.00
#> 109     2  0.0000    0.96602 0.00 1.00 0.00
#> 110     2  0.0000    0.96602 0.00 1.00 0.00
#> 111     3  0.0000    0.95726 0.00 0.00 1.00
#> 112     2  0.0000    0.96602 0.00 1.00 0.00
#> 113     3  0.0000    0.95726 0.00 0.00 1.00
#> 114     2  0.0000    0.96602 0.00 1.00 0.00
#> 115     1  0.0000    0.98588 1.00 0.00 0.00
#> 116     2  0.0000    0.96602 0.00 1.00 0.00
#> 117     2  0.0000    0.96602 0.00 1.00 0.00
#> 118     2  0.0000    0.96602 0.00 1.00 0.00
#> 119     2  0.0000    0.96602 0.00 1.00 0.00
#> 120     2  0.0000    0.96602 0.00 1.00 0.00
#> 121     2  0.0000    0.96602 0.00 1.00 0.00
#> 122     2  0.0000    0.96602 0.00 1.00 0.00
#> 123     3  0.5016    0.68313 0.24 0.00 0.76
#> 124     2  0.2537    0.88153 0.08 0.92 0.00
#> 125     3  0.0000    0.95726 0.00 0.00 1.00
#> 126     2  0.5216    0.64498 0.26 0.74 0.00
#> 127     3  0.0000    0.95726 0.00 0.00 1.00
#> 128     1  0.1529    0.94761 0.96 0.04 0.00
#> 129     2  0.0000    0.96602 0.00 1.00 0.00
#> 130     2  0.0000    0.96602 0.00 1.00 0.00
#> 131     2  0.0000    0.96602 0.00 1.00 0.00
#> 132     2  0.0000    0.96602 0.00 1.00 0.00
#> 133     3  0.0000    0.95726 0.00 0.00 1.00
#> 134     2  0.0000    0.96602 0.00 1.00 0.00
#> 135     3  0.0000    0.95726 0.00 0.00 1.00
#> 136     2  0.0000    0.96602 0.00 1.00 0.00
#> 137     2  0.0000    0.96602 0.00 1.00 0.00
#> 138     3  0.0000    0.95726 0.00 0.00 1.00
#> 139     2  0.0000    0.96602 0.00 1.00 0.00
#> 140     1  0.0000    0.98588 1.00 0.00 0.00
#> 141     1  0.0000    0.98588 1.00 0.00 0.00
#> 142     2  0.0000    0.96602 0.00 1.00 0.00
#> 143     1  0.0000    0.98588 1.00 0.00 0.00
#> 144     2  0.0000    0.96602 0.00 1.00 0.00
#> 145     1  0.0000    0.98588 1.00 0.00 0.00
#> 146     3  0.0000    0.95726 0.00 0.00 1.00
#> 147     1  0.3340    0.85684 0.88 0.00 0.12
#> 148     3  0.6126    0.34734 0.40 0.00 0.60
#> 149     3  0.0000    0.95726 0.00 0.00 1.00
#> 150     2  0.6244    0.19067 0.00 0.56 0.44
#> 151     1  0.0000    0.98588 1.00 0.00 0.00
#> 152     3  0.3340    0.83819 0.00 0.12 0.88
#> 153     3  0.0000    0.95726 0.00 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       2  0.0707     0.8366 0.00 0.98 0.00 0.02
#> 2       2  0.1211     0.8243 0.00 0.96 0.00 0.04
#> 3       2  0.5428     0.5611 0.00 0.74 0.14 0.12
#> 4       1  0.2345     0.8144 0.90 0.00 0.00 0.10
#> 5       1  0.7427     0.0174 0.50 0.00 0.30 0.20
#> 6       1  0.1637     0.8368 0.94 0.00 0.00 0.06
#> 7       3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 8       3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 9       3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 10      1  0.2647     0.8016 0.88 0.00 0.00 0.12
#> 11      3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 12      1  0.7372    -0.2240 0.42 0.00 0.16 0.42
#> 13      3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 14      1  0.3801     0.6855 0.78 0.00 0.00 0.22
#> 15      1  0.2345     0.8160 0.90 0.00 0.00 0.10
#> 16      1  0.2011     0.8286 0.92 0.00 0.00 0.08
#> 17      4  0.4713     0.2485 0.36 0.00 0.00 0.64
#> 18      3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 19      3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 20      1  0.4731     0.6884 0.78 0.00 0.06 0.16
#> 21      3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 22      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 23      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 24      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 25      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 26      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 27      2  0.2345     0.8340 0.00 0.90 0.00 0.10
#> 28      1  0.0707     0.8542 0.98 0.00 0.00 0.02
#> 29      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 30      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 31      1  0.1211     0.8347 0.96 0.04 0.00 0.00
#> 32      1  0.1637     0.8211 0.94 0.00 0.00 0.06
#> 33      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 34      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 35      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 36      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 37      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 38      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 39      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 40      2  0.3198     0.7888 0.08 0.88 0.00 0.04
#> 41      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 42      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 43      3  0.3610     0.5948 0.20 0.00 0.80 0.00
#> 44      1  0.2011     0.8259 0.92 0.00 0.00 0.08
#> 45      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 46      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 47      1  0.2345     0.7817 0.90 0.00 0.00 0.10
#> 48      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 49      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 50      1  0.1913     0.8205 0.94 0.00 0.04 0.02
#> 51      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 52      3  0.0707     0.9099 0.00 0.00 0.98 0.02
#> 53      1  0.0707     0.8542 0.98 0.00 0.00 0.02
#> 54      3  0.0707     0.9070 0.00 0.00 0.98 0.02
#> 55      4  0.5860     0.1285 0.04 0.00 0.38 0.58
#> 56      3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 57      1  0.4790     0.4599 0.62 0.00 0.00 0.38
#> 58      1  0.4406     0.5672 0.70 0.00 0.00 0.30
#> 59      3  0.0707     0.9106 0.00 0.00 0.98 0.02
#> 60      3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 61      1  0.2647     0.8016 0.88 0.00 0.00 0.12
#> 62      1  0.2647     0.8016 0.88 0.00 0.00 0.12
#> 63      4  0.7869    -0.0250 0.28 0.34 0.00 0.38
#> 64      1  0.2647     0.8016 0.88 0.00 0.00 0.12
#> 65      1  0.1211     0.8465 0.96 0.00 0.00 0.04
#> 66      3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 67      2  0.1211     0.8463 0.00 0.96 0.00 0.04
#> 68      3  0.0707     0.9124 0.00 0.00 0.98 0.02
#> 69      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 70      1  0.4406     0.5564 0.70 0.00 0.00 0.30
#> 71      3  0.1637     0.8802 0.00 0.00 0.94 0.06
#> 72      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 73      1  0.5956     0.5365 0.68 0.00 0.10 0.22
#> 74      1  0.2345     0.7816 0.90 0.00 0.00 0.10
#> 75      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 76      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 77      1  0.4948     0.1845 0.56 0.00 0.00 0.44
#> 78      2  0.7274     0.4446 0.22 0.54 0.00 0.24
#> 79      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 80      3  0.7783     0.2695 0.04 0.26 0.56 0.14
#> 81      3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 82      1  0.4277     0.5384 0.72 0.00 0.00 0.28
#> 83      2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 84      1  0.2345     0.8138 0.90 0.00 0.00 0.10
#> 85      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 86      1  0.7748    -0.0712 0.44 0.28 0.00 0.28
#> 87      1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 88      1  0.5392     0.4651 0.68 0.04 0.00 0.28
#> 89      3  0.0707     0.9124 0.00 0.00 0.98 0.02
#> 90      2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 91      2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 92      2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 93      2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 94      2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 95      2  0.1211     0.8459 0.00 0.96 0.00 0.04
#> 96      2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 97      2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 98      2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 99      2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 100     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 101     2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 102     2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 103     2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 104     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 105     2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 106     2  0.0707     0.8471 0.00 0.98 0.00 0.02
#> 107     3  0.0707     0.9124 0.00 0.00 0.98 0.02
#> 108     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 109     2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 110     2  0.1637     0.8433 0.00 0.94 0.00 0.06
#> 111     3  0.0707     0.9124 0.00 0.00 0.98 0.02
#> 112     2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 113     3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 114     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 115     1  0.0000     0.8610 1.00 0.00 0.00 0.00
#> 116     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 117     2  0.3400     0.8096 0.00 0.82 0.00 0.18
#> 118     2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 119     2  0.0000     0.8463 0.00 1.00 0.00 0.00
#> 120     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 121     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 122     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 123     4  0.4642     0.3326 0.02 0.00 0.24 0.74
#> 124     2  0.6836     0.5417 0.14 0.58 0.00 0.28
#> 125     3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 126     4  0.7365    -0.2023 0.16 0.40 0.00 0.44
#> 127     3  0.0000     0.9211 0.00 0.00 1.00 0.00
#> 128     1  0.6766     0.2281 0.52 0.10 0.00 0.38
#> 129     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 130     2  0.0707     0.8466 0.00 0.98 0.00 0.02
#> 131     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 132     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 133     4  0.4994    -0.1835 0.00 0.00 0.48 0.52
#> 134     2  0.5713     0.3149 0.00 0.62 0.04 0.34
#> 135     3  0.5062     0.5718 0.00 0.02 0.68 0.30
#> 136     2  0.1637     0.8111 0.00 0.94 0.00 0.06
#> 137     2  0.1637     0.8105 0.00 0.94 0.00 0.06
#> 138     3  0.3801     0.6996 0.00 0.00 0.78 0.22
#> 139     2  0.1637     0.8111 0.00 0.94 0.00 0.06
#> 140     4  0.4790     0.3358 0.38 0.00 0.00 0.62
#> 141     1  0.3172     0.7674 0.84 0.00 0.00 0.16
#> 142     2  0.4134     0.7793 0.00 0.74 0.00 0.26
#> 143     1  0.4134     0.5930 0.74 0.00 0.00 0.26
#> 144     2  0.0707     0.8376 0.00 0.98 0.00 0.02
#> 145     4  0.5000    -0.0533 0.50 0.00 0.00 0.50
#> 146     4  0.4790     0.0647 0.00 0.00 0.38 0.62
#> 147     4  0.4277     0.4881 0.28 0.00 0.00 0.72
#> 148     4  0.5173     0.4681 0.32 0.00 0.02 0.66
#> 149     3  0.2011     0.8678 0.00 0.00 0.92 0.08
#> 150     4  0.5355     0.3024 0.00 0.36 0.02 0.62
#> 151     4  0.4134     0.4948 0.26 0.00 0.00 0.74
#> 152     4  0.6594     0.3492 0.00 0.24 0.14 0.62
#> 153     3  0.4790     0.4606 0.00 0.00 0.62 0.38

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0311-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0311-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0311-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0311-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0311-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0311-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0311-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0311-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0311-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0311-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0311-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0311-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0311-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0311-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0311-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0311-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0311-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      151                0.4714 2
#> ATC:skmeans      148                0.0856 3
#> ATC:skmeans      128                0.2420 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node0312

Parent node: Node031. Child nodes: Node01131-leaf , Node01132-leaf , Node01133-leaf , Node01211-leaf , Node01212-leaf , Node01221-leaf , Node01222-leaf , Node01223-leaf , Node01231-leaf , Node01232-leaf , Node01233-leaf , Node01234-leaf , Node02111 , Node02112 , Node02113-leaf , Node02121-leaf , Node02122-leaf , Node02123-leaf , Node02221-leaf , Node02222-leaf , Node03111-leaf , Node03112-leaf , Node03121-leaf , Node03122 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0312"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 8616 rows and 131 columns.
