cola Report for Hierarchical Partitioning - 'Ritz_ALL'

Date: 2021-07-22 16:07:29 CEST, cola version: 1.9.4

Document is loading...


Summary

First the variable is renamed to res_rh.

res_rh = rh

The partition hierarchy and all available functions which can be applied to res_rh object.

res_rh
#> A 'HierarchicalPartition' object with 'ATC:skmeans' method.
#>   On a matrix with 11993 rows and 128 columns.
#>   Performed in total 3300 partitions.
#>   There are 15 groups under the following parameters:
#>     - min_samples: 6
#>     - mean_silhouette_cutoff: 0.9
#>     - min_n_signatures: 448 (signatures are selected based on:)
#>       - fdr_cutoff: 0.05
#>       - group_diff (scaled values): 0.5
#> 
#> Hierarchy of the partition:
#>   0, 128 cols
#>   |-- 01, 58 cols, 4791 signatures
#>   |   |-- 011, 32 cols, 1901 signatures
#>   |   |   |-- 0111, 9 cols (b)
#>   |   |   |-- 0112, 9 cols (b)
#>   |   |   |-- 0113, 8 cols (b)
#>   |   |   `-- 0114, 6 cols (b)
#>   |   |-- 012, 13 cols, 1224 signatures
#>   |   |   |-- 0121, 7 cols (b)
#>   |   |   |-- 0122, 4 cols (b)
#>   |   |   `-- 0123, 2 cols (b)
#>   |   `-- 013, 13 cols, 129 signatures (c)
#>   |-- 02, 39 cols, 5639 signatures
#>   |   |-- 021, 14 cols, 137 signatures (c)
#>   |   |-- 022, 18 cols, 561 signatures
#>   |   |   |-- 0221, 8 cols (b)
#>   |   |   `-- 0222, 10 cols (b)
#>   |   `-- 023, 7 cols (b)
#>   `-- 03, 31 cols, 1726 signatures
#>       |-- 031, 14 cols, 4 signatures (c)
#>       |-- 032, 9 cols (b)
#>       `-- 033, 8 cols (b)
#> Stop reason:
#>   b) Subgroup had too few columns.
#>   c) There were too few signatures.
#> 
#> Following methods can be applied to this 'HierarchicalPartition' object:
#>  [1] "all_leaves"            "all_nodes"             "cola_report"           "collect_classes"      
#>  [5] "colnames"              "compare_signatures"    "dimension_reduction"   "functional_enrichment"
#>  [9] "get_anno_col"          "get_anno"              "get_children_nodes"    "get_classes"          
#> [13] "get_matrix"            "get_signatures"        "is_leaf_node"          "max_depth"            
#> [17] "merge_node"            "ncol"                  "node_info"             "node_level"           
#> [21] "nrow"                  "rownames"              "show"                  "split_node"           
#> [25] "suggest_best_k"        "test_to_known_factors" "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single node by e.g. object["01"]

The call of hierarchical_partition() was:

#> hierarchical_partition(data = m, anno = anno, cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_rh)
dim(mat)
#> [1] 11993   128

All the methods that were tried:

res_rh@param$combination_method
#> [[1]]
#> [1] "ATC"     "skmeans"

Density distribution

The density distribution for each sample is visualized as one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_rh), 
    col = get_anno_col(res_rh)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 1)

plot of chunk density-heatmap

Some values about the hierarchy:

all_nodes(res_rh)
#>  [1] "0"    "01"   "011"  "0111" "0112" "0113" "0114" "012"  "0121" "0122" "0123" "013"  "02"  
#> [14] "021"  "022"  "0221" "0222" "023"  "03"   "031"  "032"  "033"
all_leaves(res_rh)
#>  [1] "0111" "0112" "0113" "0114" "0121" "0122" "0123" "013"  "021"  "0221" "0222" "023"  "031" 
#> [14] "032"  "033"
node_info(res_rh)
#>      id best_method depth best_k n_columns n_signatures p_signatures is_leaf
#> 1     0 ATC:skmeans     1      3       128         8975     0.748353   FALSE
#> 2    01 ATC:skmeans     2      3        58         4791     0.399483   FALSE
#> 3   011 ATC:skmeans     3      4        32         1901     0.158509   FALSE
#> 4  0111 not applied     4     NA         9           NA           NA    TRUE
#> 5  0112 not applied     4     NA         9           NA           NA    TRUE
#> 6  0113 not applied     4     NA         8           NA           NA    TRUE
#> 7  0114 not applied     4     NA         6           NA           NA    TRUE
#> 8   012 ATC:skmeans     3      3        13         1224     0.102060   FALSE
#> 9  0121 not applied     4     NA         7           NA           NA    TRUE
#> 10 0122 not applied     4     NA         4           NA           NA    TRUE
#> 11 0123 not applied     4     NA         2           NA           NA    TRUE
#> 12  013 ATC:skmeans     3      2        13          129     0.010756    TRUE
#> 13   02 ATC:skmeans     2      3        39         5639     0.470191   FALSE
#> 14  021 ATC:skmeans     3      2        14          137     0.011423    TRUE
#> 15  022 ATC:skmeans     3      2        18          561     0.046777   FALSE
#> 16 0221 not applied     4     NA         8           NA           NA    TRUE
#> 17 0222 not applied     4     NA        10           NA           NA    TRUE
#> 18  023 not applied     3     NA         7           NA           NA    TRUE
#> 19   03 ATC:skmeans     2      3        31         1726     0.143917   FALSE
#> 20  031 ATC:skmeans     3      2        14            4     0.000334    TRUE
#> 21  032 not applied     3     NA         9           NA           NA    TRUE
#> 22  033 not applied     3     NA         8           NA           NA    TRUE

In the output from node_info(), there are the following columns:

Labels of nodes are encoded in a special way. The number of digits correspond to the depth of the node in the hierarchy and the value of the digits correspond to the index of the subgroup in the current node, E.g. a label of “012” means the node is the second subgroup of the partition which is the first subgroup of the root node.

Suggest the best k

Following table shows the best k (number of partitions) for each node in the partition hierarchy. Clicking on the node name in the table goes to the corresponding section for the partitioning on that node.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_rh)
Node Best method Is leaf Best k 1-PAC Mean silhouette Concordance #samples
Node0 ATC:skmeans 3 1.00 0.95 0.98 128 **
Node01 ATC:skmeans 3 1.00 0.98 0.99 58 **
Node011 ATC:skmeans 4 1.00 0.98 0.98 32 **
Node0111-leaf not applied ✓ (b) 9
Node0112-leaf not applied ✓ (b) 9
Node0113-leaf not applied ✓ (b) 8
Node0114-leaf not applied ✓ (b) 6
Node012 ATC:skmeans 3 1.00 1.00 1.00 13 **
Node0121-leaf not applied ✓ (b) 7
Node0122-leaf not applied ✓ (b) 4
Node0123-leaf not applied ✓ (b) 2
Node013-leaf ATC:skmeans ✓ (c) 2 1.00 1.00 1.00 13 **
Node02 ATC:skmeans 3 1.00 1.00 1.00 39 **
Node021-leaf ATC:skmeans ✓ (c) 4 0.92 0.95 0.97 14 *
Node022 ATC:skmeans 2 1.00 1.00 1.00 18 **
Node0221-leaf not applied ✓ (b) 8
Node0222-leaf not applied ✓ (b) 10
Node023-leaf not applied ✓ (b) 7
Node03 ATC:skmeans 3 1.00 0.99 0.99 31 **
Node031-leaf ATC:skmeans ✓ (c) 2 1.00 1.00 1.00 14 **
Node032-leaf not applied ✓ (b) 9
Node033-leaf not applied ✓ (b) 8

Stop reason: b) Subgroup had too few columns. c) There were too few signatures.

**: 1-PAC > 0.95, *: 1-PAC > 0.9

Partition hierarchy

The nodes of the hierarchy can be merged by setting the merge_node parameters. Here we control the hierarchy with the min_n_signatures parameter. The value of min_n_signatures is from node_info().

collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 561))

plot of chunk tab-collect-classes-from-hierarchical-partition-1

collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1224))

plot of chunk tab-collect-classes-from-hierarchical-partition-2

collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1726))

plot of chunk tab-collect-classes-from-hierarchical-partition-3

collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1901))

plot of chunk tab-collect-classes-from-hierarchical-partition-4

collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 4791))

plot of chunk tab-collect-classes-from-hierarchical-partition-5

collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 5639))

plot of chunk tab-collect-classes-from-hierarchical-partition-6

collect_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 8975))

plot of chunk tab-collect-classes-from-hierarchical-partition-7

Following shows the table of the partitions (You need to click the show/hide code output link to see it).