#>   Top rows (862) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0312-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0312-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.952       0.981          0.501 0.500   0.500
#> 3 3 0.974           0.937       0.973          0.334 0.748   0.535
#> 4 4 0.920           0.911       0.959          0.110 0.895   0.701

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       1   0.000     0.9807 1.00 0.00
#> 2       1   0.000     0.9807 1.00 0.00
#> 3       1   0.000     0.9807 1.00 0.00
#> 4       1   0.000     0.9807 1.00 0.00
#> 5       1   0.000     0.9807 1.00 0.00
#> 6       1   0.000     0.9807 1.00 0.00
#> 7       1   0.000     0.9807 1.00 0.00
#> 8       1   0.000     0.9807 1.00 0.00
#> 9       1   0.000     0.9807 1.00 0.00
#> 10      1   0.000     0.9807 1.00 0.00
#> 11      2   0.000     0.9806 0.00 1.00
#> 12      1   0.000     0.9807 1.00 0.00
#> 13      1   0.000     0.9807 1.00 0.00
#> 14      1   0.000     0.9807 1.00 0.00
#> 15      1   0.000     0.9807 1.00 0.00
#> 16      1   0.000     0.9807 1.00 0.00
#> 17      1   0.000     0.9807 1.00 0.00
#> 18      1   0.000     0.9807 1.00 0.00
#> 19      2   0.242     0.9459 0.04 0.96
#> 20      1   0.000     0.9807 1.00 0.00
#> 21      1   0.000     0.9807 1.00 0.00
#> 22      1   0.000     0.9807 1.00 0.00
#> 23      1   0.000     0.9807 1.00 0.00
#> 24      1   0.000     0.9807 1.00 0.00
#> 25      1   0.000     0.9807 1.00 0.00
#> 26      1   0.000     0.9807 1.00 0.00
#> 27      1   0.000     0.9807 1.00 0.00
#> 28      1   0.000     0.9807 1.00 0.00
#> 29      1   0.000     0.9807 1.00 0.00
#> 30      1   0.000     0.9807 1.00 0.00
#> 31      1   0.000     0.9807 1.00 0.00
#> 32      1   0.000     0.9807 1.00 0.00
#> 33      1   0.000     0.9807 1.00 0.00
#> 34      1   0.000     0.9807 1.00 0.00
#> 35      1   0.000     0.9807 1.00 0.00
#> 36      1   0.000     0.9807 1.00 0.00
#> 37      1   0.000     0.9807 1.00 0.00
#> 38      2   0.000     0.9806 0.00 1.00
#> 39      1   0.000     0.9807 1.00 0.00
#> 40      1   0.000     0.9807 1.00 0.00
#> 41      1   0.000     0.9807 1.00 0.00
#> 42      1   0.000     0.9807 1.00 0.00
#> 43      1   0.000     0.9807 1.00 0.00
#> 44      2   0.000     0.9806 0.00 1.00
#> 45      1   0.000     0.9807 1.00 0.00
#> 46      2   0.000     0.9806 0.00 1.00
#> 47      1   0.000     0.9807 1.00 0.00
#> 48      1   0.000     0.9807 1.00 0.00
#> 49      1   0.000     0.9807 1.00 0.00
#> 50      1   0.000     0.9807 1.00 0.00
#> 51      2   0.000     0.9806 0.00 1.00
#> 52      1   0.000     0.9807 1.00 0.00
#> 53      2   0.000     0.9806 0.00 1.00
#> 54      2   0.995     0.1397 0.46 0.54
#> 55      1   0.000     0.9807 1.00 0.00
#> 56      1   0.000     0.9807 1.00 0.00
#> 57      1   0.000     0.9807 1.00 0.00
#> 58      1   0.000     0.9807 1.00 0.00
#> 59      2   0.000     0.9806 0.00 1.00
#> 60      2   0.000     0.9806 0.00 1.00
#> 61      1   0.000     0.9807 1.00 0.00
#> 62      1   0.000     0.9807 1.00 0.00
#> 63      1   0.000     0.9807 1.00 0.00
#> 64      1   0.000     0.9807 1.00 0.00
#> 65      2   0.000     0.9806 0.00 1.00
#> 66      2   0.402     0.9045 0.08 0.92
#> 67      2   0.000     0.9806 0.00 1.00
#> 68      2   0.881     0.5749 0.30 0.70
#> 69      1   0.000     0.9807 1.00 0.00
#> 70      1   0.000     0.9807 1.00 0.00
#> 71      2   0.000     0.9806 0.00 1.00
#> 72      2   0.141     0.9641 0.02 0.98
#> 73      2   0.000     0.9806 0.00 1.00
#> 74      2   0.000     0.9806 0.00 1.00
#> 75      2   0.000     0.9806 0.00 1.00
#> 76      2   0.529     0.8602 0.12 0.88
#> 77      2   0.000     0.9806 0.00 1.00
#> 78      2   0.000     0.9806 0.00 1.00
#> 79      2   0.000     0.9806 0.00 1.00
#> 80      2   0.327     0.9270 0.06 0.94
#> 81      2   0.000     0.9806 0.00 1.00
#> 82      2   0.000     0.9806 0.00 1.00
#> 83      1   0.000     0.9807 1.00 0.00
#> 84      2   0.000     0.9806 0.00 1.00
#> 85      1   0.000     0.9807 1.00 0.00
#> 86      2   0.242     0.9465 0.04 0.96
#> 87      2   0.000     0.9806 0.00 1.00
#> 88      2   0.000     0.9806 0.00 1.00
#> 89      2   0.000     0.9806 0.00 1.00
#> 90      1   0.000     0.9807 1.00 0.00
#> 91      2   0.000     0.9806 0.00 1.00
#> 92      1   0.000     0.9807 1.00 0.00
#> 93      1   0.000     0.9807 1.00 0.00
#> 94      1   0.242     0.9415 0.96 0.04
#> 95      2   0.000     0.9806 0.00 1.00
#> 96      1   0.000     0.9807 1.00 0.00
#> 97      2   0.000     0.9806 0.00 1.00
#> 98      2   0.000     0.9806 0.00 1.00
#> 99      2   0.000     0.9806 0.00 1.00
#> 100     2   0.000     0.9806 0.00 1.00
#> 101     2   0.000     0.9806 0.00 1.00
#> 102     2   0.000     0.9806 0.00 1.00
#> 103     2   0.000     0.9806 0.00 1.00
#> 104     2   0.000     0.9806 0.00 1.00
#> 105     2   0.000     0.9806 0.00 1.00
#> 106     2   0.000     0.9806 0.00 1.00
#> 107     2   0.000     0.9806 0.00 1.00
#> 108     2   0.000     0.9806 0.00 1.00
#> 109     2   0.000     0.9806 0.00 1.00
#> 110     2   0.000     0.9806 0.00 1.00
#> 111     2   0.000     0.9806 0.00 1.00
#> 112     2   0.000     0.9806 0.00 1.00
#> 113     2   0.000     0.9806 0.00 1.00
#> 114     2   0.000     0.9806 0.00 1.00
#> 115     1   0.141     0.9616 0.98 0.02
#> 116     1   0.000     0.9807 1.00 0.00
#> 117     1   0.981     0.2673 0.58 0.42
#> 118     2   0.000     0.9806 0.00 1.00
#> 119     1   0.000     0.9807 1.00 0.00
#> 120     1   0.943     0.4313 0.64 0.36
#> 121     2   0.000     0.9806 0.00 1.00
#> 122     2   0.000     0.9806 0.00 1.00
#> 123     2   0.000     0.9806 0.00 1.00
#> 124     2   0.000     0.9806 0.00 1.00
#> 125     1   0.999     0.0721 0.52 0.48
#> 126     2   0.000     0.9806 0.00 1.00
#> 127     2   0.000     0.9806 0.00 1.00
#> 128     1   0.000     0.9807 1.00 0.00
#> 129     2   0.000     0.9806 0.00 1.00
#> 130     2   0.000     0.9806 0.00 1.00
#> 131     1   0.000     0.9807 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       1  0.0000      0.965 1.00 0.00 0.00
#> 2       1  0.0000      0.965 1.00 0.00 0.00
#> 3       1  0.0000      0.965 1.00 0.00 0.00
#> 4       3  0.0000      0.978 0.00 0.00 1.00
#> 5       1  0.0000      0.965 1.00 0.00 0.00
#> 6       1  0.0000      0.965 1.00 0.00 0.00
#> 7       1  0.0000      0.965 1.00 0.00 0.00
#> 8       1  0.0000      0.965 1.00 0.00 0.00
#> 9       1  0.0000      0.965 1.00 0.00 0.00
#> 10      1  0.0000      0.965 1.00 0.00 0.00
#> 11      2  0.0000      0.975 0.00 1.00 0.00
#> 12      1  0.0000      0.965 1.00 0.00 0.00
#> 13      1  0.0000      0.965 1.00 0.00 0.00
#> 14      1  0.0000      0.965 1.00 0.00 0.00
#> 15      1  0.0000      0.965 1.00 0.00 0.00
#> 16      1  0.0000      0.965 1.00 0.00 0.00
#> 17      1  0.2066      0.911 0.94 0.00 0.06
#> 18      1  0.0000      0.965 1.00 0.00 0.00
#> 19      1  0.0892      0.947 0.98 0.02 0.00
#> 20      1  0.0000      0.965 1.00 0.00 0.00
#> 21      1  0.0000      0.965 1.00 0.00 0.00
#> 22      1  0.0000      0.965 1.00 0.00 0.00
#> 23      1  0.0000      0.965 1.00 0.00 0.00
#> 24      1  0.0000      0.965 1.00 0.00 0.00
#> 25      1  0.0000      0.965 1.00 0.00 0.00
#> 26      1  0.0000      0.965 1.00 0.00 0.00
#> 27      1  0.0000      0.965 1.00 0.00 0.00
#> 28      1  0.0000      0.965 1.00 0.00 0.00
#> 29      1  0.0000      0.965 1.00 0.00 0.00
#> 30      1  0.0000      0.965 1.00 0.00 0.00
#> 31      1  0.0000      0.965 1.00 0.00 0.00
#> 32      1  0.0000      0.965 1.00 0.00 0.00
#> 33      1  0.0000      0.965 1.00 0.00 0.00
#> 34      1  0.0000      0.965 1.00 0.00 0.00
#> 35      3  0.0000      0.978 0.00 0.00 1.00
#> 36      1  0.0000      0.965 1.00 0.00 0.00
#> 37      1  0.0000      0.965 1.00 0.00 0.00
#> 38      2  0.2947      0.910 0.02 0.92 0.06
#> 39      1  0.0000      0.965 1.00 0.00 0.00
#> 40      3  0.0000      0.978 0.00 0.00 1.00
#> 41      3  0.0000      0.978 0.00 0.00 1.00
#> 42      3  0.0000      0.978 0.00 0.00 1.00
#> 43      1  0.0000      0.965 1.00 0.00 0.00
#> 44      2  0.0000      0.975 0.00 1.00 0.00
#> 45      1  0.0000      0.965 1.00 0.00 0.00
#> 46      2  0.0000      0.975 0.00 1.00 0.00
#> 47      3  0.0000      0.978 0.00 0.00 1.00
#> 48      3  0.0000      0.978 0.00 0.00 1.00
#> 49      1  0.0000      0.965 1.00 0.00 0.00
#> 50      1  0.5948      0.444 0.64 0.00 0.36
#> 51      3  0.5216      0.653 0.00 0.26 0.74
#> 52      1  0.6192      0.286 0.58 0.00 0.42
#> 53      2  0.0000      0.975 0.00 1.00 0.00
#> 54      3  0.0892      0.963 0.00 0.02 0.98
#> 55      1  0.5835      0.488 0.66 0.00 0.34
#> 56      3  0.1529      0.946 0.04 0.00 0.96
#> 57      3  0.1529      0.946 0.04 0.00 0.96
#> 58      1  0.0892      0.948 0.98 0.00 0.02
#> 59      2  0.0000      0.975 0.00 1.00 0.00
#> 60      2  0.5706      0.524 0.00 0.68 0.32
#> 61      3  0.2959      0.886 0.10 0.00 0.90
#> 62      3  0.4291      0.781 0.18 0.00 0.82
#> 63      3  0.0000      0.978 0.00 0.00 1.00
#> 64      3  0.0000      0.978 0.00 0.00 1.00
#> 65      2  0.0000      0.975 0.00 1.00 0.00
#> 66      1  0.5835      0.484 0.66 0.34 0.00
#> 67      2  0.0000      0.975 0.00 1.00 0.00
#> 68      3  0.0000      0.978 0.00 0.00 1.00
#> 69      3  0.0000      0.978 0.00 0.00 1.00
#> 70      3  0.0000      0.978 0.00 0.00 1.00
#> 71      3  0.0000      0.978 0.00 0.00 1.00
#> 72      3  0.0000      0.978 0.00 0.00 1.00
#> 73      2  0.0000      0.975 0.00 1.00 0.00
#> 74      2  0.0000      0.975 0.00 1.00 0.00
#> 75      2  0.0000      0.975 0.00 1.00 0.00
#> 76      3  0.0000      0.978 0.00 0.00 1.00
#> 77      2  0.0000      0.975 0.00 1.00 0.00
#> 78      2  0.0000      0.975 0.00 1.00 0.00
#> 79      3  0.0000      0.978 0.00 0.00 1.00
#> 80      3  0.0000      0.978 0.00 0.00 1.00
#> 81      2  0.0000      0.975 0.00 1.00 0.00
#> 82      2  0.0000      0.975 0.00 1.00 0.00
#> 83      3  0.0000      0.978 0.00 0.00 1.00
#> 84      2  0.0000      0.975 0.00 1.00 0.00
#> 85      3  0.0000      0.978 0.00 0.00 1.00
#> 86      3  0.0000      0.978 0.00 0.00 1.00
#> 87      3  0.0000      0.978 0.00 0.00 1.00
#> 88      2  0.0000      0.975 0.00 1.00 0.00
#> 89      2  0.0000      0.975 0.00 1.00 0.00
#> 90      3  0.0000      0.978 0.00 0.00 1.00
#> 91      2  0.0000      0.975 0.00 1.00 0.00
#> 92      3  0.0000      0.978 0.00 0.00 1.00
#> 93      3  0.0000      0.978 0.00 0.00 1.00
#> 94      3  0.0000      0.978 0.00 0.00 1.00
#> 95      3  0.0000      0.978 0.00 0.00 1.00
#> 96      3  0.0000      0.978 0.00 0.00 1.00
#> 97      2  0.2066      0.930 0.00 0.94 0.06
#> 98      2  0.0000      0.975 0.00 1.00 0.00
#> 99      2  0.0000      0.975 0.00 1.00 0.00
#> 100     2  0.0000      0.975 0.00 1.00 0.00
#> 101     2  0.0000      0.975 0.00 1.00 0.00
#> 102     2  0.0000      0.975 0.00 1.00 0.00
#> 103     2  0.0000      0.975 0.00 1.00 0.00
#> 104     2  0.0000      0.975 0.00 1.00 0.00
#> 105     2  0.0000      0.975 0.00 1.00 0.00
#> 106     2  0.0000      0.975 0.00 1.00 0.00
#> 107     2  0.2066      0.929 0.00 0.94 0.06
#> 108     2  0.1529      0.946 0.00 0.96 0.04
#> 109     2  0.0000      0.975 0.00 1.00 0.00
#> 110     2  0.2066      0.929 0.00 0.94 0.06
#> 111     2  0.1529      0.946 0.00 0.96 0.04
#> 112     2  0.0000      0.975 0.00 1.00 0.00
#> 113     2  0.0000      0.975 0.00 1.00 0.00
#> 114     2  0.6280      0.180 0.00 0.54 0.46
#> 115     1  0.0000      0.965 1.00 0.00 0.00
#> 116     1  0.0000      0.965 1.00 0.00 0.00
#> 117     3  0.0000      0.978 0.00 0.00 1.00
#> 118     2  0.0000      0.975 0.00 1.00 0.00
#> 119     3  0.0000      0.978 0.00 0.00 1.00
#> 120     3  0.4035      0.883 0.08 0.04 0.88
#> 121     2  0.0000      0.975 0.00 1.00 0.00
#> 122     2  0.0000      0.975 0.00 1.00 0.00
#> 123     2  0.0000      0.975 0.00 1.00 0.00
#> 124     2  0.1529      0.946 0.00 0.96 0.04
#> 125     1  0.0892      0.947 0.98 0.02 0.00
#> 126     2  0.0000      0.975 0.00 1.00 0.00
#> 127     2  0.0000      0.975 0.00 1.00 0.00
#> 128     1  0.0000      0.965 1.00 0.00 0.00
#> 129     2  0.0000      0.975 0.00 1.00 0.00
#> 130     2  0.0000      0.975 0.00 1.00 0.00
#> 131     1  0.0000      0.965 1.00 0.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 2       1  0.4522      0.538 0.68 0.32 0.00 0.00
#> 3       1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 4       3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 5       1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 6       1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 7       1  0.1211      0.926 0.96 0.00 0.00 0.04
#> 8       1  0.0707      0.948 0.98 0.02 0.00 0.00
#> 9       1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 10      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 11      2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 12      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 13      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 14      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 15      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 16      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 17      1  0.0707      0.943 0.98 0.00 0.02 0.00
#> 18      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 19      2  0.0707      0.921 0.02 0.98 0.00 0.00
#> 20      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 21      1  0.1637      0.916 0.94 0.06 0.00 0.00
#> 22      1  0.0707      0.948 0.98 0.02 0.00 0.00
#> 23      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 24      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 25      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 26      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 27      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 28      1  0.0707      0.948 0.98 0.02 0.00 0.00
#> 29      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 30      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 31      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 32      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 33      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 34      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 35      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 36      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 37      1  0.0707      0.948 0.98 0.02 0.00 0.00
#> 38      2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 39      1  0.0707      0.948 0.98 0.02 0.00 0.00
#> 40      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 41      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 42      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 43      1  0.0707      0.948 0.98 0.02 0.00 0.00
#> 44      2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 45      1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 46      2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 47      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 48      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 49      1  0.0707      0.948 0.98 0.02 0.00 0.00
#> 50      1  0.4522      0.543 0.68 0.00 0.32 0.00
#> 51      2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 52      1  0.4624      0.499 0.66 0.00 0.34 0.00
#> 53      2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 54      3  0.1637      0.907 0.00 0.06 0.94 0.00
#> 55      1  0.4522      0.544 0.68 0.00 0.32 0.00
#> 56      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 57      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 58      1  0.3606      0.818 0.84 0.02 0.14 0.00
#> 59      2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 60      2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 61      3  0.3975      0.674 0.24 0.00 0.76 0.00
#> 62      3  0.3172      0.789 0.16 0.00 0.84 0.00
#> 63      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 64      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 65      2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 66      2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 67      2  0.2345      0.880 0.00 0.90 0.00 0.10
#> 68      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 69      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 70      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 71      3  0.4790      0.406 0.00 0.00 0.62 0.38
#> 72      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 73      2  0.4713      0.489 0.00 0.64 0.00 0.36
#> 74      2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 75      2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 76      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 77      2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 78      2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 79      3  0.0707      0.939 0.00 0.00 0.98 0.02
#> 80      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 81      2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 82      2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 83      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 84      2  0.4994      0.143 0.00 0.52 0.00 0.48
#> 85      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 86      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 87      3  0.0707      0.938 0.00 0.02 0.98 0.00
#> 88      4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 89      2  0.3400      0.791 0.00 0.82 0.00 0.18
#> 90      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 91      2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 92      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 93      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 94      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 95      3  0.3801      0.715 0.00 0.00 0.78 0.22
#> 96      3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 97      4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 98      4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 99      4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 100     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 101     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 102     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 103     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 104     2  0.1637      0.911 0.00 0.94 0.00 0.06
#> 105     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 106     2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 107     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 108     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 109     2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 110     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 111     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 112     2  0.2647      0.859 0.00 0.88 0.00 0.12
#> 113     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 114     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 115     2  0.4522      0.504 0.32 0.68 0.00 0.00
#> 116     1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 117     3  0.0000      0.953 0.00 0.00 1.00 0.00
#> 118     2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 119     3  0.1637      0.906 0.00 0.00 0.94 0.06
#> 120     3  0.6606      0.600 0.10 0.22 0.66 0.02
#> 121     2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 122     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 123     2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 124     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 125     2  0.1637      0.884 0.06 0.94 0.00 0.00
#> 126     2  0.0707      0.936 0.00 0.98 0.00 0.02
#> 127     4  0.2921      0.821 0.00 0.14 0.00 0.86
#> 128     1  0.0000      0.957 1.00 0.00 0.00 0.00
#> 129     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 130     4  0.0000      0.992 0.00 0.00 0.00 1.00
#> 131     1  0.0000      0.957 1.00 0.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0312-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0312-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0312-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0312-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0312-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0312-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0312-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0312-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0312-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0312-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0312-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0312-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0312-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0312-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0312-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0312-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0312-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      127                0.0696 2
#> ATC:skmeans      126                0.1794 3
#> ATC:skmeans      127                0.1304 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node03122

Parent node: Node0312. Child nodes: Node021111-leaf , Node021112-leaf , Node021121-leaf , Node021122-leaf , Node031221-leaf , Node031222-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["03122"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 7376 rows and 60 columns.