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 561))
#>  01005  01010  03002  04006  04007  04008  04010  04016  06002  08001  08011  08012  08018  08024 
#>  "013"  "021"  "013"  "021" "0111"  "023"  "021" "0111" "0222" "0114"  "013" "0111"  "013"  "032" 
#>  09008  09017  11005  12006  12007  12012  12019  12026  14016  15001  15004  15005  16004  16009 
#>  "023"  "033"  "013"  "032"  "013" "0222" "0222" "0222" "0222" "0222"  "032" "0221" "0222"  "021" 
#>  19005  20002  22009  22010  22011  22013  24001  24005  24008  24010  24011  24017  24018  24019 
#> "0221"  "023"  "033"  "031"  "013"  "033" "0111" "0111" "0121" "0121" "0222"  "021"  "033"  "021" 
#>  24022  25003  25006  26001  26003  26005  26008  27003  27004  28001  28003  28005  28006  28007 
#> "0113"  "033"  "021" "0222" "0113" "0222"  "021"  "032" "0114"  "032"  "031" "0114" "0121" "0114" 
#>  28019  28021  28023  28024  28028  28031  28032  28035  28036  28037  28042  28043  28044  28047 
#>  "021"  "023" "0114" "0114" "0113"  "032" "0113"  "023" "0113"  "023"  "031" "0113" "0221" "0122" 
#>  30001  31007  31011  33005  36001  36002  37013  43001  43004  43007  43012  48001  49006  57001 
#>  "021"  "032" "0112"  "023" "0221" "0111" "0221"  "032"  "033" "0122"  "031" "0221"  "013" "0112" 
#>  62001  62002  62003  63001  64001  64002  65005  68001  68003  84004   LAL5  01003  01007  02020 
#> "0112" "0112"  "033" "0121" "0111"  "021" "0111"  "021" "0113" "0111"  "013"  "031"  "031" "0221" 
#>  04018  09002  10005  11002  12008  15006  16002  16007  17003  18001  19002  19008  19014  19017 
#> "0112"  "013" "0121" "0121"  "033"  "021" "0112" "0112"  "032" "0112"  "031" "0122"  "031" "0122" 
#>  20005  24006  26009  28008  28009  31015  37001  43006  43015  44001  49004  56007  64005  65003 
#> "0113"  "031"  "021" "0121"  "031" "0123"  "031"  "013" "0112" "0123"  "013"  "013"  "031"  "031" 
#>  83001   LAL4 
#> "0221"  "031"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1224))
#>  01005  01010  03002  04006  04007  04008  04010  04016  06002  08001  08011  08012  08018  08024 
#>  "013"  "021"  "013"  "021" "0111"  "023"  "021" "0111"  "022" "0114"  "013" "0111"  "013"  "032" 
#>  09008  09017  11005  12006  12007  12012  12019  12026  14016  15001  15004  15005  16004  16009 
#>  "023"  "033"  "013"  "032"  "013"  "022"  "022"  "022"  "022"  "022"  "032"  "022"  "022"  "021" 
#>  19005  20002  22009  22010  22011  22013  24001  24005  24008  24010  24011  24017  24018  24019 
#>  "022"  "023"  "033"  "031"  "013"  "033" "0111" "0111" "0121" "0121"  "022"  "021"  "033"  "021" 
#>  24022  25003  25006  26001  26003  26005  26008  27003  27004  28001  28003  28005  28006  28007 
#> "0113"  "033"  "021"  "022" "0113"  "022"  "021"  "032" "0114"  "032"  "031" "0114" "0121" "0114" 
#>  28019  28021  28023  28024  28028  28031  28032  28035  28036  28037  28042  28043  28044  28047 
#>  "021"  "023" "0114" "0114" "0113"  "032" "0113"  "023" "0113"  "023"  "031" "0113"  "022" "0122" 
#>  30001  31007  31011  33005  36001  36002  37013  43001  43004  43007  43012  48001  49006  57001 
#>  "021"  "032" "0112"  "023"  "022" "0111"  "022"  "032"  "033" "0122"  "031"  "022"  "013" "0112" 
#>  62001  62002  62003  63001  64001  64002  65005  68001  68003  84004   LAL5  01003  01007  02020 
#> "0112" "0112"  "033" "0121" "0111"  "021" "0111"  "021" "0113" "0111"  "013"  "031"  "031"  "022" 
#>  04018  09002  10005  11002  12008  15006  16002  16007  17003  18001  19002  19008  19014  19017 
#> "0112"  "013" "0121" "0121"  "033"  "021" "0112" "0112"  "032" "0112"  "031" "0122"  "031" "0122" 
#>  20005  24006  26009  28008  28009  31015  37001  43006  43015  44001  49004  56007  64005  65003 
#> "0113"  "031"  "021" "0121"  "031" "0123"  "031"  "013" "0112" "0123"  "013"  "013"  "031"  "031" 
#>  83001   LAL4 
#>  "022"  "031"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1726))
#>  01005  01010  03002  04006  04007  04008  04010  04016  06002  08001  08011  08012  08018  08024 
#>  "013"  "021"  "013"  "021" "0111"  "023"  "021" "0111"  "022" "0114"  "013" "0111"  "013"  "032" 
#>  09008  09017  11005  12006  12007  12012  12019  12026  14016  15001  15004  15005  16004  16009 
#>  "023"  "033"  "013"  "032"  "013"  "022"  "022"  "022"  "022"  "022"  "032"  "022"  "022"  "021" 
#>  19005  20002  22009  22010  22011  22013  24001  24005  24008  24010  24011  24017  24018  24019 
#>  "022"  "023"  "033"  "031"  "013"  "033" "0111" "0111"  "012"  "012"  "022"  "021"  "033"  "021" 
#>  24022  25003  25006  26001  26003  26005  26008  27003  27004  28001  28003  28005  28006  28007 
#> "0113"  "033"  "021"  "022" "0113"  "022"  "021"  "032" "0114"  "032"  "031" "0114"  "012" "0114" 
#>  28019  28021  28023  28024  28028  28031  28032  28035  28036  28037  28042  28043  28044  28047 
#>  "021"  "023" "0114" "0114" "0113"  "032" "0113"  "023" "0113"  "023"  "031" "0113"  "022"  "012" 
#>  30001  31007  31011  33005  36001  36002  37013  43001  43004  43007  43012  48001  49006  57001 
#>  "021"  "032" "0112"  "023"  "022" "0111"  "022"  "032"  "033"  "012"  "031"  "022"  "013" "0112" 
#>  62001  62002  62003  63001  64001  64002  65005  68001  68003  84004   LAL5  01003  01007  02020 
#> "0112" "0112"  "033"  "012" "0111"  "021" "0111"  "021" "0113" "0111"  "013"  "031"  "031"  "022" 
#>  04018  09002  10005  11002  12008  15006  16002  16007  17003  18001  19002  19008  19014  19017 
#> "0112"  "013"  "012"  "012"  "033"  "021" "0112" "0112"  "032" "0112"  "031"  "012"  "031"  "012" 
#>  20005  24006  26009  28008  28009  31015  37001  43006  43015  44001  49004  56007  64005  65003 
#> "0113"  "031"  "021"  "012"  "031"  "012"  "031"  "013" "0112"  "012"  "013"  "013"  "031"  "031" 
#>  83001   LAL4 
#>  "022"  "031"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 1901))
#>  01005  01010  03002  04006  04007  04008  04010  04016  06002  08001  08011  08012  08018  08024 
#>  "013"  "021"  "013"  "021" "0111"  "023"  "021" "0111"  "022" "0114"  "013" "0111"  "013"   "03" 
#>  09008  09017  11005  12006  12007  12012  12019  12026  14016  15001  15004  15005  16004  16009 
#>  "023"   "03"  "013"   "03"  "013"  "022"  "022"  "022"  "022"  "022"   "03"  "022"  "022"  "021" 
#>  19005  20002  22009  22010  22011  22013  24001  24005  24008  24010  24011  24017  24018  24019 
#>  "022"  "023"   "03"   "03"  "013"   "03" "0111" "0111"  "012"  "012"  "022"  "021"   "03"  "021" 
#>  24022  25003  25006  26001  26003  26005  26008  27003  27004  28001  28003  28005  28006  28007 
#> "0113"   "03"  "021"  "022" "0113"  "022"  "021"   "03" "0114"   "03"   "03" "0114"  "012" "0114" 
#>  28019  28021  28023  28024  28028  28031  28032  28035  28036  28037  28042  28043  28044  28047 
#>  "021"  "023" "0114" "0114" "0113"   "03" "0113"  "023" "0113"  "023"   "03" "0113"  "022"  "012" 
#>  30001  31007  31011  33005  36001  36002  37013  43001  43004  43007  43012  48001  49006  57001 
#>  "021"   "03" "0112"  "023"  "022" "0111"  "022"   "03"   "03"  "012"   "03"  "022"  "013" "0112" 
#>  62001  62002  62003  63001  64001  64002  65005  68001  68003  84004   LAL5  01003  01007  02020 
#> "0112" "0112"   "03"  "012" "0111"  "021" "0111"  "021" "0113" "0111"  "013"   "03"   "03"  "022" 
#>  04018  09002  10005  11002  12008  15006  16002  16007  17003  18001  19002  19008  19014  19017 
#> "0112"  "013"  "012"  "012"   "03"  "021" "0112" "0112"   "03" "0112"   "03"  "012"   "03"  "012" 
#>  20005  24006  26009  28008  28009  31015  37001  43006  43015  44001  49004  56007  64005  65003 
#> "0113"   "03"  "021"  "012"   "03"  "012"   "03"  "013" "0112"  "012"  "013"  "013"   "03"   "03" 
#>  83001   LAL4 
#>  "022"   "03"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 4791))
#> 01005 01010 03002 04006 04007 04008 04010 04016 06002 08001 08011 08012 08018 08024 09008 09017 
#> "013" "021" "013" "021" "011" "023" "021" "011" "022" "011" "013" "011" "013"  "03" "023"  "03" 
#> 11005 12006 12007 12012 12019 12026 14016 15001 15004 15005 16004 16009 19005 20002 22009 22010 
#> "013"  "03" "013" "022" "022" "022" "022" "022"  "03" "022" "022" "021" "022" "023"  "03"  "03" 
#> 22011 22013 24001 24005 24008 24010 24011 24017 24018 24019 24022 25003 25006 26001 26003 26005 
#> "013"  "03" "011" "011" "012" "012" "022" "021"  "03" "021" "011"  "03" "021" "022" "011" "022" 
#> 26008 27003 27004 28001 28003 28005 28006 28007 28019 28021 28023 28024 28028 28031 28032 28035 
#> "021"  "03" "011"  "03"  "03" "011" "012" "011" "021" "023" "011" "011" "011"  "03" "011" "023" 
#> 28036 28037 28042 28043 28044 28047 30001 31007 31011 33005 36001 36002 37013 43001 43004 43007 
#> "011" "023"  "03" "011" "022" "012" "021"  "03" "011" "023" "022" "011" "022"  "03"  "03" "012" 
#> 43012 48001 49006 57001 62001 62002 62003 63001 64001 64002 65005 68001 68003 84004  LAL5 01003 
#>  "03" "022" "013" "011" "011" "011"  "03" "012" "011" "021" "011" "021" "011" "011" "013"  "03" 
#> 01007 02020 04018 09002 10005 11002 12008 15006 16002 16007 17003 18001 19002 19008 19014 19017 
#>  "03" "022" "011" "013" "012" "012"  "03" "021" "011" "011"  "03" "011"  "03" "012"  "03" "012" 
#> 20005 24006 26009 28008 28009 31015 37001 43006 43015 44001 49004 56007 64005 65003 83001  LAL4 
#> "011"  "03" "021" "012"  "03" "012"  "03" "013" "011" "012" "013" "013"  "03"  "03" "022"  "03"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 5639))
#> 01005 01010 03002 04006 04007 04008 04010 04016 06002 08001 08011 08012 08018 08024 09008 09017 
#>  "01" "021"  "01" "021"  "01" "023" "021"  "01" "022"  "01"  "01"  "01"  "01"  "03" "023"  "03" 
#> 11005 12006 12007 12012 12019 12026 14016 15001 15004 15005 16004 16009 19005 20002 22009 22010 
#>  "01"  "03"  "01" "022" "022" "022" "022" "022"  "03" "022" "022" "021" "022" "023"  "03"  "03" 
#> 22011 22013 24001 24005 24008 24010 24011 24017 24018 24019 24022 25003 25006 26001 26003 26005 
#>  "01"  "03"  "01"  "01"  "01"  "01" "022" "021"  "03" "021"  "01"  "03" "021" "022"  "01" "022" 
#> 26008 27003 27004 28001 28003 28005 28006 28007 28019 28021 28023 28024 28028 28031 28032 28035 
#> "021"  "03"  "01"  "03"  "03"  "01"  "01"  "01" "021" "023"  "01"  "01"  "01"  "03"  "01" "023" 
#> 28036 28037 28042 28043 28044 28047 30001 31007 31011 33005 36001 36002 37013 43001 43004 43007 
#>  "01" "023"  "03"  "01" "022"  "01" "021"  "03"  "01" "023" "022"  "01" "022"  "03"  "03"  "01" 
#> 43012 48001 49006 57001 62001 62002 62003 63001 64001 64002 65005 68001 68003 84004  LAL5 01003 
#>  "03" "022"  "01"  "01"  "01"  "01"  "03"  "01"  "01" "021"  "01" "021"  "01"  "01"  "01"  "03" 
#> 01007 02020 04018 09002 10005 11002 12008 15006 16002 16007 17003 18001 19002 19008 19014 19017 
#>  "03" "022"  "01"  "01"  "01"  "01"  "03" "021"  "01"  "01"  "03"  "01"  "03"  "01"  "03"  "01" 
#> 20005 24006 26009 28008 28009 31015 37001 43006 43015 44001 49004 56007 64005 65003 83001  LAL4 
#>  "01"  "03" "021"  "01"  "03"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "03"  "03" "022"  "03"

show/hide code output

get_classes(res_rh, merge_node = merge_node_param(min_n_signatures = 8975))
#> 01005 01010 03002 04006 04007 04008 04010 04016 06002 08001 08011 08012 08018 08024 09008 09017 
#>  "01"  "02"  "01"  "02"  "01"  "02"  "02"  "01"  "02"  "01"  "01"  "01"  "01"  "03"  "02"  "03" 
#> 11005 12006 12007 12012 12019 12026 14016 15001 15004 15005 16004 16009 19005 20002 22009 22010 
#>  "01"  "03"  "01"  "02"  "02"  "02"  "02"  "02"  "03"  "02"  "02"  "02"  "02"  "02"  "03"  "03" 
#> 22011 22013 24001 24005 24008 24010 24011 24017 24018 24019 24022 25003 25006 26001 26003 26005 
#>  "01"  "03"  "01"  "01"  "01"  "01"  "02"  "02"  "03"  "02"  "01"  "03"  "02"  "02"  "01"  "02" 
#> 26008 27003 27004 28001 28003 28005 28006 28007 28019 28021 28023 28024 28028 28031 28032 28035 
#>  "02"  "03"  "01"  "03"  "03"  "01"  "01"  "01"  "02"  "02"  "01"  "01"  "01"  "03"  "01"  "02" 
#> 28036 28037 28042 28043 28044 28047 30001 31007 31011 33005 36001 36002 37013 43001 43004 43007 
#>  "01"  "02"  "03"  "01"  "02"  "01"  "02"  "03"  "01"  "02"  "02"  "01"  "02"  "03"  "03"  "01" 
#> 43012 48001 49006 57001 62001 62002 62003 63001 64001 64002 65005 68001 68003 84004  LAL5 01003 
#>  "03"  "02"  "01"  "01"  "01"  "01"  "03"  "01"  "01"  "02"  "01"  "02"  "01"  "01"  "01"  "03" 
#> 01007 02020 04018 09002 10005 11002 12008 15006 16002 16007 17003 18001 19002 19008 19014 19017 
#>  "03"  "02"  "01"  "01"  "01"  "01"  "03"  "02"  "01"  "01"  "03"  "01"  "03"  "01"  "03"  "01" 
#> 20005 24006 26009 28008 28009 31015 37001 43006 43015 44001 49004 56007 64005 65003 83001  LAL4 
#>  "01"  "03"  "02"  "01"  "03"  "01"  "03"  "01"  "01"  "01"  "01"  "01"  "03"  "03"  "02"  "03"

Top rows heatmap

Heatmaps of the top rows:

top_rows_heatmap(res_rh)

plot of chunk top-rows-heatmap

Top rows on each node:

top_rows_overlap(res_rh, method = "upset")

plot of chunk top-rows-overlap

UMAP plot

UMAP plot which shows how samples are separated.