#>   Top rows (738) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-03122-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-03122-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.979       0.990         0.5073 0.494   0.494
#> 3 3 0.871           0.916       0.964         0.3224 0.754   0.540
#> 4 4 0.749           0.826       0.892         0.0884 0.928   0.786

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>    class entropy silhouette   p1   p2
#> 1      1   0.000      0.982 1.00 0.00
#> 2      1   0.000      0.982 1.00 0.00
#> 3      1   0.000      0.982 1.00 0.00
#> 4      1   0.000      0.982 1.00 0.00
#> 5      1   0.000      0.982 1.00 0.00
#> 6      1   0.000      0.982 1.00 0.00
#> 7      1   0.000      0.982 1.00 0.00
#> 8      1   0.722      0.763 0.80 0.20
#> 9      1   0.000      0.982 1.00 0.00
#> 10     1   0.000      0.982 1.00 0.00
#> 11     1   0.000      0.982 1.00 0.00
#> 12     1   0.000      0.982 1.00 0.00
#> 13     1   0.141      0.967 0.98 0.02
#> 14     1   0.634      0.820 0.84 0.16
#> 15     2   0.000      0.998 0.00 1.00
#> 16     2   0.000      0.998 0.00 1.00
#> 17     1   0.529      0.868 0.88 0.12
#> 18     1   0.000      0.982 1.00 0.00
#> 19     1   0.000      0.982 1.00 0.00
#> 20     2   0.000      0.998 0.00 1.00
#> 21     1   0.000      0.982 1.00 0.00
#> 22     1   0.000      0.982 1.00 0.00
#> 23     2   0.000      0.998 0.00 1.00
#> 24     2   0.000      0.998 0.00 1.00
#> 25     1   0.000      0.982 1.00 0.00
#> 26     1   0.000      0.982 1.00 0.00
#> 27     2   0.000      0.998 0.00 1.00
#> 28     2   0.000      0.998 0.00 1.00
#> 29     2   0.327      0.935 0.06 0.94
#> 30     2   0.000      0.998 0.00 1.00
#> 31     1   0.000      0.982 1.00 0.00
#> 32     1   0.000      0.982 1.00 0.00
#> 33     2   0.000      0.998 0.00 1.00
#> 34     2   0.000      0.998 0.00 1.00
#> 35     2   0.000      0.998 0.00 1.00
#> 36     2   0.000      0.998 0.00 1.00
#> 37     2   0.000      0.998 0.00 1.00
#> 38     2   0.000      0.998 0.00 1.00
#> 39     2   0.000      0.998 0.00 1.00
#> 40     2   0.000      0.998 0.00 1.00
#> 41     1   0.000      0.982 1.00 0.00
#> 42     2   0.000      0.998 0.00 1.00
#> 43     1   0.000      0.982 1.00 0.00
#> 44     2   0.000      0.998 0.00 1.00
#> 45     2   0.000      0.998 0.00 1.00
#> 46     1   0.000      0.982 1.00 0.00
#> 47     2   0.000      0.998 0.00 1.00
#> 48     2   0.000      0.998 0.00 1.00
#> 49     1   0.000      0.982 1.00 0.00
#> 50     2   0.000      0.998 0.00 1.00
#> 51     2   0.000      0.998 0.00 1.00
#> 52     1   0.000      0.982 1.00 0.00
#> 53     1   0.000      0.982 1.00 0.00
#> 54     2   0.000      0.998 0.00 1.00
#> 55     1   0.000      0.982 1.00 0.00
#> 56     2   0.000      0.998 0.00 1.00
#> 57     1   0.000      0.982 1.00 0.00
#> 58     1   0.242      0.950 0.96 0.04
#> 59     2   0.000      0.998 0.00 1.00
#> 60     2   0.000      0.998 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>    class entropy silhouette   p1   p2   p3
#> 1      1  0.0000      0.952 1.00 0.00 0.00
#> 2      1  0.0000      0.952 1.00 0.00 0.00
#> 3      3  0.0892      0.918 0.02 0.00 0.98
#> 4      1  0.0000      0.952 1.00 0.00 0.00
#> 5      1  0.0000      0.952 1.00 0.00 0.00
#> 6      3  0.2959      0.861 0.10 0.00 0.90
#> 7      1  0.0000      0.952 1.00 0.00 0.00
#> 8      3  0.0000      0.928 0.00 0.00 1.00
#> 9      1  0.0000      0.952 1.00 0.00 0.00
#> 10     3  0.4555      0.750 0.20 0.00 0.80
#> 11     1  0.0000      0.952 1.00 0.00 0.00
#> 12     1  0.0000      0.952 1.00 0.00 0.00
#> 13     3  0.0000      0.928 0.00 0.00 1.00
#> 14     3  0.0000      0.928 0.00 0.00 1.00
#> 15     3  0.2959      0.859 0.00 0.10 0.90
#> 16     3  0.0000      0.928 0.00 0.00 1.00
#> 17     1  0.8472      0.240 0.54 0.10 0.36
#> 18     3  0.4555      0.747 0.20 0.00 0.80
#> 19     1  0.5706      0.512 0.68 0.00 0.32
#> 20     3  0.0000      0.928 0.00 0.00 1.00
#> 21     1  0.0000      0.952 1.00 0.00 0.00
#> 22     1  0.0000      0.952 1.00 0.00 0.00
#> 23     3  0.0000      0.928 0.00 0.00 1.00
#> 24     3  0.0000      0.928 0.00 0.00 1.00
#> 25     1  0.0000      0.952 1.00 0.00 0.00
#> 26     1  0.0000      0.952 1.00 0.00 0.00
#> 27     3  0.2959      0.858 0.00 0.10 0.90
#> 28     3  0.6126      0.357 0.00 0.40 0.60
#> 29     3  0.0000      0.928 0.00 0.00 1.00
#> 30     2  0.0000      1.000 0.00 1.00 0.00
#> 31     1  0.0000      0.952 1.00 0.00 0.00
#> 32     1  0.0000      0.952 1.00 0.00 0.00
#> 33     3  0.0000      0.928 0.00 0.00 1.00
#> 34     2  0.0000      1.000 0.00 1.00 0.00
#> 35     2  0.0000      1.000 0.00 1.00 0.00
#> 36     2  0.0000      1.000 0.00 1.00 0.00
#> 37     2  0.0000      1.000 0.00 1.00 0.00
#> 38     2  0.0000      1.000 0.00 1.00 0.00
#> 39     2  0.0000      1.000 0.00 1.00 0.00
#> 40     2  0.0000      1.000 0.00 1.00 0.00
#> 41     1  0.0000      0.952 1.00 0.00 0.00
#> 42     2  0.0000      1.000 0.00 1.00 0.00
#> 43     1  0.0000      0.952 1.00 0.00 0.00
#> 44     2  0.0000      1.000 0.00 1.00 0.00
#> 45     2  0.0000      1.000 0.00 1.00 0.00
#> 46     1  0.0000      0.952 1.00 0.00 0.00
#> 47     2  0.0000      1.000 0.00 1.00 0.00
#> 48     2  0.0000      1.000 0.00 1.00 0.00
#> 49     1  0.0000      0.952 1.00 0.00 0.00
#> 50     2  0.0000      1.000 0.00 1.00 0.00
#> 51     2  0.0000      1.000 0.00 1.00 0.00
#> 52     1  0.0000      0.952 1.00 0.00 0.00
#> 53     3  0.0000      0.928 0.00 0.00 1.00
#> 54     2  0.0000      1.000 0.00 1.00 0.00
#> 55     1  0.0000      0.952 1.00 0.00 0.00
#> 56     2  0.0000      1.000 0.00 1.00 0.00
#> 57     1  0.0000      0.952 1.00 0.00 0.00
#> 58     1  0.5397      0.605 0.72 0.28 0.00
#> 59     2  0.0000      1.000 0.00 1.00 0.00
#> 60     2  0.0000      1.000 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>    class entropy silhouette   p1   p2   p3   p4
#> 1      1  0.0000      0.899 1.00 0.00 0.00 0.00
#> 2      1  0.1637      0.888 0.94 0.00 0.00 0.06
#> 3      4  0.4088      0.792 0.04 0.00 0.14 0.82
#> 4      1  0.1637      0.888 0.94 0.00 0.00 0.06
#> 5      1  0.3172      0.810 0.84 0.00 0.00 0.16
#> 6      4  0.4939      0.756 0.04 0.00 0.22 0.74
#> 7      1  0.1637      0.888 0.94 0.00 0.00 0.06
#> 8      3  0.3610      0.674 0.00 0.00 0.80 0.20
#> 9      1  0.1637      0.888 0.94 0.00 0.00 0.06
#> 10     4  0.4581      0.782 0.08 0.00 0.12 0.80
#> 11     1  0.4277      0.639 0.72 0.00 0.00 0.28
#> 12     1  0.4994      0.128 0.52 0.00 0.00 0.48
#> 13     4  0.3801      0.756 0.00 0.00 0.22 0.78
#> 14     4  0.4406      0.665 0.00 0.00 0.30 0.70
#> 15     3  0.4079      0.730 0.00 0.18 0.80 0.02
#> 16     3  0.0707      0.874 0.00 0.02 0.98 0.00
#> 17     4  0.8188      0.504 0.22 0.08 0.14 0.56
#> 18     4  0.3611      0.785 0.06 0.00 0.08 0.86
#> 19     4  0.7016      0.501 0.32 0.00 0.14 0.54
#> 20     3  0.0707      0.874 0.00 0.02 0.98 0.00
#> 21     1  0.0000      0.899 1.00 0.00 0.00 0.00
#> 22     1  0.0000      0.899 1.00 0.00 0.00 0.00
#> 23     3  0.1637      0.839 0.00 0.00 0.94 0.06
#> 24     3  0.0707      0.874 0.00 0.02 0.98 0.00
#> 25     1  0.0707      0.897 0.98 0.00 0.00 0.02
#> 26     1  0.1211      0.893 0.96 0.00 0.00 0.04
#> 27     3  0.2830      0.850 0.00 0.06 0.90 0.04
#> 28     3  0.3172      0.764 0.00 0.16 0.84 0.00
#> 29     3  0.2647      0.786 0.00 0.00 0.88 0.12
#> 30     2  0.1913      0.928 0.00 0.94 0.04 0.02
#> 31     1  0.1211      0.875 0.96 0.00 0.00 0.04
#> 32     1  0.3172      0.810 0.84 0.00 0.00 0.16
#> 33     3  0.1211      0.869 0.00 0.04 0.96 0.00
#> 34     2  0.3400      0.809 0.00 0.82 0.18 0.00
#> 35     2  0.0707      0.933 0.00 0.98 0.00 0.02
#> 36     2  0.1411      0.925 0.00 0.96 0.02 0.02
#> 37     2  0.0707      0.933 0.00 0.98 0.00 0.02
#> 38     2  0.0707      0.933 0.00 0.98 0.00 0.02
#> 39     2  0.0707      0.933 0.00 0.98 0.00 0.02
#> 40     2  0.0707      0.933 0.00 0.98 0.00 0.02
#> 41     1  0.0000      0.899 1.00 0.00 0.00 0.00
#> 42     2  0.1411      0.933 0.00 0.96 0.02 0.02
#> 43     1  0.0000      0.899 1.00 0.00 0.00 0.00
#> 44     2  0.2345      0.893 0.00 0.90 0.10 0.00
#> 45     2  0.3037      0.883 0.00 0.88 0.10 0.02
#> 46     1  0.0000      0.899 1.00 0.00 0.00 0.00
#> 47     2  0.0707      0.932 0.00 0.98 0.02 0.00
#> 48     2  0.3335      0.866 0.00 0.86 0.12 0.02
#> 49     1  0.0000      0.899 1.00 0.00 0.00 0.00
#> 50     2  0.0000      0.933 0.00 1.00 0.00 0.00
#> 51     2  0.2345      0.893 0.00 0.90 0.10 0.00
#> 52     1  0.0000      0.899 1.00 0.00 0.00 0.00
#> 53     4  0.3172      0.771 0.00 0.00 0.16 0.84
#> 54     2  0.1211      0.931 0.00 0.96 0.04 0.00
#> 55     1  0.2011      0.876 0.92 0.00 0.00 0.08
#> 56     2  0.1211      0.931 0.00 0.96 0.04 0.00
#> 57     1  0.0000      0.899 1.00 0.00 0.00 0.00
#> 58     1  0.7355      0.345 0.58 0.26 0.02 0.14
#> 59     2  0.3606      0.827 0.00 0.84 0.02 0.14
#> 60     2  0.3335      0.846 0.00 0.86 0.02 0.12

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-03122-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-03122-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-03122-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-03122-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-03122-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-03122-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-03122-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-03122-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-03122-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-03122-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-03122-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-03122-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-03122-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-03122-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-03122-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-03122-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-03122-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans       60                 0.633 2
#> ATC:skmeans       58                 0.532 3
#> ATC:skmeans       58                 0.569 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node032

Parent node: Node03. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["032"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 8202 rows and 185 columns.
#>   Top rows (820) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-032-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-032-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2     1           0.987       0.994          0.503 0.498   0.498
#> 3 3     1           0.978       0.992          0.274 0.804   0.628
#> 4 4     1           0.976       0.990          0.108 0.911   0.760

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>     class entropy silhouette   p1   p2
#> 1       2   0.000      0.992 0.00 1.00
#> 2       2   0.000      0.992 0.00 1.00
#> 3       2   0.000      0.992 0.00 1.00
#> 4       2   0.000      0.992 0.00 1.00
#> 5       2   0.000      0.992 0.00 1.00
#> 6       2   0.000      0.992 0.00 1.00
#> 7       2   0.000      0.992 0.00 1.00
#> 8       2   0.000      0.992 0.00 1.00
#> 9       2   0.000      0.992 0.00 1.00
#> 10      2   0.000      0.992 0.00 1.00
#> 11      2   0.000      0.992 0.00 1.00
#> 12      2   0.000      0.992 0.00 1.00
#> 13      2   0.000      0.992 0.00 1.00
#> 14      2   0.000      0.992 0.00 1.00
#> 15      2   0.000      0.992 0.00 1.00
#> 16      2   0.000      0.992 0.00 1.00
#> 17      2   0.000      0.992 0.00 1.00
#> 18      2   0.000      0.992 0.00 1.00
#> 19      2   0.000      0.992 0.00 1.00
#> 20      2   0.000      0.992 0.00 1.00
#> 21      2   0.000      0.992 0.00 1.00
#> 22      1   0.000      0.997 1.00 0.00
#> 23      2   0.000      0.992 0.00 1.00
#> 24      1   0.000      0.997 1.00 0.00
#> 25      2   0.000      0.992 0.00 1.00
#> 26      2   0.242      0.952 0.04 0.96
#> 27      2   0.000      0.992 0.00 1.00
#> 28      2   0.000      0.992 0.00 1.00
#> 29      2   0.000      0.992 0.00 1.00
#> 30      2   0.000      0.992 0.00 1.00
#> 31      2   0.000      0.992 0.00 1.00
#> 32      2   0.000      0.992 0.00 1.00
#> 33      2   0.000      0.992 0.00 1.00
#> 34      2   0.000      0.992 0.00 1.00
#> 35      2   0.000      0.992 0.00 1.00
#> 36      2   0.000      0.992 0.00 1.00
#> 37      2   0.000      0.992 0.00 1.00
#> 38      2   0.000      0.992 0.00 1.00
#> 39      2   0.000      0.992 0.00 1.00
#> 40      2   0.000      0.992 0.00 1.00
#> 41      2   0.990      0.212 0.44 0.56
#> 42      1   0.000      0.997 1.00 0.00
#> 43      2   0.000      0.992 0.00 1.00
#> 44      1   0.327      0.935 0.94 0.06
#> 45      2   0.000      0.992 0.00 1.00
#> 46      2   0.000      0.992 0.00 1.00
#> 47      2   0.000      0.992 0.00 1.00
#> 48      2   0.000      0.992 0.00 1.00
#> 49      2   0.000      0.992 0.00 1.00
#> 50      2   0.000      0.992 0.00 1.00
#> 51      2   0.000      0.992 0.00 1.00
#> 52      1   0.000      0.997 1.00 0.00
#> 53      2   0.141      0.973 0.02 0.98
#> 54      1   0.000      0.997 1.00 0.00
#> 55      1   0.000      0.997 1.00 0.00
#> 56      1   0.722      0.749 0.80 0.20
#> 57      2   0.000      0.992 0.00 1.00
#> 58      1   0.000      0.997 1.00 0.00
#> 59      1   0.327      0.935 0.94 0.06
#> 60      2   0.000      0.992 0.00 1.00
#> 61      1   0.000      0.997 1.00 0.00
#> 62      2   0.000      0.992 0.00 1.00
#> 63      2   0.000      0.992 0.00 1.00
#> 64      2   0.000      0.992 0.00 1.00
#> 65      2   0.000      0.992 0.00 1.00
#> 66      2   0.722      0.749 0.20 0.80
#> 67      1   0.000      0.997 1.00 0.00
#> 68      1   0.000      0.997 1.00 0.00
#> 69      1   0.000      0.997 1.00 0.00
#> 70      1   0.000      0.997 1.00 0.00
#> 71      1   0.000      0.997 1.00 0.00
#> 72      2   0.000      0.992 0.00 1.00
#> 73      1   0.000      0.997 1.00 0.00
#> 74      2   0.000      0.992 0.00 1.00
#> 75      1   0.000      0.997 1.00 0.00
#> 76      1   0.000      0.997 1.00 0.00
#> 77      2   0.000      0.992 0.00 1.00
#> 78      2   0.000      0.992 0.00 1.00
#> 79      2   0.000      0.992 0.00 1.00
#> 80      1   0.000      0.997 1.00 0.00
#> 81      1   0.000      0.997 1.00 0.00
#> 82      2   0.000      0.992 0.00 1.00
#> 83      2   0.000      0.992 0.00 1.00
#> 84      2   0.000      0.992 0.00 1.00
#> 85      2   0.000      0.992 0.00 1.00
#> 86      1   0.000      0.997 1.00 0.00
#> 87      2   0.000      0.992 0.00 1.00
#> 88      2   0.000      0.992 0.00 1.00
#> 89      2   0.000      0.992 0.00 1.00
#> 90      2   0.000      0.992 0.00 1.00
#> 91      2   0.000      0.992 0.00 1.00
#> 92      2   0.000      0.992 0.00 1.00
#> 93      2   0.000      0.992 0.00 1.00
#> 94      2   0.000      0.992 0.00 1.00
#> 95      2   0.000      0.992 0.00 1.00
#> 96      2   0.000      0.992 0.00 1.00
#> 97      2   0.000      0.992 0.00 1.00
#> 98      2   0.000      0.992 0.00 1.00
#> 99      2   0.000      0.992 0.00 1.00
#> 100     2   0.000      0.992 0.00 1.00
#> 101     2   0.000      0.992 0.00 1.00
#> 102     2   0.000      0.992 0.00 1.00
#> 103     2   0.000      0.992 0.00 1.00
#> 104     2   0.000      0.992 0.00 1.00
#> 105     2   0.000      0.992 0.00 1.00
#> 106     2   0.000      0.992 0.00 1.00
#> 107     2   0.000      0.992 0.00 1.00
#> 108     2   0.000      0.992 0.00 1.00
#> 109     2   0.000      0.992 0.00 1.00
#> 110     2   0.000      0.992 0.00 1.00
#> 111     2   0.000      0.992 0.00 1.00
#> 112     1   0.000      0.997 1.00 0.00
#> 113     1   0.000      0.997 1.00 0.00
#> 114     1   0.000      0.997 1.00 0.00
#> 115     1   0.000      0.997 1.00 0.00
#> 116     1   0.000      0.997 1.00 0.00
#> 117     1   0.000      0.997 1.00 0.00
#> 118     1   0.000      0.997 1.00 0.00
#> 119     1   0.000      0.997 1.00 0.00
#> 120     1   0.000      0.997 1.00 0.00
#> 121     1   0.000      0.997 1.00 0.00
#> 122     1   0.000      0.997 1.00 0.00
#> 123     1   0.000      0.997 1.00 0.00
#> 124     1   0.000      0.997 1.00 0.00
#> 125     1   0.000      0.997 1.00 0.00
#> 126     1   0.000      0.997 1.00 0.00
#> 127     1   0.000      0.997 1.00 0.00
#> 128     1   0.000      0.997 1.00 0.00
#> 129     1   0.000      0.997 1.00 0.00
#> 130     1   0.000      0.997 1.00 0.00
#> 131     1   0.000      0.997 1.00 0.00
#> 132     1   0.000      0.997 1.00 0.00
#> 133     1   0.000      0.997 1.00 0.00
#> 134     1   0.000      0.997 1.00 0.00
#> 135     1   0.000      0.997 1.00 0.00
#> 136     1   0.000      0.997 1.00 0.00
#> 137     1   0.000      0.997 1.00 0.00
#> 138     1   0.000      0.997 1.00 0.00
#> 139     1   0.000      0.997 1.00 0.00
#> 140     1   0.000      0.997 1.00 0.00
#> 141     1   0.000      0.997 1.00 0.00
#> 142     1   0.000      0.997 1.00 0.00
#> 143     1   0.000      0.997 1.00 0.00
#> 144     1   0.000      0.997 1.00 0.00
#> 145     1   0.000      0.997 1.00 0.00
#> 146     1   0.000      0.997 1.00 0.00
#> 147     1   0.000      0.997 1.00 0.00
#> 148     1   0.000      0.997 1.00 0.00
#> 149     1   0.000      0.997 1.00 0.00
#> 150     1   0.000      0.997 1.00 0.00
#> 151     1   0.000      0.997 1.00 0.00
#> 152     1   0.000      0.997 1.00 0.00
#> 153     1   0.000      0.997 1.00 0.00
#> 154     1   0.000      0.997 1.00 0.00
#> 155     1   0.000      0.997 1.00 0.00
#> 156     1   0.000      0.997 1.00 0.00
#> 157     1   0.000      0.997 1.00 0.00
#> 158     1   0.000      0.997 1.00 0.00
#> 159     1   0.000      0.997 1.00 0.00
#> 160     2   0.000      0.992 0.00 1.00
#> 161     1   0.000      0.997 1.00 0.00
#> 162     1   0.000      0.997 1.00 0.00
#> 163     1   0.000      0.997 1.00 0.00
#> 164     1   0.000      0.997 1.00 0.00
#> 165     1   0.000      0.997 1.00 0.00
#> 166     1   0.000      0.997 1.00 0.00
#> 167     1   0.000      0.997 1.00 0.00
#> 168     1   0.000      0.997 1.00 0.00
#> 169     1   0.000      0.997 1.00 0.00
#> 170     1   0.000      0.997 1.00 0.00
#> 171     1   0.000      0.997 1.00 0.00
#> 172     1   0.000      0.997 1.00 0.00
#> 173     1   0.000      0.997 1.00 0.00
#> 174     1   0.000      0.997 1.00 0.00
#> 175     1   0.000      0.997 1.00 0.00
#> 176     1   0.000      0.997 1.00 0.00
#> 177     1   0.000      0.997 1.00 0.00
#> 178     1   0.000      0.997 1.00 0.00
#> 179     1   0.000      0.997 1.00 0.00
#> 180     1   0.000      0.997 1.00 0.00
#> 181     1   0.000      0.997 1.00 0.00
#> 182     1   0.000      0.997 1.00 0.00
#> 183     1   0.000      0.997 1.00 0.00
#> 184     1   0.000      0.997 1.00 0.00
#> 185     1   0.000      0.997 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>     class entropy silhouette   p1   p2   p3
#> 1       2  0.0000      0.992 0.00 1.00 0.00
#> 2       2  0.0000      0.992 0.00 1.00 0.00
#> 3       2  0.0000      0.992 0.00 1.00 0.00
#> 4       2  0.0000      0.992 0.00 1.00 0.00
#> 5       2  0.0000      0.992 0.00 1.00 0.00
#> 6       2  0.0000      0.992 0.00 1.00 0.00
#> 7       2  0.0000      0.992 0.00 1.00 0.00
#> 8       2  0.0000      0.992 0.00 1.00 0.00
#> 9       2  0.0000      0.992 0.00 1.00 0.00
#> 10      2  0.0000      0.992 0.00 1.00 0.00
#> 11      2  0.0000      0.992 0.00 1.00 0.00
#> 12      2  0.0000      0.992 0.00 1.00 0.00
#> 13      2  0.0000      0.992 0.00 1.00 0.00
#> 14      2  0.0000      0.992 0.00 1.00 0.00
#> 15      2  0.0000      0.992 0.00 1.00 0.00
#> 16      2  0.0000      0.992 0.00 1.00 0.00
#> 17      2  0.0000      0.992 0.00 1.00 0.00
#> 18      2  0.0000      0.992 0.00 1.00 0.00
#> 19      2  0.0000      0.992 0.00 1.00 0.00
#> 20      2  0.0000      0.992 0.00 1.00 0.00
#> 21      2  0.0000      0.992 0.00 1.00 0.00
#> 22      1  0.0892      0.967 0.98 0.02 0.00
#> 23      2  0.0000      0.992 0.00 1.00 0.00
#> 24      1  0.0000      0.988 1.00 0.00 0.00
#> 25      2  0.0000      0.992 0.00 1.00 0.00
#> 26      2  0.0000      0.992 0.00 1.00 0.00
#> 27      2  0.0000      0.992 0.00 1.00 0.00
#> 28      2  0.0000      0.992 0.00 1.00 0.00
#> 29      2  0.0000      0.992 0.00 1.00 0.00
#> 30      2  0.0000      0.992 0.00 1.00 0.00
#> 31      2  0.0000      0.992 0.00 1.00 0.00
#> 32      2  0.0000      0.992 0.00 1.00 0.00
#> 33      2  0.0000      0.992 0.00 1.00 0.00
#> 34      2  0.0000      0.992 0.00 1.00 0.00
#> 35      2  0.0000      0.992 0.00 1.00 0.00
#> 36      2  0.0000      0.992 0.00 1.00 0.00
#> 37      2  0.0000      0.992 0.00 1.00 0.00
#> 38      2  0.0000      0.992 0.00 1.00 0.00
#> 39      2  0.0000      0.992 0.00 1.00 0.00
#> 40      2  0.0000      0.992 0.00 1.00 0.00
#> 41      2  0.0000      0.992 0.00 1.00 0.00
#> 42      2  0.0000      0.992 0.00 1.00 0.00
#> 43      2  0.0000      0.992 0.00 1.00 0.00
#> 44      2  0.0000      0.992 0.00 1.00 0.00
#> 45      2  0.0000      0.992 0.00 1.00 0.00
#> 46      2  0.0000      0.992 0.00 1.00 0.00
#> 47      2  0.0000      0.992 0.00 1.00 0.00
#> 48      2  0.0000      0.992 0.00 1.00 0.00
#> 49      2  0.0892      0.972 0.00 0.98 0.02
#> 50      2  0.0000      0.992 0.00 1.00 0.00
#> 51      2  0.0000      0.992 0.00 1.00 0.00
#> 52      1  0.0000      0.988 1.00 0.00 0.00
#> 53      2  0.0000      0.992 0.00 1.00 0.00
#> 54      2  0.0000      0.992 0.00 1.00 0.00
#> 55      1  0.0000      0.988 1.00 0.00 0.00
#> 56      2  0.0000      0.992 0.00 1.00 0.00
#> 57      2  0.0000      0.992 0.00 1.00 0.00
#> 58      1  0.0000      0.988 1.00 0.00 0.00
#> 59      2  0.0000      0.992 0.00 1.00 0.00
#> 60      2  0.0000      0.992 0.00 1.00 0.00
#> 61      2  0.0000      0.992 0.00 1.00 0.00
#> 62      3  0.0000      0.996 0.00 0.00 1.00
#> 63      2  0.0000      0.992 0.00 1.00 0.00
#> 64      2  0.0000      0.992 0.00 1.00 0.00
#> 65      2  0.0000      0.992 0.00 1.00 0.00
#> 66      2  0.9372      0.280 0.30 0.50 0.20
#> 67      1  0.0000      0.988 1.00 0.00 0.00