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 561),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 561),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-1

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1224),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1224),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-2

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1726),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1726),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-3

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1901),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 1901),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-4

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 4791),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 4791),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-5

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 5639),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 5639),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-6

par(mfrow = c(1, 2))
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 8975),
    method = "UMAP", top_value_method = "SD", top_n = 1200, scale_rows = FALSE)
dimension_reduction(res_rh, merge_node = merge_node_param(min_n_signatures = 8975),
    method = "UMAP", top_value_method = "ATC", top_n = 1200, scale_rows = TRUE)

plot of chunk tab-dimension-reduction-by-depth-7

Signature heatmap

Signatures on the heatmap are the union of all signatures found on every node on the hierarchy. The number of k-means on rows are automatically selected by the function.

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 561))

plot of chunk tab-get-signatures-from-hierarchical-partition-1

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 1224))

plot of chunk tab-get-signatures-from-hierarchical-partition-2

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 1726))

plot of chunk tab-get-signatures-from-hierarchical-partition-3

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 1901))

plot of chunk tab-get-signatures-from-hierarchical-partition-4

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 4791))

plot of chunk tab-get-signatures-from-hierarchical-partition-5

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 5639))

plot of chunk tab-get-signatures-from-hierarchical-partition-6

get_signatures(res_rh, merge_node = merge_node_param(min_n_signatures = 8975))

plot of chunk tab-get-signatures-from-hierarchical-partition-7

Compare signatures from different nodes:

compare_signatures(res_rh, verbose = FALSE)

plot of chunk unnamed-chunk-24

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs. Note it only works on every node and the final signatures are the union of all signatures of all nodes.

# code only for demonstration
# e.g. to show the top 500 most significant rows on each node.
tb = get_signature(res_rh, top_signatures = 500)

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 561))
#>         sex    age    BT
#> class 0.969 0.0863 0.029
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 1224))
#>         sex    age     BT
#> class 0.954 0.0767 0.0146
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 1726))
#>         sex    age      BT
#> class 0.921 0.0199 0.00374
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 1901))
#>         sex   age     BT
#> class 0.932 0.179 0.0552
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 4791))
#>         sex    age    BT
#> class 0.947 0.0997 0.203
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 5639))
#>         sex    age    BT
#> class 0.972 0.0819 0.195
test_to_known_factors(res_rh, merge_node = merge_node_param(min_n_signatures = 8975))
#>         sex   age     BT
#> class 0.867 0.012 0.0532

Results for each node


Node0

Child nodes: Node01 , Node02 , Node03 .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["0"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 11393 rows and 128 columns.
#>   Top rows (1139) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-0-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-0-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2  1.00           0.972       0.989         0.5031 0.497   0.497
#> 3 3  1.00           0.955       0.983         0.2836 0.800   0.619
#> 4 4  0.81           0.693       0.862         0.0809 0.954   0.869

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>       class entropy silhouette   p1   p2
#> 01005     1   0.000      0.990 1.00 0.00
#> 01010     2   0.000      0.987 0.00 1.00
#> 03002     1   0.000      0.990 1.00 0.00
#> 04006     2   0.000      0.987 0.00 1.00
#> 04007     1   0.000      0.990 1.00 0.00
#> 04008     2   0.000      0.987 0.00 1.00
#> 04010     2   0.000      0.987 0.00 1.00
#> 04016     1   0.000      0.990 1.00 0.00
#> 06002     2   0.000      0.987 0.00 1.00
#> 08001     1   0.000      0.990 1.00 0.00
#> 08011     1   0.000      0.990 1.00 0.00
#> 08012     1   0.000      0.990 1.00 0.00
#> 08018     1   0.000      0.990 1.00 0.00
#> 08024     2   0.000      0.987 0.00 1.00
#> 09008     2   0.000      0.987 0.00 1.00
#> 09017     1   0.000      0.990 1.00 0.00
#> 11005     1   0.000      0.990 1.00 0.00
#> 12006     2   0.000      0.987 0.00 1.00
#> 12007     1   0.000      0.990 1.00 0.00
#> 12012     2   0.000      0.987 0.00 1.00
#> 12019     2   0.000      0.987 0.00 1.00
#> 12026     2   0.000      0.987 0.00 1.00
#> 14016     2   0.000      0.987 0.00 1.00
#> 15001     2   0.000      0.987 0.00 1.00
#> 15004     2   0.990      0.209 0.44 0.56
#> 15005     2   0.000      0.987 0.00 1.00
#> 16004     2   0.000      0.987 0.00 1.00
#> 16009     2   0.000      0.987 0.00 1.00
#> 19005     2   0.000      0.987 0.00 1.00
#> 20002     2   0.000      0.987 0.00 1.00
#> 22009     2   0.000      0.987 0.00 1.00
#> 22010     2   0.000      0.987 0.00 1.00
#> 22011     1   0.000      0.990 1.00 0.00
#> 22013     2   0.000      0.987 0.00 1.00
#> 24001     1   0.000      0.990 1.00 0.00
#> 24005     1   0.000      0.990 1.00 0.00
#> 24008     1   0.000      0.990 1.00 0.00
#> 24010     1   0.000      0.990 1.00 0.00
#> 24011     2   0.000      0.987 0.00 1.00
#> 24017     2   0.000      0.987 0.00 1.00
#> 24018     2   0.000      0.987 0.00 1.00
#> 24019     2   0.000      0.987 0.00 1.00
#> 24022     1   0.000      0.990 1.00 0.00
#> 25003     2   0.000      0.987 0.00 1.00
#> 25006     2   0.000      0.987 0.00 1.00
#> 26001     2   0.000      0.987 0.00 1.00
#> 26003     1   0.000      0.990 1.00 0.00
#> 26005     2   0.000      0.987 0.00 1.00
#> 26008     2   0.000      0.987 0.00 1.00
#> 27003     2   0.000      0.987 0.00 1.00
#> 27004     1   0.000      0.990 1.00 0.00
#> 28001     2   0.000      0.987 0.00 1.00
#> 28003     2   0.000      0.987 0.00 1.00
#> 28005     1   0.000      0.990 1.00 0.00
#> 28006     1   0.000      0.990 1.00 0.00
#> 28007     1   0.000      0.990 1.00 0.00
#> 28019     2   0.000      0.987 0.00 1.00
#> 28021     2   0.000      0.987 0.00 1.00
#> 28023     1   0.000      0.990 1.00 0.00
#> 28024     1   0.000      0.990 1.00 0.00
#> 28028     1   0.000      0.990 1.00 0.00
#> 28031     1   0.529      0.859 0.88 0.12
#> 28032     1   0.000      0.990 1.00 0.00
#> 28035     2   0.000      0.987 0.00 1.00
#> 28036     1   0.000      0.990 1.00 0.00
#> 28037     2   0.000      0.987 0.00 1.00
#> 28042     1   0.000      0.990 1.00 0.00
#> 28043     1   0.000      0.990 1.00 0.00
#> 28044     1   0.981      0.266 0.58 0.42
#> 28047     1   0.000      0.990 1.00 0.00
#> 30001     2   0.000      0.987 0.00 1.00
#> 31007     1   0.000      0.990 1.00 0.00
#> 31011     1   0.000      0.990 1.00 0.00
#> 33005     2   0.000      0.987 0.00 1.00
#> 36001     2   0.000      0.987 0.00 1.00
#> 36002     1   0.000      0.990 1.00 0.00
#> 37013     2   0.000      0.987 0.00 1.00
#> 43001     2   0.000      0.987 0.00 1.00
#> 43004     2   0.000      0.987 0.00 1.00
#> 43007     1   0.000      0.990 1.00 0.00
#> 43012     1   0.000      0.990 1.00 0.00
#> 48001     2   0.000      0.987 0.00 1.00
#> 49006     1   0.000      0.990 1.00 0.00
#> 57001     1   0.000      0.990 1.00 0.00
#> 62001     1   0.000      0.990 1.00 0.00
#> 62002     1   0.000      0.990 1.00 0.00
#> 62003     2   0.000      0.987 0.00 1.00
#> 63001     1   0.000      0.990 1.00 0.00
#> 64001     1   0.000      0.990 1.00 0.00
#> 64002     2   0.000      0.987 0.00 1.00
#> 65005     1   0.000      0.990 1.00 0.00
#> 68001     2   0.000      0.987 0.00 1.00
#> 68003     1   0.000      0.990 1.00 0.00
#> 84004     1   0.000      0.990 1.00 0.00
#> LAL5      1   0.000      0.990 1.00 0.00
#> 01003     1   0.000      0.990 1.00 0.00
#> 01007     2   0.000      0.987 0.00 1.00
#> 02020     2   0.000      0.987 0.00 1.00
#> 04018     1   0.000      0.990 1.00 0.00
#> 09002     1   0.000      0.990 1.00 0.00
#> 10005     1   0.000      0.990 1.00 0.00
#> 11002     1   0.000      0.990 1.00 0.00
#> 12008     2   0.000      0.987 0.00 1.00
#> 15006     2   0.000      0.987 0.00 1.00
#> 16002     1   0.000      0.990 1.00 0.00
#> 16007     1   0.000      0.990 1.00 0.00
#> 17003     2   0.000      0.987 0.00 1.00
#> 18001     1   0.000      0.990 1.00 0.00
#> 19002     2   0.000      0.987 0.00 1.00
#> 19008     1   0.000      0.990 1.00 0.00
#> 19014     1   0.242      0.951 0.96 0.04
#> 19017     1   0.000      0.990 1.00 0.00
#> 20005     1   0.000      0.990 1.00 0.00
#> 24006     2   0.000      0.987 0.00 1.00
#> 26009     2   0.000      0.987 0.00 1.00
#> 28008     1   0.000      0.990 1.00 0.00
#> 28009     2   0.000      0.987 0.00 1.00
#> 31015     1   0.000      0.990 1.00 0.00
#> 37001     2   0.000      0.987 0.00 1.00
#> 43006     1   0.000      0.990 1.00 0.00
#> 43015     1   0.000      0.990 1.00 0.00
#> 44001     1   0.000      0.990 1.00 0.00
#> 49004     1   0.000      0.990 1.00 0.00
#> 56007     1   0.000      0.990 1.00 0.00
#> 64005     2   0.000      0.987 0.00 1.00
#> 65003     2   0.881      0.567 0.30 0.70
#> 83001     2   0.000      0.987 0.00 1.00
#> LAL4      1   0.327      0.931 0.94 0.06