#> 68      1  0.0000      0.988 1.00 0.00 0.00
#> 69      1  0.0000      0.988 1.00 0.00 0.00
#> 70      1  0.0000      0.988 1.00 0.00 0.00
#> 71      1  0.0000      0.988 1.00 0.00 0.00
#> 72      3  0.0000      0.996 0.00 0.00 1.00
#> 73      1  0.0000      0.988 1.00 0.00 0.00
#> 74      2  0.0000      0.992 0.00 1.00 0.00
#> 75      3  0.0000      0.996 0.00 0.00 1.00
#> 76      3  0.0892      0.976 0.02 0.00 0.98
#> 77      3  0.0000      0.996 0.00 0.00 1.00
#> 78      3  0.0000      0.996 0.00 0.00 1.00
#> 79      2  0.0000      0.992 0.00 1.00 0.00
#> 80      3  0.0000      0.996 0.00 0.00 1.00
#> 81      3  0.0000      0.996 0.00 0.00 1.00
#> 82      3  0.0000      0.996 0.00 0.00 1.00
#> 83      3  0.0000      0.996 0.00 0.00 1.00
#> 84      3  0.0000      0.996 0.00 0.00 1.00
#> 85      2  0.0000      0.992 0.00 1.00 0.00
#> 86      1  0.0892      0.968 0.98 0.00 0.02
#> 87      3  0.0000      0.996 0.00 0.00 1.00
#> 88      3  0.0000      0.996 0.00 0.00 1.00
#> 89      3  0.0000      0.996 0.00 0.00 1.00
#> 90      3  0.0000      0.996 0.00 0.00 1.00
#> 91      3  0.0000      0.996 0.00 0.00 1.00
#> 92      3  0.0000      0.996 0.00 0.00 1.00
#> 93      3  0.0000      0.996 0.00 0.00 1.00
#> 94      3  0.0000      0.996 0.00 0.00 1.00
#> 95      3  0.0000      0.996 0.00 0.00 1.00
#> 96      3  0.0000      0.996 0.00 0.00 1.00
#> 97      3  0.0000      0.996 0.00 0.00 1.00
#> 98      3  0.0000      0.996 0.00 0.00 1.00
#> 99      3  0.0000      0.996 0.00 0.00 1.00
#> 100     3  0.0000      0.996 0.00 0.00 1.00
#> 101     3  0.0000      0.996 0.00 0.00 1.00
#> 102     3  0.0000      0.996 0.00 0.00 1.00
#> 103     3  0.0000      0.996 0.00 0.00 1.00
#> 104     3  0.0000      0.996 0.00 0.00 1.00
#> 105     3  0.0000      0.996 0.00 0.00 1.00
#> 106     3  0.0000      0.996 0.00 0.00 1.00
#> 107     3  0.0000      0.996 0.00 0.00 1.00
#> 108     3  0.0000      0.996 0.00 0.00 1.00
#> 109     3  0.0000      0.996 0.00 0.00 1.00
#> 110     3  0.0000      0.996 0.00 0.00 1.00
#> 111     3  0.0000      0.996 0.00 0.00 1.00
#> 112     1  0.0000      0.988 1.00 0.00 0.00
#> 113     1  0.0000      0.988 1.00 0.00 0.00
#> 114     1  0.0000      0.988 1.00 0.00 0.00
#> 115     1  0.0000      0.988 1.00 0.00 0.00
#> 116     1  0.0000      0.988 1.00 0.00 0.00
#> 117     1  0.0000      0.988 1.00 0.00 0.00
#> 118     1  0.0000      0.988 1.00 0.00 0.00
#> 119     1  0.0000      0.988 1.00 0.00 0.00
#> 120     1  0.0000      0.988 1.00 0.00 0.00
#> 121     1  0.0000      0.988 1.00 0.00 0.00
#> 122     1  0.0000      0.988 1.00 0.00 0.00
#> 123     1  0.0000      0.988 1.00 0.00 0.00
#> 124     1  0.0000      0.988 1.00 0.00 0.00
#> 125     1  0.0000      0.988 1.00 0.00 0.00
#> 126     1  0.0000      0.988 1.00 0.00 0.00
#> 127     1  0.0000      0.988 1.00 0.00 0.00
#> 128     1  0.0000      0.988 1.00 0.00 0.00
#> 129     1  0.0000      0.988 1.00 0.00 0.00
#> 130     1  0.0000      0.988 1.00 0.00 0.00
#> 131     1  0.0000      0.988 1.00 0.00 0.00
#> 132     1  0.0000      0.988 1.00 0.00 0.00
#> 133     1  0.0000      0.988 1.00 0.00 0.00
#> 134     1  0.0000      0.988 1.00 0.00 0.00
#> 135     1  0.0000      0.988 1.00 0.00 0.00
#> 136     1  0.0000      0.988 1.00 0.00 0.00
#> 137     1  0.0000      0.988 1.00 0.00 0.00
#> 138     1  0.0000      0.988 1.00 0.00 0.00
#> 139     1  0.0000      0.988 1.00 0.00 0.00
#> 140     1  0.0000      0.988 1.00 0.00 0.00
#> 141     1  0.0000      0.988 1.00 0.00 0.00
#> 142     1  0.0000      0.988 1.00 0.00 0.00
#> 143     1  0.0000      0.988 1.00 0.00 0.00
#> 144     1  0.0000      0.988 1.00 0.00 0.00
#> 145     1  0.0000      0.988 1.00 0.00 0.00
#> 146     1  0.0000      0.988 1.00 0.00 0.00
#> 147     1  0.0000      0.988 1.00 0.00 0.00
#> 148     1  0.0000      0.988 1.00 0.00 0.00
#> 149     1  0.0000      0.988 1.00 0.00 0.00
#> 150     1  0.6126      0.334 0.60 0.40 0.00
#> 151     1  0.0000      0.988 1.00 0.00 0.00
#> 152     1  0.0000      0.988 1.00 0.00 0.00
#> 153     1  0.0000      0.988 1.00 0.00 0.00
#> 154     1  0.0000      0.988 1.00 0.00 0.00
#> 155     1  0.0000      0.988 1.00 0.00 0.00
#> 156     1  0.0000      0.988 1.00 0.00 0.00
#> 157     1  0.0000      0.988 1.00 0.00 0.00
#> 158     1  0.0000      0.988 1.00 0.00 0.00
#> 159     1  0.0000      0.988 1.00 0.00 0.00
#> 160     3  0.0000      0.996 0.00 0.00 1.00
#> 161     1  0.0000      0.988 1.00 0.00 0.00
#> 162     1  0.0000      0.988 1.00 0.00 0.00
#> 163     1  0.0000      0.988 1.00 0.00 0.00
#> 164     1  0.0000      0.988 1.00 0.00 0.00
#> 165     1  0.0000      0.988 1.00 0.00 0.00
#> 166     1  0.0000      0.988 1.00 0.00 0.00
#> 167     1  0.0000      0.988 1.00 0.00 0.00
#> 168     1  0.0000      0.988 1.00 0.00 0.00
#> 169     1  0.0000      0.988 1.00 0.00 0.00
#> 170     1  0.0000      0.988 1.00 0.00 0.00
#> 171     1  0.0000      0.988 1.00 0.00 0.00
#> 172     1  0.6280      0.150 0.54 0.46 0.00
#> 173     1  0.0000      0.988 1.00 0.00 0.00
#> 174     1  0.0000      0.988 1.00 0.00 0.00
#> 175     1  0.0000      0.988 1.00 0.00 0.00
#> 176     1  0.0000      0.988 1.00 0.00 0.00
#> 177     1  0.0000      0.988 1.00 0.00 0.00
#> 178     1  0.0000      0.988 1.00 0.00 0.00
#> 179     1  0.0000      0.988 1.00 0.00 0.00
#> 180     1  0.0000      0.988 1.00 0.00 0.00
#> 181     1  0.0000      0.988 1.00 0.00 0.00
#> 182     1  0.0000      0.988 1.00 0.00 0.00
#> 183     1  0.0000      0.988 1.00 0.00 0.00
#> 184     3  0.2959      0.887 0.10 0.00 0.90
#> 185     1  0.0000      0.988 1.00 0.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>     class entropy silhouette   p1   p2   p3   p4
#> 1       2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 2       2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 3       2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 4       2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 5       2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 6       2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 7       2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 8       2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 9       2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 10      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 11      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 12      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 13      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 14      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 15      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 16      2  0.0707      0.976 0.00 0.98 0.00 0.02
#> 17      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 18      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 19      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 20      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 21      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 22      1  0.2335      0.911 0.92 0.06 0.00 0.02
#> 23      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 24      4  0.2011      0.853 0.08 0.00 0.00 0.92
#> 25      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 26      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 27      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 28      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 29      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 30      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 31      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 32      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 33      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 34      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 35      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 36      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 37      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 38      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 39      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 40      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 41      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 42      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 43      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 44      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 45      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 46      4  0.4522      0.558 0.00 0.32 0.00 0.68
#> 47      4  0.4522      0.558 0.00 0.32 0.00 0.68
#> 48      4  0.4522      0.558 0.00 0.32 0.00 0.68
#> 49      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 50      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 51      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 52      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 53      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 54      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 55      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 56      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 57      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 58      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 59      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 60      4  0.1637      0.889 0.00 0.06 0.00 0.94
#> 61      4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 62      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 63      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 64      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 65      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 66      2  0.2011      0.882 0.08 0.92 0.00 0.00
#> 67      1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 68      1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 69      1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 70      1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 71      1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 72      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 73      1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 74      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 75      3  0.0707      0.969 0.02 0.00 0.98 0.00
#> 76      3  0.1637      0.915 0.06 0.00 0.94 0.00
#> 77      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 78      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 79      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 80      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 81      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 82      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 83      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 84      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 85      2  0.0000      0.997 0.00 1.00 0.00 0.00