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>       class entropy silhouette   p1   p2   p3
#> 01005     1  0.0000     1.0000 1.00 0.00 0.00
#> 01010     2  0.0000     0.9801 0.00 1.00 0.00
#> 03002     1  0.0000     1.0000 1.00 0.00 0.00
#> 04006     2  0.0000     0.9801 0.00 1.00 0.00
#> 04007     1  0.0000     1.0000 1.00 0.00 0.00
#> 04008     2  0.0000     0.9801 0.00 1.00 0.00
#> 04010     2  0.0000     0.9801 0.00 1.00 0.00
#> 04016     1  0.0000     1.0000 1.00 0.00 0.00
#> 06002     2  0.0000     0.9801 0.00 1.00 0.00
#> 08001     1  0.0000     1.0000 1.00 0.00 0.00
#> 08011     1  0.0000     1.0000 1.00 0.00 0.00
#> 08012     1  0.0000     1.0000 1.00 0.00 0.00
#> 08018     1  0.0000     1.0000 1.00 0.00 0.00
#> 08024     3  0.6302     0.0748 0.00 0.48 0.52
#> 09008     2  0.0000     0.9801 0.00 1.00 0.00
#> 09017     3  0.6280     0.1358 0.46 0.00 0.54
#> 11005     1  0.0000     1.0000 1.00 0.00 0.00
#> 12006     3  0.0000     0.9480 0.00 0.00 1.00
#> 12007     1  0.0000     1.0000 1.00 0.00 0.00
#> 12012     2  0.0000     0.9801 0.00 1.00 0.00
#> 12019     2  0.6045     0.3566 0.00 0.62 0.38
#> 12026     2  0.0000     0.9801 0.00 1.00 0.00
#> 14016     2  0.0000     0.9801 0.00 1.00 0.00
#> 15001     2  0.0000     0.9801 0.00 1.00 0.00
#> 15004     3  0.0000     0.9480 0.00 0.00 1.00
#> 15005     2  0.0000     0.9801 0.00 1.00 0.00
#> 16004     2  0.0000     0.9801 0.00 1.00 0.00
#> 16009     2  0.0000     0.9801 0.00 1.00 0.00
#> 19005     2  0.0000     0.9801 0.00 1.00 0.00
#> 20002     2  0.0000     0.9801 0.00 1.00 0.00
#> 22009     3  0.0000     0.9480 0.00 0.00 1.00
#> 22010     3  0.0000     0.9480 0.00 0.00 1.00
#> 22011     1  0.0000     1.0000 1.00 0.00 0.00
#> 22013     3  0.0892     0.9327 0.00 0.02 0.98
#> 24001     1  0.0000     1.0000 1.00 0.00 0.00
#> 24005     1  0.0000     1.0000 1.00 0.00 0.00
#> 24008     1  0.0000     1.0000 1.00 0.00 0.00
#> 24010     1  0.0000     1.0000 1.00 0.00 0.00
#> 24011     2  0.3340     0.8483 0.00 0.88 0.12
#> 24017     2  0.0000     0.9801 0.00 1.00 0.00
#> 24018     3  0.0000     0.9480 0.00 0.00 1.00
#> 24019     2  0.0000     0.9801 0.00 1.00 0.00
#> 24022     1  0.0000     1.0000 1.00 0.00 0.00
#> 25003     3  0.0000     0.9480 0.00 0.00 1.00
#> 25006     2  0.0000     0.9801 0.00 1.00 0.00
#> 26001     2  0.0000     0.9801 0.00 1.00 0.00
#> 26003     1  0.0000     1.0000 1.00 0.00 0.00
#> 26005     2  0.0000     0.9801 0.00 1.00 0.00
#> 26008     2  0.0000     0.9801 0.00 1.00 0.00
#> 27003     3  0.0000     0.9480 0.00 0.00 1.00
#> 27004     1  0.0000     1.0000 1.00 0.00 0.00
#> 28001     3  0.0000     0.9480 0.00 0.00 1.00
#> 28003     3  0.0000     0.9480 0.00 0.00 1.00
#> 28005     1  0.0000     1.0000 1.00 0.00 0.00
#> 28006     1  0.0000     1.0000 1.00 0.00 0.00
#> 28007     1  0.0000     1.0000 1.00 0.00 0.00
#> 28019     2  0.0000     0.9801 0.00 1.00 0.00
#> 28021     2  0.0000     0.9801 0.00 1.00 0.00
#> 28023     1  0.0000     1.0000 1.00 0.00 0.00
#> 28024     1  0.0000     1.0000 1.00 0.00 0.00
#> 28028     1  0.0000     1.0000 1.00 0.00 0.00
#> 28031     3  0.0000     0.9480 0.00 0.00 1.00
#> 28032     1  0.0000     1.0000 1.00 0.00 0.00
#> 28035     2  0.0000     0.9801 0.00 1.00 0.00
#> 28036     1  0.0000     1.0000 1.00 0.00 0.00
#> 28037     2  0.0000     0.9801 0.00 1.00 0.00
#> 28042     3  0.0000     0.9480 0.00 0.00 1.00
#> 28043     1  0.0000     1.0000 1.00 0.00 0.00
#> 28044     2  0.4291     0.7478 0.18 0.82 0.00
#> 28047     1  0.0000     1.0000 1.00 0.00 0.00
#> 30001     2  0.0000     0.9801 0.00 1.00 0.00
#> 31007     3  0.0000     0.9480 0.00 0.00 1.00
#> 31011     1  0.0000     1.0000 1.00 0.00 0.00
#> 33005     2  0.0000     0.9801 0.00 1.00 0.00
#> 36001     2  0.0000     0.9801 0.00 1.00 0.00
#> 36002     1  0.0000     1.0000 1.00 0.00 0.00
#> 37013     2  0.0000     0.9801 0.00 1.00 0.00
#> 43001     3  0.6126     0.3258 0.00 0.40 0.60
#> 43004     3  0.0000     0.9480 0.00 0.00 1.00
#> 43007     1  0.0000     1.0000 1.00 0.00 0.00
#> 43012     3  0.0000     0.9480 0.00 0.00 1.00
#> 48001     2  0.0000     0.9801 0.00 1.00 0.00
#> 49006     1  0.0000     1.0000 1.00 0.00 0.00
#> 57001     1  0.0000     1.0000 1.00 0.00 0.00
#> 62001     1  0.0000     1.0000 1.00 0.00 0.00
#> 62002     1  0.0000     1.0000 1.00 0.00 0.00
#> 62003     3  0.0892     0.9327 0.00 0.02 0.98
#> 63001     1  0.0000     1.0000 1.00 0.00 0.00
#> 64001     1  0.0000     1.0000 1.00 0.00 0.00
#> 64002     2  0.0000     0.9801 0.00 1.00 0.00
#> 65005     1  0.0000     1.0000 1.00 0.00 0.00
#> 68001     2  0.0000     0.9801 0.00 1.00 0.00
#> 68003     1  0.0000     1.0000 1.00 0.00 0.00
#> 84004     1  0.0000     1.0000 1.00 0.00 0.00
#> LAL5      1  0.0000     1.0000 1.00 0.00 0.00
#> 01003     3  0.0000     0.9480 0.00 0.00 1.00
#> 01007     3  0.2066     0.8949 0.00 0.06 0.94
#> 02020     2  0.0000     0.9801 0.00 1.00 0.00
#> 04018     1  0.0000     1.0000 1.00 0.00 0.00
#> 09002     1  0.0000     1.0000 1.00 0.00 0.00
#> 10005     1  0.0000     1.0000 1.00 0.00 0.00
#> 11002     1  0.0000     1.0000 1.00 0.00 0.00
#> 12008     3  0.0000     0.9480 0.00 0.00 1.00
#> 15006     2  0.0000     0.9801 0.00 1.00 0.00
#> 16002     1  0.0000     1.0000 1.00 0.00 0.00
#> 16007     1  0.0000     1.0000 1.00 0.00 0.00
#> 17003     3  0.0000     0.9480 0.00 0.00 1.00
#> 18001     1  0.0000     1.0000 1.00 0.00 0.00
#> 19002     3  0.0000     0.9480 0.00 0.00 1.00
#> 19008     1  0.0000     1.0000 1.00 0.00 0.00
#> 19014     3  0.0000     0.9480 0.00 0.00 1.00
#> 19017     1  0.0000     1.0000 1.00 0.00 0.00
#> 20005     1  0.0000     1.0000 1.00 0.00 0.00
#> 24006     3  0.0000     0.9480 0.00 0.00 1.00
#> 26009     2  0.0000     0.9801 0.00 1.00 0.00
#> 28008     1  0.0000     1.0000 1.00 0.00 0.00
#> 28009     3  0.0000     0.9480 0.00 0.00 1.00
#> 31015     1  0.0000     1.0000 1.00 0.00 0.00
#> 37001     3  0.0000     0.9480 0.00 0.00 1.00
#> 43006     1  0.0000     1.0000 1.00 0.00 0.00
#> 43015     1  0.0000     1.0000 1.00 0.00 0.00
#> 44001     1  0.0000     1.0000 1.00 0.00 0.00
#> 49004     1  0.0000     1.0000 1.00 0.00 0.00
#> 56007     1  0.0000     1.0000 1.00 0.00 0.00
#> 64005     3  0.0000     0.9480 0.00 0.00 1.00
#> 65003     3  0.0000     0.9480 0.00 0.00 1.00
#> 83001     2  0.0000     0.9801 0.00 1.00 0.00
#> LAL4      3  0.0000     0.9480 0.00 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>       class entropy silhouette   p1   p2   p3   p4
#> 01005     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 01010     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 03002     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 04006     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 04007     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 04008     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 04010     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 04016     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 06002     2  0.3172     0.7777 0.00 0.84 0.16 0.00
#> 08001     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 08011     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 08012     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 08018     1  0.3975     0.6518 0.76 0.00 0.00 0.24
#> 08024     3  0.7493     0.2559 0.00 0.20 0.48 0.32
#> 09008     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 09017     4  0.6201     0.1238 0.08 0.00 0.30 0.62
#> 11005     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 12006     3  0.4624     0.2130 0.00 0.00 0.66 0.34
#> 12007     1  0.2011     0.9109 0.92 0.00 0.00 0.08
#> 12012     2  0.7198     0.3649 0.00 0.54 0.18 0.28
#> 12019     2  0.6299     0.2115 0.00 0.52 0.42 0.06
#> 12026     2  0.3610     0.7459 0.00 0.80 0.20 0.00
#> 14016     2  0.3610     0.7459 0.00 0.80 0.20 0.00
#> 15001     2  0.6320     0.5793 0.00 0.66 0.16 0.18
#> 15004     4  0.4994     0.1052 0.00 0.00 0.48 0.52
#> 15005     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 16004     2  0.3610     0.7459 0.00 0.80 0.20 0.00
#> 16009     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 19005     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 20002     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 22009     3  0.2647     0.5548 0.00 0.12 0.88 0.00
#> 22010     3  0.3801     0.4042 0.00 0.00 0.78 0.22
#> 22011     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 22013     3  0.2647     0.5548 0.00 0.12 0.88 0.00
#> 24001     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 24005     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 24008     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 24010     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 24011     2  0.7913    -0.1509 0.00 0.36 0.32 0.32
#> 24017     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 24018     3  0.2647     0.5548 0.00 0.12 0.88 0.00
#> 24019     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 24022     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 25003     3  0.1637     0.5206 0.00 0.00 0.94 0.06
#> 25006     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 26001     2  0.3801     0.7266 0.00 0.78 0.22 0.00
#> 26003     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 26005     2  0.3400     0.7619 0.00 0.82 0.18 0.00
#> 26008     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 27003     3  0.5000    -0.1682 0.00 0.00 0.50 0.50
#> 27004     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 28001     3  0.4790     0.1527 0.00 0.00 0.62 0.38
#> 28003     3  0.3172     0.4294 0.00 0.00 0.84 0.16
#> 28005     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 28006     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 28007     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 28019     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 28021     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 28023     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 28024     1  0.1211     0.9339 0.96 0.00 0.00 0.04
#> 28028     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 28031     4  0.4994     0.1052 0.00 0.00 0.48 0.52
#> 28032     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 28035     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 28036     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 28037     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 28042     4  0.4994     0.1052 0.00 0.00 0.48 0.52
#> 28043     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 28044     4  0.8103     0.0597 0.02 0.24 0.26 0.48
#> 28047     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 30001     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 31007     4  0.5000     0.0494 0.00 0.00 0.50 0.50
#> 31011     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 33005     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 36001     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 36002     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 37013     2  0.1211     0.8544 0.00 0.96 0.04 0.00
#> 43001     3  0.6941     0.2769 0.00 0.36 0.52 0.12
#> 43004     3  0.2647     0.5548 0.00 0.12 0.88 0.00
#> 43007     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 43012     4  0.4994     0.1052 0.00 0.00 0.48 0.52
#> 48001     2  0.2011     0.8334 0.00 0.92 0.08 0.00
#> 49006     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 57001     1  0.4994     0.2913 0.52 0.00 0.00 0.48
#> 62001     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 62002     1  0.4994     0.2913 0.52 0.00 0.00 0.48
#> 62003     3  0.2647     0.5548 0.00 0.12 0.88 0.00
#> 63001     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 64001     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 64002     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 65005     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 68001     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 68003     1  0.6011     0.1850 0.48 0.00 0.04 0.48
#> 84004     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> LAL5      1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 01003     4  0.4522     0.0608 0.00 0.00 0.32 0.68
#> 01007     3  0.6766     0.2222 0.00 0.10 0.52 0.38
#> 02020     2  0.4994     0.2651 0.00 0.52 0.48 0.00
#> 04018     4  0.7382     0.1538 0.22 0.00 0.26 0.52
#> 09002     1  0.2011     0.9123 0.92 0.00 0.00 0.08
#> 10005     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 11002     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 12008     3  0.0707     0.5268 0.00 0.00 0.98 0.02
#> 15006     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 16002     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 16007     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 17003     3  0.4790     0.1505 0.00 0.00 0.62 0.38
#> 18001     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 19002     3  0.4790     0.2309 0.00 0.00 0.62 0.38
#> 19008     1  0.2011     0.9123 0.92 0.00 0.00 0.08
#> 19014     3  0.4522     0.2969 0.00 0.00 0.68 0.32
#> 19017     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 20005     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 24006     3  0.0000     0.5319 0.00 0.00 1.00 0.00
#> 26009     2  0.0000     0.8809 0.00 1.00 0.00 0.00
#> 28008     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 28009     4  0.4994     0.1052 0.00 0.00 0.48 0.52
#> 31015     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 37001     3  0.3172     0.4294 0.00 0.00 0.84 0.16
#> 43006     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 43015     1  0.1637     0.9246 0.94 0.00 0.00 0.06
#> 44001     1  0.0707     0.9364 0.98 0.00 0.00 0.02
#> 49004     1  0.0000     0.9503 1.00 0.00 0.00 0.00
#> 56007     4  0.6453     0.0921 0.36 0.00 0.08 0.56
#> 64005     3  0.2647     0.5548 0.00 0.12 0.88 0.00
#> 65003     4  0.4994     0.1052 0.00 0.00 0.48 0.52
#> 83001     2  0.4907     0.3649 0.00 0.58 0.00 0.42
#> LAL4      3  0.3801     0.3658 0.00 0.00 0.78 0.22

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-0-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-0-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-0-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-0-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-0-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-0-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-0-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-0-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-0-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-0-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-0-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-0-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-0-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-0-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-0-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-0-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-0-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample sex(p-value) age(p-value) BT(p-value) k
#> ATC:skmeans      126        0.370       0.3787     0.58720 2
#> ATC:skmeans      124        0.820       0.0152     0.05971 3
#> ATC:skmeans       95        0.716       0.2768     0.00522 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node01

Parent node: Node0. Child nodes: Node011 , Node012 , Node013-leaf , Node021-leaf , Node022 , Node023-leaf , Node031-leaf , Node032-leaf , Node033-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["01"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 11393 rows and 58 columns.
#>   Top rows (1139) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-01-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-01-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.984       0.994          0.453 0.552   0.552
#> 3 3 1.000           0.980       0.991          0.348 0.792   0.639
#> 4 4 0.798           0.839       0.935          0.222 0.809   0.543

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>       class entropy silhouette   p1   p2
#> 01005     1   0.943      0.437 0.64 0.36
#> 03002     1   0.000      0.990 1.00 0.00
#> 04007     1   0.000      0.990 1.00 0.00
#> 04016     1   0.000      0.990 1.00 0.00
#> 08001     1   0.000      0.990 1.00 0.00
#> 08011     1   0.000      0.990 1.00 0.00
#> 08012     1   0.000      0.990 1.00 0.00
#> 08018     2   0.000      1.000 0.00 1.00
#> 11005     2   0.000      1.000 0.00 1.00
#> 12007     1   0.000      0.990 1.00 0.00
#> 22011     1   0.000      0.990 1.00 0.00
#> 24001     1   0.000      0.990 1.00 0.00
#> 24005     1   0.000      0.990 1.00 0.00
#> 24008     2   0.000      1.000 0.00 1.00
#> 24010     2   0.000      1.000 0.00 1.00
#> 24022     1   0.000      0.990 1.00 0.00
#> 26003     1   0.000      0.990 1.00 0.00
#> 27004     1   0.000      0.990 1.00 0.00
#> 28005     1   0.000      0.990 1.00 0.00
#> 28006     2   0.000      1.000 0.00 1.00
#> 28007     1   0.000      0.990 1.00 0.00
#> 28023     1   0.000      0.990 1.00 0.00
#> 28024     1   0.000      0.990 1.00 0.00
#> 28028     1   0.000      0.990 1.00 0.00
#> 28032     1   0.000      0.990 1.00 0.00
#> 28036     1   0.000      0.990 1.00 0.00
#> 28043     1   0.000      0.990 1.00 0.00
#> 28047     2   0.000      1.000 0.00 1.00
#> 31011     1   0.000      0.990 1.00 0.00
#> 36002     1   0.000      0.990 1.00 0.00
#> 43007     2   0.000      1.000 0.00 1.00
#> 49006     2   0.000      1.000 0.00 1.00
#> 57001     1   0.000      0.990 1.00 0.00
#> 62001     1   0.000      0.990 1.00 0.00
#> 62002     1   0.000      0.990 1.00 0.00
#> 63001     2   0.000      1.000 0.00 1.00
#> 64001     1   0.000      0.990 1.00 0.00
#> 65005     1   0.000      0.990 1.00 0.00
#> 68003     1   0.000      0.990 1.00 0.00
#> 84004     1   0.000      0.990 1.00 0.00
#> LAL5      1   0.000      0.990 1.00 0.00
#> 04018     1   0.000      0.990 1.00 0.00
#> 09002     2   0.000      1.000 0.00 1.00
#> 10005     2   0.000      1.000 0.00 1.00
#> 11002     2   0.000      1.000 0.00 1.00
#> 16002     1   0.000      0.990 1.00 0.00
#> 16007     1   0.000      0.990 1.00 0.00
#> 18001     1   0.000      0.990 1.00 0.00
#> 19008     2   0.000      1.000 0.00 1.00
#> 19017     2   0.000      1.000 0.00 1.00
#> 20005     1   0.000      0.990 1.00 0.00
#> 28008     2   0.000      1.000 0.00 1.00
#> 31015     2   0.000      1.000 0.00 1.00
#> 43006     2   0.000      1.000 0.00 1.00
#> 43015     1   0.000      0.990 1.00 0.00
#> 44001     2   0.000      1.000 0.00 1.00
#> 49004     2   0.000      1.000 0.00 1.00
#> 56007     1   0.000      0.990 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>       class entropy silhouette   p1   p2   p3
#> 01005     3  0.0000      0.994 0.00 0.00 1.00
#> 03002     3  0.0000      0.994 0.00 0.00 1.00
#> 04007     1  0.0000      0.985 1.00 0.00 0.00
#> 04016     1  0.0000      0.985 1.00 0.00 0.00
#> 08001     1  0.0000      0.985 1.00 0.00 0.00
#> 08011     3  0.0892      0.976 0.02 0.00 0.98
#> 08012     1  0.0000      0.985 1.00 0.00 0.00
#> 08018     3  0.0000      0.994 0.00 0.00 1.00
#> 11005     3  0.0000      0.994 0.00 0.00 1.00
#> 12007     3  0.0000      0.994 0.00 0.00 1.00
#> 22011     3  0.0892      0.976 0.02 0.00 0.98
#> 24001     1  0.0000      0.985 1.00 0.00 0.00
#> 24005     1  0.0000      0.985 1.00 0.00 0.00
#> 24008     2  0.0000      1.000 0.00 1.00 0.00
#> 24010     2  0.0000      1.000 0.00 1.00 0.00
#> 24022     1  0.0000      0.985 1.00 0.00 0.00
#> 26003     1  0.0892      0.972 0.98 0.00 0.02
#> 27004     1  0.0000      0.985 1.00 0.00 0.00
#> 28005     1  0.0000      0.985 1.00 0.00 0.00
#> 28006     2  0.0000      1.000 0.00 1.00 0.00
#> 28007     1  0.0000      0.985 1.00 0.00 0.00
#> 28023     1  0.0000      0.985 1.00 0.00 0.00
#> 28024     1  0.0000      0.985 1.00 0.00 0.00
#> 28028     1  0.0000      0.985 1.00 0.00 0.00
#> 28032     1  0.0892      0.972 0.98 0.00 0.02
#> 28036     1  0.0892      0.972 0.98 0.00 0.02
#> 28043     1  0.0000      0.985 1.00 0.00 0.00
#> 28047     2  0.0000      1.000 0.00 1.00 0.00
#> 31011     1  0.0000      0.985 1.00 0.00 0.00
#> 36002     1  0.0000      0.985 1.00 0.00 0.00
#> 43007     2  0.0000      1.000 0.00 1.00 0.00
#> 49006     3  0.0892      0.977 0.00 0.02 0.98
#> 57001     1  0.0000      0.985 1.00 0.00 0.00
#> 62001     1  0.0000      0.985 1.00 0.00 0.00
#> 62002     1  0.0000      0.985 1.00 0.00 0.00
#> 63001     2  0.0000      1.000 0.00 1.00 0.00
#> 64001     1  0.0000      0.985 1.00 0.00 0.00
#> 65005     1  0.0000      0.985 1.00 0.00 0.00
#> 68003     1  0.0000      0.985 1.00 0.00 0.00
#> 84004     1  0.0000      0.985 1.00 0.00 0.00
#> LAL5      3  0.0000      0.994 0.00 0.00 1.00
#> 04018     1  0.0892      0.972 0.98 0.00 0.02
#> 09002     3  0.0000      0.994 0.00 0.00 1.00
#> 10005     2  0.0000      1.000 0.00 1.00 0.00
#> 11002     2  0.0000      1.000 0.00 1.00 0.00
#> 16002     1  0.0000      0.985 1.00 0.00 0.00
#> 16007     1  0.0000      0.985 1.00 0.00 0.00
#> 18001     1  0.0000      0.985 1.00 0.00 0.00
#> 19008     2  0.0000      1.000 0.00 1.00 0.00
#> 19017     2  0.0000      1.000 0.00 1.00 0.00
#> 20005     1  0.1529      0.954 0.96 0.00 0.04
#> 28008     2  0.0000      1.000 0.00 1.00 0.00
#> 31015     2  0.0000      1.000 0.00 1.00 0.00
#> 43006     3  0.0000      0.994 0.00 0.00 1.00
#> 43015     1  0.5835      0.498 0.66 0.00 0.34
#> 44001     2  0.0000      1.000 0.00 1.00 0.00
#> 49004     3  0.0000      0.994 0.00 0.00 1.00
#> 56007     3  0.0000      0.994 0.00 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>       class entropy silhouette   p1  p2   p3   p4
#> 01005     3  0.0000     0.9475 0.00 0.0 1.00 0.00
#> 03002     3  0.3610     0.7590 0.00 0.0 0.80 0.20
#> 04007     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 04016     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 08001     4  0.2921     0.8098 0.14 0.0 0.00 0.86
#> 08011     3  0.0000     0.9475 0.00 0.0 1.00 0.00
#> 08012     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 08018     3  0.0000     0.9475 0.00 0.0 1.00 0.00
#> 11005     3  0.0000     0.9475 0.00 0.0 1.00 0.00
#> 12007     3  0.2647     0.8633 0.00 0.0 0.88 0.12
#> 22011     3  0.2647     0.8496 0.12 0.0 0.88 0.00
#> 24001     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 24005     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 24008     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 24010     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 24022     4  0.2921     0.8098 0.14 0.0 0.00 0.86
#> 26003     4  0.0000     0.8935 0.00 0.0 0.00 1.00
#> 27004     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 28005     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 28006     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 28007     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 28023     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 28024     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 28028     4  0.2345     0.8418 0.10 0.0 0.00 0.90
#> 28032     4  0.0000     0.8935 0.00 0.0 0.00 1.00
#> 28036     4  0.0000     0.8935 0.00 0.0 0.00 1.00
#> 28043     4  0.0000     0.8935 0.00 0.0 0.00 1.00
#> 28047     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 31011     1  0.4977     0.1824 0.54 0.0 0.00 0.46
#> 36002     1  0.4406     0.5603 0.70 0.0 0.00 0.30
#> 43007     2  0.3610     0.7555 0.00 0.8 0.20 0.00
#> 49006     3  0.0000     0.9475 0.00 0.0 1.00 0.00
#> 57001     1  0.4994     0.0627 0.52 0.0 0.00 0.48
#> 62001     4  0.3801     0.6770 0.22 0.0 0.00 0.78
#> 62002     4  0.4994    -0.0137 0.48 0.0 0.00 0.52
#> 63001     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 64001     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 65005     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> 68003     4  0.0707     0.8867 0.02 0.0 0.00 0.98
#> 84004     1  0.0000     0.8885 1.00 0.0 0.00 0.00
#> LAL5      4  0.0000     0.8935 0.00 0.0 0.00 1.00
#> 04018     4  0.0000     0.8935 0.00 0.0 0.00 1.00
#> 09002     3  0.0000     0.9475 0.00 0.0 1.00 0.00
#> 10005     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 11002     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 16002     1  0.4855     0.3615 0.60 0.0 0.00 0.40
#> 16007     1  0.0707     0.8760 0.98 0.0 0.02 0.00
#> 18001     1  0.2647     0.7894 0.88 0.0 0.00 0.12
#> 19008     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 19017     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 20005     4  0.0000     0.8935 0.00 0.0 0.00 1.00
#> 28008     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 31015     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 43006     4  0.4134     0.5892 0.00 0.0 0.26 0.74
#> 43015     4  0.0000     0.8935 0.00 0.0 0.00 1.00
#> 44001     2  0.0000     0.9833 0.00 1.0 0.00 0.00
#> 49004     3  0.0000     0.9475 0.00 0.0 1.00 0.00
#> 56007     4  0.0000     0.8935 0.00 0.0 0.00 1.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-01-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-01-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-01-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-01-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-01-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-01-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-01-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-01-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-01-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-01-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-01-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-01-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-01-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-01-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-01-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-01-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-01-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample sex(p-value) age(p-value) BT(p-value) k
#> ATC:skmeans       57        0.714       0.0649       0.215 2
#> ATC:skmeans       57        0.501       0.3076       0.227 3
#> ATC:skmeans       54        0.848       0.3282       0.370 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node011