#> 86      1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 87      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 88      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 89      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 90      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 91      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 92      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 93      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 94      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 95      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 96      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 97      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 98      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 99      3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 100     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 101     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 102     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 103     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 104     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 105     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 106     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 107     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 108     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 109     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 110     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 111     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 112     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 113     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 114     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 115     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 116     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 117     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 118     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 119     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 120     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 121     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 122     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 123     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 124     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 125     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 126     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 127     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 128     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 129     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 130     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 131     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 132     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 133     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 134     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 135     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 136     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 137     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 138     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 139     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 140     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 141     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 142     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 143     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 144     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 145     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 146     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 147     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 148     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 149     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 150     4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 151     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 152     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 153     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 154     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 155     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 156     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 157     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 158     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 159     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 160     3  0.0000      0.993 0.00 0.00 1.00 0.00
#> 161     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 162     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 163     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 164     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 165     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 166     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 167     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 168     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 169     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 170     4  0.4790      0.379 0.38 0.00 0.00 0.62
#> 171     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 172     4  0.0000      0.933 0.00 0.00 0.00 1.00
#> 173     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 174     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 175     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 176     1  0.0707      0.978 0.98 0.00 0.00 0.02
#> 177     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 178     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 179     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 180     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 181     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 182     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 183     1  0.0000      0.999 1.00 0.00 0.00 0.00
#> 184     3  0.2345      0.857 0.10 0.00 0.90 0.00
#> 185     1  0.0000      0.999 1.00 0.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-032-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-032-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-032-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-032-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-032-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-032-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-032-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-032-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-032-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-032-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-032-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-032-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-032-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-032-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-032-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-032-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-032-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans      184              8.28e-24 2
#> ATC:skmeans      182              5.76e-54 3
#> ATC:skmeans      184              1.87e-53 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node033

Parent node: Node03. Child nodes: Node0111-leaf , Node0112-leaf , Node0113 , Node0121 , Node0122 , Node0123 , Node0131-leaf , Node0132-leaf , Node0141-leaf , Node0142-leaf , Node0143-leaf , Node0211 , Node0212 , Node0221-leaf , Node0222 , Node0223-leaf , Node0231-leaf , Node0232-leaf , Node0233-leaf , Node0234-leaf , Node0311 , Node0312 , Node0313-leaf , Node0321-leaf , Node0322-leaf , Node0323-leaf , Node0324-leaf , Node0331-leaf , Node0332-leaf , Node0333-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["033"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 7257 rows and 61 columns.
#>   Top rows (671) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-033-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-033-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2     1           0.990       0.995         0.5057 0.495   0.495
#> 3 3     1           0.989       0.995         0.3125 0.780   0.581
#> 4 4     1           0.981       0.991         0.0875 0.915   0.757

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>    class entropy silhouette   p1   p2
#> 1      1   0.141      0.977 0.98 0.02
#> 2      1   0.000      0.993 1.00 0.00
#> 3      2   0.000      0.997 0.00 1.00
#> 4      2   0.000      0.997 0.00 1.00
#> 5      2   0.000      0.997 0.00 1.00
#> 6      1   0.000      0.993 1.00 0.00
#> 7      2   0.141      0.980 0.02 0.98
#> 8      2   0.000      0.997 0.00 1.00
#> 9      2   0.000      0.997 0.00 1.00
#> 10     1   0.000      0.993 1.00 0.00
#> 11     2   0.000      0.997 0.00 1.00
#> 12     1   0.000      0.993 1.00 0.00
#> 13     1   0.634      0.816 0.84 0.16
#> 14     2   0.000      0.997 0.00 1.00
#> 15     1   0.000      0.993 1.00 0.00
#> 16     2   0.000      0.997 0.00 1.00
#> 17     1   0.000      0.993 1.00 0.00
#> 18     1   0.000      0.993 1.00 0.00
#> 19     1   0.000      0.993 1.00 0.00
#> 20     1   0.000      0.993 1.00 0.00
#> 21     1   0.000      0.993 1.00 0.00
#> 22     1   0.000      0.993 1.00 0.00
#> 23     2   0.000      0.997 0.00 1.00
#> 24     1   0.000      0.993 1.00 0.00
#> 25     1   0.000      0.993 1.00 0.00
#> 26     1   0.141      0.977 0.98 0.02
#> 27     1   0.000      0.993 1.00 0.00
#> 28     1   0.000      0.993 1.00 0.00
#> 29     2   0.000      0.997 0.00 1.00
#> 30     1   0.141      0.977 0.98 0.02
#> 31     1   0.000      0.993 1.00 0.00
#> 32     1   0.000      0.993 1.00 0.00
#> 33     2   0.000      0.997 0.00 1.00
#> 34     2   0.000      0.997 0.00 1.00
#> 35     2   0.000      0.997 0.00 1.00
#> 36     2   0.000      0.997 0.00 1.00
#> 37     2   0.141      0.980 0.02 0.98
#> 38     2   0.000      0.997 0.00 1.00
#> 39     2   0.000      0.997 0.00 1.00
#> 40     1   0.000      0.993 1.00 0.00
#> 41     2   0.000      0.997 0.00 1.00
#> 42     1   0.000      0.993 1.00 0.00
#> 43     2   0.000      0.997 0.00 1.00
#> 44     1   0.000      0.993 1.00 0.00
#> 45     2   0.000      0.997 0.00 1.00
#> 46     1   0.000      0.993 1.00 0.00
#> 47     2   0.000      0.997 0.00 1.00
#> 48     1   0.000      0.993 1.00 0.00
#> 49     1   0.000      0.993 1.00 0.00
#> 50     2   0.000      0.997 0.00 1.00
#> 51     1   0.000      0.993 1.00 0.00
#> 52     1   0.000      0.993 1.00 0.00
#> 53     1   0.000      0.993 1.00 0.00
#> 54     1   0.000      0.993 1.00 0.00
#> 55     1   0.000      0.993 1.00 0.00
#> 56     2   0.000      0.997 0.00 1.00
#> 57     2   0.000      0.997 0.00 1.00
#> 58     2   0.000      0.997 0.00 1.00
#> 59     2   0.242      0.961 0.04 0.96
#> 60     1   0.000      0.993 1.00 0.00
#> 61     2   0.000      0.997 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>    class entropy silhouette   p1   p2   p3
#> 1      3   0.000      0.988 0.00 0.00 1.00
#> 2      1   0.000      1.000 1.00 0.00 0.00
#> 3      3   0.000      0.988 0.00 0.00 1.00
#> 4      2   0.153      0.961 0.00 0.96 0.04
#> 5      2   0.153      0.961 0.00 0.96 0.04
#> 6      1   0.000      1.000 1.00 0.00 0.00
#> 7      2   0.000      0.992 0.00 1.00 0.00
#> 8      2   0.153      0.961 0.00 0.96 0.04
#> 9      2   0.000      0.992 0.00 1.00 0.00
#> 10     1   0.000      1.000 1.00 0.00 0.00
#> 11     3   0.000      0.988 0.00 0.00 1.00
#> 12     1   0.000      1.000 1.00 0.00 0.00
#> 13     3   0.000      0.988 0.00 0.00 1.00
#> 14     3   0.400      0.808 0.00 0.16 0.84
#> 15     1   0.000      1.000 1.00 0.00 0.00
#> 16     3   0.000      0.988 0.00 0.00 1.00
#> 17     1   0.000      1.000 1.00 0.00 0.00
#> 18     1   0.000      1.000 1.00 0.00 0.00
#> 19     1   0.000      1.000 1.00 0.00 0.00
#> 20     1   0.000      1.000 1.00 0.00 0.00
#> 21     1   0.000      1.000 1.00 0.00 0.00
#> 22     1   0.000      1.000 1.00 0.00 0.00
#> 23     2   0.000      0.992 0.00 1.00 0.00
#> 24     1   0.000      1.000 1.00 0.00 0.00
#> 25     3   0.000      0.988 0.00 0.00 1.00
#> 26     3   0.000      0.988 0.00 0.00 1.00