Parent node: Node01. Child nodes: Node0111-leaf , Node0112-leaf , Node0113-leaf , Node0114-leaf , Node0121-leaf , Node0122-leaf , Node0123-leaf , Node0221-leaf , Node0222-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["011"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 11393 rows and 32 columns.
#>   Top rows (1139) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-011-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-011-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.989          0.511 0.492   0.492
#> 3 3 1.000           0.985       0.983          0.314 0.837   0.668
#> 4 4 0.998           0.975       0.984          0.145 0.883   0.655

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>       class entropy silhouette   p1   p2
#> 04007     1   0.000      1.000 1.00 0.00
#> 04016     1   0.000      1.000 1.00 0.00
#> 08001     1   0.000      1.000 1.00 0.00
#> 08012     1   0.000      1.000 1.00 0.00
#> 24001     1   0.000      1.000 1.00 0.00
#> 24005     1   0.000      1.000 1.00 0.00
#> 24022     2   0.000      0.980 0.00 1.00
#> 26003     2   0.000      0.980 0.00 1.00
#> 27004     2   0.925      0.485 0.34 0.66
#> 28005     1   0.000      1.000 1.00 0.00
#> 28007     1   0.000      1.000 1.00 0.00
#> 28023     1   0.000      1.000 1.00 0.00
#> 28024     1   0.000      1.000 1.00 0.00
#> 28028     2   0.000      0.980 0.00 1.00
#> 28032     2   0.000      0.980 0.00 1.00
#> 28036     2   0.000      0.980 0.00 1.00
#> 28043     2   0.000      0.980 0.00 1.00
#> 31011     2   0.000      0.980 0.00 1.00
#> 36002     1   0.000      1.000 1.00 0.00
#> 57001     2   0.000      0.980 0.00 1.00
#> 62001     2   0.000      0.980 0.00 1.00
#> 62002     2   0.000      0.980 0.00 1.00
#> 64001     1   0.000      1.000 1.00 0.00
#> 65005     1   0.000      1.000 1.00 0.00
#> 68003     2   0.000      0.980 0.00 1.00
#> 84004     1   0.000      1.000 1.00 0.00
#> 04018     2   0.000      0.980 0.00 1.00
#> 16002     2   0.000      0.980 0.00 1.00
#> 16007     2   0.000      0.980 0.00 1.00
#> 18001     2   0.000      0.980 0.00 1.00
#> 20005     2   0.000      0.980 0.00 1.00
#> 43015     2   0.000      0.980 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>       class entropy silhouette   p1   p2   p3
#> 04007     1  0.0000      0.987 1.00 0.00 0.00
#> 04016     1  0.0000      0.987 1.00 0.00 0.00
#> 08001     1  0.1529      0.976 0.96 0.00 0.04
#> 08012     1  0.0000      0.987 1.00 0.00 0.00
#> 24001     1  0.0000      0.987 1.00 0.00 0.00
#> 24005     1  0.0000      0.987 1.00 0.00 0.00
#> 24022     3  0.0892      0.978 0.00 0.02 0.98
#> 26003     3  0.1529      0.988 0.00 0.04 0.96
#> 27004     3  0.0892      0.954 0.00 0.02 0.98
#> 28005     1  0.1529      0.976 0.96 0.00 0.04
#> 28007     1  0.1529      0.976 0.96 0.00 0.04
#> 28023     1  0.1529      0.976 0.96 0.00 0.04
#> 28024     1  0.1529      0.976 0.96 0.00 0.04
#> 28028     3  0.0892      0.978 0.00 0.02 0.98
#> 28032     3  0.1529      0.988 0.00 0.04 0.96
#> 28036     3  0.1529      0.988 0.00 0.04 0.96
#> 28043     3  0.1529      0.988 0.00 0.04 0.96
#> 31011     2  0.0000      0.994 0.00 1.00 0.00
#> 36002     1  0.0000      0.987 1.00 0.00 0.00
#> 57001     2  0.0000      0.994 0.00 1.00 0.00
#> 62001     2  0.0000      0.994 0.00 1.00 0.00
#> 62002     2  0.0892      0.977 0.00 0.98 0.02
#> 64001     1  0.0000      0.987 1.00 0.00 0.00
#> 65005     1  0.0000      0.987 1.00 0.00 0.00
#> 68003     3  0.1529      0.988 0.00 0.04 0.96
#> 84004     1  0.0000      0.987 1.00 0.00 0.00
#> 04018     2  0.0000      0.994 0.00 1.00 0.00
#> 16002     2  0.0000      0.994 0.00 1.00 0.00
#> 16007     2  0.0892      0.974 0.02 0.98 0.00
#> 18001     2  0.0000      0.994 0.00 1.00 0.00
#> 20005     3  0.1529      0.988 0.00 0.04 0.96
#> 43015     2  0.0000      0.994 0.00 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>       class entropy silhouette   p1   p2   p3   p4
#> 04007     1  0.1211      0.956 0.96 0.00 0.00 0.04
#> 04016     1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 08001     4  0.1637      0.929 0.06 0.00 0.00 0.94
#> 08012     1  0.0000      0.956 1.00 0.00 0.00 0.00
#> 24001     1  0.0000      0.956 1.00 0.00 0.00 0.00
#> 24005     1  0.2647      0.900 0.88 0.00 0.00 0.12
#> 24022     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 26003     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 27004     4  0.0707      0.965 0.00 0.00 0.02 0.98
#> 28005     4  0.0000      0.982 0.00 0.00 0.00 1.00
#> 28007     4  0.0000      0.982 0.00 0.00 0.00 1.00
#> 28023     4  0.0000      0.982 0.00 0.00 0.00 1.00
#> 28024     4  0.0000      0.982 0.00 0.00 0.00 1.00
#> 28028     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 28032     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 28036     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 28043     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 31011     2  0.0000      0.993 0.00 1.00 0.00 0.00
#> 36002     1  0.0707      0.950 0.98 0.00 0.00 0.02
#> 57001     2  0.0000      0.993 0.00 1.00 0.00 0.00
#> 62001     2  0.1411      0.963 0.02 0.96 0.00 0.02
#> 62002     2  0.0707      0.977 0.00 0.98 0.02 0.00
#> 64001     1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 65005     1  0.0707      0.962 0.98 0.00 0.00 0.02
#> 68003     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 84004     1  0.2647      0.900 0.88 0.00 0.00 0.12
#> 04018     2  0.0000      0.993 0.00 1.00 0.00 0.00
#> 16002     2  0.0000      0.993 0.00 1.00 0.00 0.00
#> 16007     2  0.0000      0.993 0.00 1.00 0.00 0.00
#> 18001     2  0.0000      0.993 0.00 1.00 0.00 0.00
#> 20005     3  0.0000      1.000 0.00 0.00 1.00 0.00
#> 43015     2  0.0000      0.993 0.00 1.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-011-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-011-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-011-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-011-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-011-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-011-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-011-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-011-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-011-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-011-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-011-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-011-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-011-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-011-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-011-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-011-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-011-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample sex(p-value) age(p-value) BT(p-value) k
#> ATC:skmeans       31        0.724        0.153      0.0412 2
#> ATC:skmeans       32        0.408        0.311      0.0268 3
#> ATC:skmeans       32        0.594        0.617      0.0521 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node012

Parent node: Node01. Child nodes: Node0111-leaf , Node0112-leaf , Node0113-leaf , Node0114-leaf , Node0121-leaf , Node0122-leaf , Node0123-leaf , Node0221-leaf , Node0222-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["012"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 11393 rows and 13 columns.
#>   Top rows (1139) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-012-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-012-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000          0.539 0.462   0.462
#> 3 3 1.000           0.997       0.998          0.189 0.897   0.778
#> 4 4 0.872           0.866       0.952          0.129 0.923   0.786

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>       class entropy silhouette p1 p2
#> 24008     1       0          1  1  0
#> 24010     1       0          1  1  0
#> 28006     1       0          1  1  0
#> 28047     2       0          1  0  1
#> 43007     2       0          1  0  1
#> 63001     1       0          1  1  0
#> 10005     1       0          1  1  0
#> 11002     1       0          1  1  0
#> 19008     2       0          1  0  1
#> 19017     2       0          1  0  1
#> 28008     1       0          1  1  0
#> 31015     2       0          1  0  1
#> 44001     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>       class entropy silhouette p1   p2   p3
#> 24008     1  0.0000       1.00  1 0.00 0.00
#> 24010     1  0.0000       1.00  1 0.00 0.00
#> 28006     1  0.0000       1.00  1 0.00 0.00
#> 28047     2  0.0000       1.00  0 1.00 0.00
#> 43007     2  0.0000       1.00  0 1.00 0.00
#> 63001     1  0.0000       1.00  1 0.00 0.00
#> 10005     1  0.0000       1.00  1 0.00 0.00
#> 11002     1  0.0000       1.00  1 0.00 0.00
#> 19008     2  0.0000       1.00  0 1.00 0.00
#> 19017     2  0.0000       1.00  0 1.00 0.00
#> 28008     1  0.0000       1.00  1 0.00 0.00
#> 31015     3  0.0892       0.98  0 0.02 0.98
#> 44001     3  0.0000       0.98  0 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>       class entropy silhouette   p1   p2   p3   p4
#> 24008     4  0.2647      0.000 0.12 0.00 0.00 0.88
#> 24010     1  0.2011      0.924 0.92 0.00 0.00 0.08
#> 28006     1  0.0000      0.921 1.00 0.00 0.00 0.00
#> 28047     2  0.2011      0.952 0.00 0.92 0.00 0.08
#> 43007     2  0.2011      0.952 0.00 0.92 0.00 0.08
#> 63001     1  0.2011      0.924 0.92 0.00 0.00 0.08
#> 10005     1  0.2011      0.924 0.92 0.00 0.00 0.08
#> 11002     1  0.1211      0.907 0.96 0.00 0.00 0.04
#> 19008     2  0.0000      0.952 0.00 1.00 0.00 0.00
#> 19017     2  0.0000      0.952 0.00 1.00 0.00 0.00
#> 28008     1  0.1211      0.907 0.96 0.00 0.00 0.04
#> 31015     3  0.0707      0.972 0.00 0.02 0.98 0.00
#> 44001     3  0.0000      0.972 0.00 0.00 1.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-012-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-012-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-012-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-012-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-012-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-012-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-012-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-012-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-012-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-012-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-012-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-012-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-012-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-012-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-012-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-012-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-012-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample sex(p-value) age(p-value) BT(p-value) k
#> ATC:skmeans       13        1.000        0.483       0.406 2
#> ATC:skmeans       13        0.695        0.495       0.436 3
#> ATC:skmeans       12        0.741        0.539       0.555 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node02

Parent node: Node0. Child nodes: Node011 , Node012 , Node013-leaf , Node021-leaf , Node022 , Node023-leaf , Node031-leaf , Node032-leaf , Node033-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["02"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 11393 rows and 39 columns.
#>   Top rows (1139) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-02-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-02-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000            0.97       0.987          0.513 0.487   0.487
#> 3 3 1.000            1.00       1.000          0.254 0.843   0.687
#> 4 4 0.896            0.97       0.975          0.123 0.924   0.789

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>       class entropy silhouette   p1   p2
#> 01010     1   0.000      1.000 1.00 0.00
#> 04006     1   0.000      1.000 1.00 0.00
#> 04008     2   0.795      0.697 0.24 0.76
#> 04010     1   0.000      1.000 1.00 0.00
#> 06002     2   0.000      0.972 0.00 1.00
#> 09008     1   0.000      1.000 1.00 0.00
#> 12012     2   0.000      0.972 0.00 1.00
#> 12019     2   0.000      0.972 0.00 1.00
#> 12026     2   0.000      0.972 0.00 1.00
#> 14016     2   0.000      0.972 0.00 1.00
#> 15001     2   0.000      0.972 0.00 1.00
#> 15005     2   0.000      0.972 0.00 1.00
#> 16004     2   0.000      0.972 0.00 1.00
#> 16009     1   0.000      1.000 1.00 0.00
#> 19005     2   0.000      0.972 0.00 1.00
#> 20002     2   0.855      0.631 0.28 0.72
#> 24011     2   0.000      0.972 0.00 1.00
#> 24017     1   0.000      1.000 1.00 0.00
#> 24019     1   0.000      1.000 1.00 0.00
#> 25006     1   0.000      1.000 1.00 0.00
#> 26001     2   0.000      0.972 0.00 1.00
#> 26005     2   0.000      0.972 0.00 1.00
#> 26008     1   0.000      1.000 1.00 0.00
#> 28019     1   0.000      1.000 1.00 0.00
#> 28021     1   0.000      1.000 1.00 0.00
#> 28035     1   0.000      1.000 1.00 0.00
#> 28037     1   0.000      1.000 1.00 0.00
#> 28044     2   0.000      0.972 0.00 1.00
#> 30001     1   0.000      1.000 1.00 0.00
#> 33005     1   0.000      1.000 1.00 0.00
#> 36001     2   0.000      0.972 0.00 1.00
#> 37013     2   0.000      0.972 0.00 1.00
#> 48001     2   0.000      0.972 0.00 1.00
#> 64002     1   0.000      1.000 1.00 0.00
#> 68001     1   0.000      1.000 1.00 0.00
#> 02020     2   0.000      0.972 0.00 1.00
#> 15006     1   0.000      1.000 1.00 0.00
#> 26009     1   0.000      1.000 1.00 0.00
#> 83001     2   0.000      0.972 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>       class entropy silhouette p1 p2 p3
#> 01010     1       0          1  1  0  0
#> 04006     1       0          1  1  0  0
#> 04008     3       0          1  0  0  1
#> 04010     1       0          1  1  0  0
#> 06002     2       0          1  0  1  0
#> 09008     3       0          1  0  0  1
#> 12012     2       0          1  0  1  0
#> 12019     2       0          1  0  1  0
#> 12026     2       0          1  0  1  0
#> 14016     2       0          1  0  1  0
#> 15001     2       0          1  0  1  0
#> 15005     2       0          1  0  1  0
#> 16004     2       0          1  0  1  0
#> 16009     1       0          1  1  0  0
#> 19005     2       0          1  0  1  0
#> 20002     3       0          1  0  0  1
#> 24011     2       0          1  0  1  0
#> 24017     1       0          1  1  0  0
#> 24019     1       0          1  1  0  0
#> 25006     1       0          1  1  0  0
#> 26001     2       0          1  0  1  0
#> 26005     2       0          1  0  1  0
#> 26008     1       0          1  1  0  0
#> 28019     1       0          1  1  0  0
#> 28021     3       0          1  0  0  1
#> 28035     3       0          1  0  0  1
#> 28037     3       0          1  0  0  1
#> 28044     2       0          1  0  1  0
#> 30001     1       0          1  1  0  0
#> 33005     3       0          1  0  0  1
#> 36001     2       0          1  0  1  0
#> 37013     2       0          1  0  1  0
#> 48001     2       0          1  0  1  0
#> 64002     1       0          1  1  0  0
#> 68001     1       0          1  1  0  0
#> 02020     2       0          1  0  1  0
#> 15006     1       0          1  1  0  0
#> 26009     1       0          1  1  0  0
#> 83001     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>       class entropy silhouette p1   p2 p3   p4
#> 01010     1  0.0000      1.000  1 0.00  0 0.00
#> 04006     1  0.0000      1.000  1 0.00  0 0.00
#> 04008     3  0.0000      1.000  0 0.00  1 0.00
#> 04010     1  0.0000      1.000  1 0.00  0 0.00
#> 06002     2  0.2921      0.915  0 0.86  0 0.14
#> 09008     3  0.0000      1.000  0 0.00  1 0.00
#> 12012     2  0.2921      0.915  0 0.86  0 0.14
#> 12019     2  0.2921      0.915  0 0.86  0 0.14
#> 12026     4  0.0000      1.000  0 0.00  0 1.00
#> 14016     4  0.0000      1.000  0 0.00  0 1.00
#> 15001     2  0.2921      0.915  0 0.86  0 0.14
#> 15005     2  0.0000      0.918  0 1.00  0 0.00
#> 16004     4  0.0000      1.000  0 0.00  0 1.00
#> 16009     1  0.0000      1.000  1 0.00  0 0.00
#> 19005     2  0.2647      0.918  0 0.88  0 0.12
#> 20002     3  0.0000      1.000  0 0.00  1 0.00
#> 24011     4  0.0000      1.000  0 0.00  0 1.00
#> 24017     1  0.0000      1.000  1 0.00  0 0.00
#> 24019     1  0.0000      1.000  1 0.00  0 0.00
#> 25006     1  0.0000      1.000  1 0.00  0 0.00
#> 26001     2  0.2921      0.915  0 0.86  0 0.14
#> 26005     2  0.2921      0.915  0 0.86  0 0.14
#> 26008     1  0.0000      1.000  1 0.00  0 0.00
#> 28019     1  0.0000      1.000  1 0.00  0 0.00
#> 28021     3  0.0000      1.000  0 0.00  1 0.00
#> 28035     3  0.0000      1.000  0 0.00  1 0.00
#> 28037     3  0.0000      1.000  0 0.00  1 0.00
#> 28044     2  0.0000      0.918  0 1.00  0 0.00
#> 30001     1  0.0000      1.000  1 0.00  0 0.00
#> 33005     3  0.0000      1.000  0 0.00  1 0.00
#> 36001     2  0.0000      0.918  0 1.00  0 0.00
#> 37013     2  0.0000      0.918  0 1.00  0 0.00
#> 48001     2  0.0000      0.918  0 1.00  0 0.00
#> 64002     1  0.0000      1.000  1 0.00  0 0.00
#> 68001     1  0.0000      1.000  1 0.00  0 0.00
#> 02020     2  0.0707      0.920  0 0.98  0 0.02
#> 15006     1  0.0000      1.000  1 0.00  0 0.00
#> 26009     1  0.0000      1.000  1 0.00  0 0.00
#> 83001     2  0.0000      0.918  0 1.00  0 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-02-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-02-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-02-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-02-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-02-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-02-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-02-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-02-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-02-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-02-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-02-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-02-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-02-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-02-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-02-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-02-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-02-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample sex(p-value) age(p-value) BT(p-value) k
#> ATC:skmeans       39        1.000       0.4107       0.381 2
#> ATC:skmeans       39        0.896       0.7659       0.162 3
#> ATC:skmeans       39        0.842       0.0161       0.365 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node022

Parent node: Node02. Child nodes: Node0111-leaf , Node0112-leaf , Node0113-leaf , Node0114-leaf , Node0121-leaf , Node0122-leaf , Node0123-leaf , Node0221-leaf , Node0222-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["022"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 11393 rows and 18 columns.
#>   Top rows (1139) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-022-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-022-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5234 0.477   0.477
#> 3 3 0.863           0.902       0.962         0.3139 0.837   0.658
#> 4 4 0.863           0.798       0.930         0.0939 0.922   0.755

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>       class entropy silhouette p1 p2
#> 06002     2       0          1  0  1
#> 12012     2       0          1  0  1
#> 12019     2       0          1  0  1
#> 12026     2       0          1  0  1
#> 14016     2       0          1  0  1
#> 15001     2       0          1  0  1
#> 15005     1       0          1  1  0
#> 16004     2       0          1  0  1
#> 19005     1       0          1  1  0
#> 24011     2       0          1  0  1
#> 26001     2       0          1  0  1
#> 26005     2       0          1  0  1
#> 28044     1       0          1  1  0
#> 36001     1       0          1  1  0
#> 37013     1       0          1  1  0
#> 48001     1       0          1  1  0
#> 02020     1       0          1  1  0
#> 83001     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>       class entropy silhouette   p1   p2  p3
#> 06002     3   0.000      0.895 0.00 0.00 1.0
#> 12012     3   0.613      0.340 0.00 0.40 0.6
#> 12019     3   0.000      0.895 0.00 0.00 1.0
#> 12026     2   0.000      1.000 0.00 1.00 0.0
#> 14016     2   0.000      1.000 0.00 1.00 0.0
#> 15001     3   0.000      0.895 0.00 0.00 1.0
#> 15005     1   0.000      0.958 1.00 0.00 0.0
#> 16004     2   0.000      1.000 0.00 1.00 0.0
#> 19005     1   0.540      0.616 0.72 0.28 0.0
#> 24011     2   0.000      1.000 0.00 1.00 0.0
#> 26001     2   0.000      1.000 0.00 1.00 0.0
#> 26005     3   0.000      0.895 0.00 0.00 1.0
#> 28044     1   0.000      0.958 1.00 0.00 0.0
#> 36001     1   0.000      0.958 1.00 0.00 0.0
#> 37013     1   0.000      0.958 1.00 0.00 0.0
#> 48001     1   0.000      0.958 1.00 0.00 0.0
#> 02020     1   0.000      0.958 1.00 0.00 0.0
#> 83001     1   0.000      0.958 1.00 0.00 0.0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>       class entropy silhouette   p1   p2   p3   p4
#> 06002     3  0.0000     0.7356 0.00 0.00 1.00 0.00
#> 12012     3  0.6336     0.0742 0.00 0.46 0.48 0.06
#> 12019     4  0.5062     0.4909 0.00 0.02 0.30 0.68
#> 12026     2  0.0000     1.0000 0.00 1.00 0.00 0.00
#> 14016     2  0.0000     1.0000 0.00 1.00 0.00 0.00
#> 15001     3  0.0000     0.7356 0.00 0.00 1.00 0.00
#> 15005     1  0.0000     0.9311 1.00 0.00 0.00 0.00
#> 16004     2  0.0000     1.0000 0.00 1.00 0.00 0.00
#> 19005     4  0.0707     0.6155 0.02 0.00 0.00 0.98
#> 24011     2  0.0000     1.0000 0.00 1.00 0.00 0.00
#> 26001     2  0.0000     1.0000 0.00 1.00 0.00 0.00
#> 26005     3  0.0000     0.7356 0.00 0.00 1.00 0.00
#> 28044     1  0.0000     0.9311 1.00 0.00 0.00 0.00
#> 36001     1  0.0000     0.9311 1.00 0.00 0.00 0.00
#> 37013     1  0.0000     0.9311 1.00 0.00 0.00 0.00
#> 48001     1  0.4855     0.3938 0.60 0.00 0.00 0.40
#> 02020     1  0.0000     0.9311 1.00 0.00 0.00 0.00
#> 83001     1  0.0000     0.9311 1.00 0.00 0.00 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-022-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-022-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-022-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-022-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-022-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-022-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-022-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-022-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-022-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-022-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-022-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-022-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-022-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-022-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-022-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-022-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-022-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample sex(p-value) age(p-value) BT(p-value) k
#> ATC:skmeans       18        1.000        0.260       0.312 2
#> ATC:skmeans       17        0.335        0.308       0.654 3
#> ATC:skmeans       15        0.308        0.192       0.413 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


Node03

Parent node: Node0. Child nodes: Node011 , Node012 , Node013-leaf , Node021-leaf , Node022 , Node023-leaf , Node031-leaf , Node032-leaf , Node033-leaf .