#> 27     3   0.000      0.988 0.00 0.00 1.00
#> 28     3   0.000      0.988 0.00 0.00 1.00
#> 29     3   0.000      0.988 0.00 0.00 1.00
#> 30     3   0.000      0.988 0.00 0.00 1.00
#> 31     1   0.000      1.000 1.00 0.00 0.00
#> 32     3   0.000      0.988 0.00 0.00 1.00
#> 33     3   0.000      0.988 0.00 0.00 1.00
#> 34     2   0.000      0.992 0.00 1.00 0.00
#> 35     2   0.000      0.992 0.00 1.00 0.00
#> 36     2   0.000      0.992 0.00 1.00 0.00
#> 37     2   0.000      0.992 0.00 1.00 0.00
#> 38     2   0.000      0.992 0.00 1.00 0.00
#> 39     2   0.000      0.992 0.00 1.00 0.00
#> 40     1   0.000      1.000 1.00 0.00 0.00
#> 41     2   0.000      0.992 0.00 1.00 0.00
#> 42     1   0.000      1.000 1.00 0.00 0.00
#> 43     2   0.000      0.992 0.00 1.00 0.00
#> 44     1   0.000      1.000 1.00 0.00 0.00
#> 45     2   0.000      0.992 0.00 1.00 0.00
#> 46     1   0.000      1.000 1.00 0.00 0.00
#> 47     2   0.000      0.992 0.00 1.00 0.00
#> 48     1   0.000      1.000 1.00 0.00 0.00
#> 49     1   0.000      1.000 1.00 0.00 0.00
#> 50     2   0.000      0.992 0.00 1.00 0.00
#> 51     1   0.000      1.000 1.00 0.00 0.00
#> 52     1   0.000      1.000 1.00 0.00 0.00
#> 53     1   0.000      1.000 1.00 0.00 0.00
#> 54     1   0.000      1.000 1.00 0.00 0.00
#> 55     1   0.000      1.000 1.00 0.00 0.00
#> 56     2   0.000      0.992 0.00 1.00 0.00
#> 57     2   0.000      0.992 0.00 1.00 0.00
#> 58     3   0.000      0.988 0.00 0.00 1.00
#> 59     2   0.153      0.951 0.04 0.96 0.00
#> 60     1   0.000      1.000 1.00 0.00 0.00
#> 61     2   0.000      0.992 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>    class entropy silhouette   p1   p2   p3   p4
#> 1      3   0.000      0.985 0.00 0.00 1.00 0.00
#> 2      1   0.000      0.997 1.00 0.00 0.00 0.00
#> 3      2   0.340      0.775 0.00 0.82 0.18 0.00
#> 4      2   0.000      0.977 0.00 1.00 0.00 0.00
#> 5      2   0.000      0.977 0.00 1.00 0.00 0.00
#> 6      1   0.000      0.997 1.00 0.00 0.00 0.00
#> 7      4   0.000      1.000 0.00 0.00 0.00 1.00
#> 8      2   0.000      0.977 0.00 1.00 0.00 0.00
#> 9      2   0.000      0.977 0.00 1.00 0.00 0.00
#> 10     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 11     3   0.317      0.802 0.00 0.16 0.84 0.00
#> 12     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 13     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 14     2   0.000      0.977 0.00 1.00 0.00 0.00
#> 15     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 16     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 17     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 18     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 19     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 20     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 21     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 22     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 23     2   0.000      0.977 0.00 1.00 0.00 0.00
#> 24     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 25     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 26     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 27     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 28     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 29     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 30     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 31     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 32     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 33     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 34     2   0.000      0.977 0.00 1.00 0.00 0.00
#> 35     2   0.000      0.977 0.00 1.00 0.00 0.00
#> 36     4   0.000      1.000 0.00 0.00 0.00 1.00
#> 37     4   0.000      1.000 0.00 0.00 0.00 1.00
#> 38     4   0.000      1.000 0.00 0.00 0.00 1.00
#> 39     2   0.000      0.977 0.00 1.00 0.00 0.00
#> 40     1   0.164      0.936 0.94 0.00 0.00 0.06
#> 41     2   0.265      0.857 0.00 0.88 0.00 0.12
#> 42     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 43     4   0.000      1.000 0.00 0.00 0.00 1.00
#> 44     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 45     2   0.000      0.977 0.00 1.00 0.00 0.00
#> 46     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 47     2   0.000      0.977 0.00 1.00 0.00 0.00
#> 48     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 49     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 50     2   0.000      0.977 0.00 1.00 0.00 0.00
#> 51     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 52     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 53     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 54     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 55     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 56     2   0.000      0.977 0.00 1.00 0.00 0.00
#> 57     4   0.000      1.000 0.00 0.00 0.00 1.00
#> 58     3   0.000      0.985 0.00 0.00 1.00 0.00
#> 59     4   0.000      1.000 0.00 0.00 0.00 1.00
#> 60     1   0.000      0.997 1.00 0.00 0.00 0.00
#> 61     4   0.000      1.000 0.00 0.00 0.00 1.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-033-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-033-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-033-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-033-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-033-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-033-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-033-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-033-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-033-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-033-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-033-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-033-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-033-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-033-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-033-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-033-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-033-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample level1.class(p-value) k
#> ATC:skmeans       61                0.1069 2
#> ATC:skmeans       61                0.1849 3
#> ATC:skmeans       61                0.0659 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 4.1.0 (2021-05-18)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS/LAPACK: /usr/lib64/libopenblas-r0.3.3.so
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
#>  [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#>  [1] grid      parallel  stats4    stats     graphics  grDevices utils     datasets  methods  
#> [10] base     
#> 
#> other attached packages:
#>  [1] genefilter_1.74.0           ComplexHeatmap_2.8.0        markdown_1.1               
#>  [4] knitr_1.33                  scRNAseq_2.6.1              SingleCellExperiment_1.14.1
#>  [7] SummarizedExperiment_1.22.0 Biobase_2.52.0              GenomicRanges_1.44.0       
#> [10] GenomeInfoDb_1.28.1         IRanges_2.26.0              S4Vectors_0.30.0           
#> [13] BiocGenerics_0.38.0         MatrixGenerics_1.4.0        matrixStats_0.59.0         
#> [16] cola_1.9.4                 
#> 
#> loaded via a namespace (and not attached):
#>   [1] circlize_0.4.13               AnnotationHub_3.0.1           BiocFileCache_2.0.0          
#>   [4] lazyeval_0.2.2                polylabelr_0.2.0              splines_4.1.0                
#>   [7] Polychrome_1.3.1              BiocParallel_1.26.1           ggplot2_3.3.5                
#>  [10] digest_0.6.27                 foreach_1.5.1                 ensembldb_2.16.3             
#>  [13] htmltools_0.5.1.1             viridis_0.6.1                 fansi_0.5.0                  
#>  [16] magrittr_2.0.1                memoise_2.0.0                 cluster_2.1.2                
#>  [19] doParallel_1.0.16             Biostrings_2.60.1             annotate_1.70.0              
#>  [22] askpass_1.1                   prettyunits_1.1.1             colorspace_2.0-2             
#>  [25] blob_1.2.1                    rappdirs_0.3.3                xfun_0.24                    
#>  [28] dplyr_1.0.7                   crayon_1.4.1                  RCurl_1.98-1.3               
#>  [31] microbenchmark_1.4-7          jsonlite_1.7.2                impute_1.66.0                
#>  [34] brew_1.0-6                    survival_3.2-11               iterators_1.0.13             
#>  [37] glue_1.4.2                    polyclip_1.10-0               gtable_0.3.0                 
#>  [40] zlibbioc_1.38.0               XVector_0.32.0                GetoptLong_1.0.5             
#>  [43] DelayedArray_0.18.0           shape_1.4.6                   scales_1.1.1                 
#>  [46] data.tree_1.0.0               DBI_1.1.1                     Rcpp_1.0.7                   
#>  [49] viridisLite_0.4.0             xtable_1.8-4                  progress_1.2.2               
#>  [52] clue_0.3-59                   reticulate_1.20               bit_4.0.4                    
#>  [55] mclust_5.4.7                  umap_0.2.7.0                  httr_1.4.2                   
#>  [58] RColorBrewer_1.1-2            ellipsis_0.3.2                pkgconfig_2.0.3              
#>  [61] XML_3.99-0.6                  dbplyr_2.1.1                  utf8_1.2.1                   
#>  [64] tidyselect_1.1.1              rlang_0.4.11                  later_1.2.0                  
#>  [67] AnnotationDbi_1.54.1          munsell_0.5.0                 BiocVersion_3.13.1           
#>  [70] tools_4.1.0                   cachem_1.0.5                  generics_0.1.0               
#>  [73] RSQLite_2.2.7                 ExperimentHub_2.0.0           evaluate_0.14                
#>  [76] stringr_1.4.0                 fastmap_1.1.0                 yaml_2.2.1                   
#>  [79] bit64_4.0.5                   purrr_0.3.4                   dendextend_1.15.1            
#>  [82] KEGGREST_1.32.0               AnnotationFilter_1.16.0       mime_0.11                    
#>  [85] slam_0.1-48                   xml2_1.3.2                    biomaRt_2.48.2               
#>  [88] compiler_4.1.0                rstudioapi_0.13               filelock_1.0.2               
#>  [91] curl_4.3.2                    png_0.1-7                     interactiveDisplayBase_1.30.0
#>  [94] tibble_3.1.2                  stringi_1.7.3                 highr_0.9                    
#>  [97] GenomicFeatures_1.44.0        RSpectra_0.16-0               lattice_0.20-44              
#> [100] ProtGenerics_1.24.0           Matrix_1.3-4                  vctrs_0.3.8                  
#> [103] pillar_1.6.1                  lifecycle_1.0.0               BiocManager_1.30.16          
#> [106] eulerr_6.1.0                  GlobalOptions_0.1.2           bitops_1.0-7                 
#> [109] irlba_2.3.3                   httpuv_1.6.1                  rtracklayer_1.52.0           
#> [112] R6_2.5.0                      BiocIO_1.2.0                  promises_1.2.0.1             
#> [115] gridExtra_2.3                 codetools_0.2-18              assertthat_0.2.1             
#> [118] openssl_1.4.4                 rjson_0.2.20                  GenomicAlignments_1.28.0     
#> [121] Rsamtools_2.8.0               GenomeInfoDbData_1.2.6        hms_1.1.0                    
#> [124] skmeans_0.2-13                Cairo_1.5-12.2                scatterplot3d_0.3-41         
#> [127] shiny_1.6.0                   restfulr_0.0.13