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_rh["03"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4.
#>   On a matrix with 11393 rows and 31 columns.
#>   Top rows (1139) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 150 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_partitions"     
#>  [7] "compare_signatures"      "consensus_heatmap"       "dimension_reduction"    
#> [10] "functional_enrichment"   "get_anno_col"            "get_anno"               
#> [13] "get_classes"             "get_consensus"           "get_matrix"             
#> [16] "get_membership"          "get_param"               "get_signatures"         
#> [19] "get_stats"               "is_best_k"               "is_stable_k"            
#> [22] "membership_heatmap"      "ncol"                    "nrow"                   
#> [25] "plot_ecdf"               "predict_classes"         "rownames"               
#> [28] "select_partition_number" "show"                    "suggest_best_k"         
#> [31] "test_to_known_factors"   "top_rows_heatmap"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk node-03-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk node-03-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.754           0.799       0.922          0.499 0.488   0.488
#> 3 3 1.000           0.986       0.994          0.340 0.781   0.579
#> 4 4 0.771           0.816       0.910          0.139 0.867   0.620

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>       class entropy silhouette   p1   p2
#> 08024     2   0.000      0.864 0.00 1.00
#> 09017     1   0.000      0.933 1.00 0.00
#> 12006     2   0.000      0.864 0.00 1.00
#> 15004     2   0.000      0.864 0.00 1.00
#> 22009     1   0.999     -0.193 0.52 0.48
#> 22010     1   0.000      0.933 1.00 0.00
#> 22013     2   0.943      0.537 0.36 0.64
#> 24018     2   0.971      0.453 0.40 0.60
#> 25003     2   0.943      0.537 0.36 0.64
#> 27003     2   0.000      0.864 0.00 1.00
#> 28001     2   0.000      0.864 0.00 1.00
#> 28003     1   0.000      0.933 1.00 0.00
#> 28031     2   0.000      0.864 0.00 1.00
#> 28042     1   0.971      0.297 0.60 0.40
#> 31007     2   0.000      0.864 0.00 1.00
#> 43001     2   0.000      0.864 0.00 1.00
#> 43004     1   0.000      0.933 1.00 0.00
#> 43012     1   0.000      0.933 1.00 0.00
#> 62003     2   0.943      0.537 0.36 0.64
#> 01003     1   0.000      0.933 1.00 0.00
#> 01007     1   0.000      0.933 1.00 0.00
#> 12008     2   0.327      0.832 0.06 0.94
#> 17003     2   0.000      0.864 0.00 1.00
#> 19002     1   0.000      0.933 1.00 0.00
#> 19014     1   0.000      0.933 1.00 0.00
#> 24006     1   0.000      0.933 1.00 0.00
#> 28009     1   0.000      0.933 1.00 0.00
#> 37001     1   0.000      0.933 1.00 0.00
#> 64005     1   0.000      0.933 1.00 0.00
#> 65003     1   0.000      0.933 1.00 0.00
#> LAL4      1   0.000      0.933 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>       class entropy silhouette   p1   p2   p3
#> 08024     2   0.000      1.000 0.00 1.00 0.00
#> 09017     3   0.000      1.000 0.00 0.00 1.00
#> 12006     2   0.000      1.000 0.00 1.00 0.00
#> 15004     2   0.000      1.000 0.00 1.00 0.00
#> 22009     3   0.000      1.000 0.00 0.00 1.00
#> 22010     1   0.000      0.984 1.00 0.00 0.00
#> 22013     3   0.000      1.000 0.00 0.00 1.00
#> 24018     3   0.000      1.000 0.00 0.00 1.00
#> 25003     3   0.000      1.000 0.00 0.00 1.00
#> 27003     2   0.000      1.000 0.00 1.00 0.00
#> 28001     2   0.000      1.000 0.00 1.00 0.00
#> 28003     1   0.000      0.984 1.00 0.00 0.00
#> 28031     2   0.000      1.000 0.00 1.00 0.00
#> 28042     1   0.369      0.838 0.86 0.14 0.00
#> 31007     2   0.000      1.000 0.00 1.00 0.00
#> 43001     2   0.000      1.000 0.00 1.00 0.00
#> 43004     3   0.000      1.000 0.00 0.00 1.00
#> 43012     1   0.000      0.984 1.00 0.00 0.00
#> 62003     3   0.000      1.000 0.00 0.00 1.00
#> 01003     1   0.000      0.984 1.00 0.00 0.00
#> 01007     1   0.000      0.984 1.00 0.00 0.00
#> 12008     3   0.000      1.000 0.00 0.00 1.00
#> 17003     2   0.000      1.000 0.00 1.00 0.00
#> 19002     1   0.000      0.984 1.00 0.00 0.00
#> 19014     1   0.000      0.984 1.00 0.00 0.00
#> 24006     1   0.000      0.984 1.00 0.00 0.00
#> 28009     1   0.000      0.984 1.00 0.00 0.00
#> 37001     1   0.000      0.984 1.00 0.00 0.00
#> 64005     1   0.207      0.930 0.94 0.00 0.06
#> 65003     1   0.000      0.984 1.00 0.00 0.00
#> LAL4      1   0.000      0.984 1.00 0.00 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>       class entropy silhouette   p1   p2   p3   p4
#> 08024     2  0.0000      0.971 0.00 1.00 0.00 0.00
#> 09017     3  0.3975      0.723 0.24 0.00 0.76 0.00
#> 12006     2  0.0000      0.971 0.00 1.00 0.00 0.00
#> 15004     4  0.4134      0.611 0.00 0.26 0.00 0.74
#> 22009     3  0.0000      0.895 0.00 0.00 1.00 0.00
#> 22010     1  0.0000      0.880 1.00 0.00 0.00 0.00
#> 22013     3  0.0000      0.895 0.00 0.00 1.00 0.00
#> 24018     3  0.0000      0.895 0.00 0.00 1.00 0.00
#> 25003     3  0.0000      0.895 0.00 0.00 1.00 0.00
#> 27003     2  0.3172      0.797 0.00 0.84 0.00 0.16
#> 28001     2  0.0000      0.971 0.00 1.00 0.00 0.00
#> 28003     1  0.0707      0.872 0.98 0.00 0.00 0.02
#> 28031     4  0.3610      0.685 0.00 0.20 0.00 0.80
#> 28042     4  0.0000      0.776 0.00 0.00 0.00 1.00
#> 31007     2  0.0000      0.971 0.00 1.00 0.00 0.00
#> 43001     2  0.0000      0.971 0.00 1.00 0.00 0.00
#> 43004     3  0.4624      0.578 0.34 0.00 0.66 0.00
#> 43012     4  0.1637      0.780 0.06 0.00 0.00 0.94
#> 62003     3  0.0000      0.895 0.00 0.00 1.00 0.00
#> 01003     1  0.0000      0.880 1.00 0.00 0.00 0.00
#> 01007     4  0.4624      0.532 0.34 0.00 0.00 0.66
#> 12008     3  0.2611      0.849 0.02 0.04 0.92 0.02
#> 17003     2  0.0000      0.971 0.00 1.00 0.00 0.00
#> 19002     1  0.0000      0.880 1.00 0.00 0.00 0.00
#> 19014     1  0.2647      0.832 0.88 0.00 0.00 0.12
#> 24006     1  0.0000      0.880 1.00 0.00 0.00 0.00
#> 28009     4  0.2921      0.709 0.14 0.00 0.00 0.86
#> 37001     1  0.3400      0.795 0.82 0.00 0.00 0.18
#> 64005     1  0.0000      0.880 1.00 0.00 0.00 0.00
#> 65003     1  0.4977      0.267 0.54 0.00 0.00 0.46
#> LAL4      1  0.4079      0.781 0.80 0.00 0.02 0.18

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-node-03-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-node-03-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-node-03-consensus-heatmap-3

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-node-03-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-node-03-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-node-03-membership-heatmap-3

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-node-03-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-node-03-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-node-03-get-signatures-3

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-node-03-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-node-03-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-node-03-get-signatures-no-scale-3

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk node-03-signature_compare

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

If the signatures are defined as these which are uniquely high in current group, diff_method argument can be set to "uniquely_high_in_one_group":

# code only for demonstration
tb = get_signature(res, k = ..., diff_method = "uniquely_high_in_one_group")

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-node-03-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-node-03-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-node-03-dimension-reduction-3

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk node-03-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n_sample sex(p-value) age(p-value) BT(p-value) k
#> ATC:skmeans       28        0.254        0.214      0.0216 2
#> ATC:skmeans       31        0.463        0.221      0.0167 3
#> ATC:skmeans       30        0.733        0.542      0.0985 4

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 4.1.0 (2021-05-18)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS/LAPACK: /usr/lib64/libopenblas-r0.3.3.so
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
#>  [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      parallel  stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.74.0     ComplexHeatmap_2.8.0  markdown_1.1          knitr_1.33           
#> [5] preprocessCore_1.54.0 ALL_1.34.0            Biobase_2.52.0        BiocGenerics_0.38.0  
#> [9] cola_1.9.4           
#> 
#> loaded via a namespace (and not attached):
#>   [1] colorspace_2.0-2       rjson_0.2.20           ellipsis_0.3.2         mclust_5.4.7          
#>   [5] circlize_0.4.13        XVector_0.32.0         GlobalOptions_0.1.2    clue_0.3-59           
#>   [9] rstudioapi_0.13        bit64_4.0.5            AnnotationDbi_1.54.1   Polychrome_1.3.1      
#>  [13] RSpectra_0.16-0        fansi_0.5.0            xml2_1.3.2             codetools_0.2-18      
#>  [17] splines_4.1.0          doParallel_1.0.16      cachem_1.0.5           impute_1.66.0         
#>  [21] polyclip_1.10-0        jsonlite_1.7.2         Cairo_1.5-12.2         umap_0.2.7.0          
#>  [25] annotate_1.70.0        cluster_2.1.2          png_0.1-7              data.tree_1.0.0       
#>  [29] compiler_4.1.0         httr_1.4.2             assertthat_0.2.1       Matrix_1.3-4          
#>  [33] fastmap_1.1.0          tools_4.1.0            gtable_0.3.0           glue_1.4.2            
#>  [37] GenomeInfoDbData_1.2.6 dplyr_1.0.7            Rcpp_1.0.7             slam_0.1-48           
#>  [41] eulerr_6.1.0           vctrs_0.3.8            Biostrings_2.60.1      iterators_1.0.13      
#>  [45] polylabelr_0.2.0       xfun_0.24              stringr_1.4.0          lifecycle_1.0.0       
#>  [49] irlba_2.3.3            XML_3.99-0.6           dendextend_1.15.1      zlibbioc_1.38.0       
#>  [53] scales_1.1.1           microbenchmark_1.4-7   RColorBrewer_1.1-2     memoise_2.0.0         
#>  [57] reticulate_1.20        gridExtra_2.3          ggplot2_3.3.5          stringi_1.7.3         
#>  [61] RSQLite_2.2.7          highr_0.9              S4Vectors_0.30.0       foreach_1.5.1         
#>  [65] shape_1.4.6            GenomeInfoDb_1.28.1    rlang_0.4.11           pkgconfig_2.0.3       
#>  [69] matrixStats_0.59.0     bitops_1.0-7           evaluate_0.14          lattice_0.20-44       
#>  [73] purrr_0.3.4            bit_4.0.4              tidyselect_1.1.1       magrittr_2.0.1        
#>  [77] R6_2.5.0               IRanges_2.26.0         generics_0.1.0         DBI_1.1.1             
#>  [81] pillar_1.6.1           survival_3.2-11        KEGGREST_1.32.0        scatterplot3d_0.3-41  
#>  [85] RCurl_1.98-1.3         tibble_3.1.2           crayon_1.4.1           utf8_1.2.1            
#>  [89] skmeans_0.2-13         viridis_0.6.1          GetoptLong_1.0.5       blob_1.2.1            
#>  [93] digest_0.6.27          xtable_1.8-4           brew_1.0-6             openssl_1.4.4         
#>  [97] stats4_4.1.0           munsell_0.5.0          viridisLite_0.4.0      askpass_1.1